Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 149(6): 1298-313, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22682250

RESUMEN

Wnt signaling plays critical roles in development of various organs and pathogenesis of many diseases, and augmented Wnt signaling has recently been implicated in mammalian aging and aging-related phenotypes. We here report that complement C1q activates canonical Wnt signaling and promotes aging-associated decline in tissue regeneration. Serum C1q concentration is increased with aging, and Wnt signaling activity is augmented during aging in the serum and in multiple tissues of wild-type mice, but not in those of C1qa-deficient mice. C1q activates canonical Wnt signaling by binding to Frizzled receptors and subsequently inducing C1s-dependent cleavage of the ectodomain of Wnt coreceptor low-density lipoprotein receptor-related protein 6. Skeletal muscle regeneration in young mice is inhibited by exogenous C1q treatment, whereas aging-associated impairment of muscle regeneration is restored by C1s inhibition or C1qa gene disruption. Our findings therefore suggest the unexpected role of complement C1q in Wnt signal transduction and modulation of mammalian aging.


Asunto(s)
Envejecimiento/metabolismo , Complemento C1q/metabolismo , Vía de Señalización Wnt , Animales , Complemento C1s/metabolismo , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Suero/metabolismo
2.
Int Heart J ; 57(1): 112-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26673445

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene which encodes dystrophin protein. Dystrophin defect affects cardiac muscle as well as skeletal muscle. Cardiac dysfunction is observed in all patients with DMD over 18 years of age, but there is no curative treatment for DMD cardiomyopathy. To establish novel experimental platforms which reproduce the cardiac phenotype of DMD patients, here we established iPS cell lines from T lymphocytes donated from two DMD patients, with a protocol using Sendai virus vectors. We successfully conducted the differentiation of the DMD patient-specific iPS cells into beating cardiomyocytes. DMD patient-specific iPS cells and iPS cell-derived cardiomyocytes would be a useful in vitro experimental system with which to investigate DMD cardiomyopathy.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Distrofia Muscular de Duchenne/metabolismo , Miocitos Cardíacos/citología , Adolescente , Adulto , Diferenciación Celular , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/citología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Miocitos Cardíacos/metabolismo , ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Sci Rep ; 11(1): 10351, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990626

RESUMEN

Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration accompanied by dilated cardiomyopathy. Recently, abnormality of yes-associated protein (YAP) has been reported as the pathogenesis of muscle degeneration of DMD; however YAP activity remains unclear in dystrophic heart of DMD. Herein, we investigated YAP activity using disease-specific induced pluripotent stem cell (iPSC) derived cardiomyocytes (CMs) in DMD. DMD-iPSCs were generated from DMD patient with exon 48-54 deletion in DMD, and genome-edited (Ed)-DMD-iPSCs with in-frame (Ed-DMD-iPSCs) were created using CRISPR/Cas9. Nuclear translocation of YAP [nuclear (N)/cytoplasmic (C) ratio] was significantly lower in DMD-iPSC-CMs than in Ed-DMD-iPSC-CMs. In addition, Ki67 expression, indicating proliferative ability, was significantly lower in DMD-iPSC-CMs than Ed-DMD-iPSC-CMs. Therefore, immunofluorescent staining showed that actin stress fibers associated with YAP activity by mechanotransduction were disorganized in DMD-iPSC-CMs. Lysophosphatidic acid (LPA), a known lipid mediator on induction of actin polymerization, significantly increased YAP activity and actin dynamics in DMD-iPSC-CMs using live cell imaging. These results suggested that altered YAP activity due to impaired actin dynamics reduced proliferative ability in DMD-iPSC-CMs. Hence, decreased YAP activity in dystrophic heart may contribute to DMD-cardiomyopathy pathogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Cardiomiopatía Dilatada/patología , Células Madre Pluripotentes Inducidas/metabolismo , Distrofia Muscular de Duchenne/complicaciones , Miocitos Cardíacos/patología , Factores de Transcripción/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Sistemas CRISPR-Cas/genética , Cardiomiopatía Dilatada/genética , Proliferación Celular , Células Cultivadas , Edición Génica , Humanos , Masculino , Mecanotransducción Celular , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Cultivo Primario de Células , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
4.
Sci Rep ; 8(1): 15858, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30374020

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

5.
Nat Commun ; 8: 15104, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28436431

RESUMEN

The DNA damage response (DDR) plays a pivotal role in maintaining genome integrity. DNA damage and DDR activation are observed in the failing heart, however, the type of DNA damage and its role in the pathogenesis of heart failure remain elusive. Here we show the critical role of DNA single-strand break (SSB) in the pathogenesis of pressure overload-induced heart failure. Accumulation of unrepaired SSB is observed in cardiomyocytes of the failing heart. Unrepaired SSB activates DDR and increases the expression of inflammatory cytokines through NF-κB signalling. Pressure overload-induced heart failure is more severe in the mice lacking XRCC1, an essential protein for SSB repair, which is rescued by blocking DDR activation through genetic deletion of ATM, suggesting the causative role of SSB accumulation and DDR activation in the pathogenesis of heart failure. Prevention of SSB accumulation or persistent DDR activation may become a new therapeutic strategy against heart failure.


Asunto(s)
Roturas del ADN de Cadena Simple , Daño del ADN/genética , ADN/metabolismo , Insuficiencia Cardíaca/genética , Miocitos Cardíacos/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Citocinas/inmunología , Daño del ADN/inmunología , Reparación del ADN/genética , Técnicas de Inactivación de Genes , Insuficiencia Cardíaca/inmunología , Inflamación , Ratones , Miocitos Cardíacos/inmunología , FN-kappa B/inmunología
6.
Sci Rep ; 6: 25009, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27146149

RESUMEN

Activation of ß-catenin-dependent canonical Wnt signaling in endothelial cells plays a key role in angiogenesis during development and ischemic diseases, however, other roles of Wnt/ß-catenin signaling in endothelial cells remain poorly understood. Here, we report that sustained activation of ß-catenin signaling in endothelial cells causes cardiac dysfunction through suppressing neuregulin-ErbB pathway in the heart. Conditional gain-of-function mutation of ß-catenin, which activates Wnt/ß-catenin signaling in Bmx-positive arterial endothelial cells (Bmx/CA mice) led to progressive cardiac dysfunction and 100% mortality at 40 weeks after tamoxifen treatment. Electron microscopic analysis revealed dilatation of T-tubules and degeneration of mitochondria in cardiomyocytes of Bmx/CA mice, which are similar to the changes observed in mice with decreased neuregulin-ErbB signaling. Endothelial expression of Nrg1 and cardiac ErbB signaling were suppressed in Bmx/CA mice. The cardiac dysfunction of Bmx/CA mice was ameliorated by administration of recombinant neuregulin protein. These results collectively suggest that sustained activation of Wnt/ß-catenin signaling in endothelial cells might be a cause of heart failure through suppressing neuregulin-ErbB signaling, and that the Wnt/ß-catenin/NRG axis in cardiac endothelial cells might become a therapeutic target for heart failure.


Asunto(s)
Células Endoteliales/fisiología , Receptores ErbB/antagonistas & inhibidores , Insuficiencia Cardíaca/fisiopatología , Neurregulina-1/antagonistas & inhibidores , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Análisis de Supervivencia
7.
Circ Heart Fail ; 8(4): 799-808, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26038536

RESUMEN

BACKGROUND: There are changes in the skeletal muscle of patients with chronic heart failure (CHF), such as volume reduction and fiber type shift toward fatigable type IIb fiber. Forkhead box O (FoxO) signaling plays a critical role in the development of skeletal myopathy in CHF, and functional interaction between FoxO and the Wnt signal mediator ß-catenin was previously demonstrated. We have recently reported that serum of CHF model mice activates Wnt signaling more potently than serum of control mice and that complement C1q mediates this activation. We, therefore, hypothesized that C1q-induced activation of Wnt signaling plays a critical role in skeletal myopathy via the interaction with FoxO. METHODS AND RESULTS: Fiber type shift toward fatigable fiber was observed in the skeletal muscle of dilated cardiomyopathy model mice, which was associated with activation of both Wnt and FoxO signaling. Wnt3a protein activated FoxO signaling and induced fiber type shift toward fatigable fiber in C2C12 cells. Wnt3a-induced fiber type shift was inhibited by suppression of FoxO1 activity, whereas Wnt3a-independent fiber type shift was observed by overexpression of constitutively active FoxO1. Serum of dilated cardiomyopathy mice activated both Wnt and FoxO signaling and induced fiber type shift toward fatigable fiber in C2C12 cells. Wnt inhibitor and C1-inhibitor attenuated FoxO activation and fiber type shift both in C2C12 cells and in the skeletal muscle of dilated cardiomyopathy mice. CONCLUSIONS: C1q-induced activation of Wnt signaling contributes to fiber type shift toward fatigable fiber in CHF. Wnt signaling may be a novel therapeutic target to prevent skeletal myopathy in CHF.


Asunto(s)
Cardiomiopatía Dilatada/complicaciones , Factores de Transcripción Forkhead/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/etiología , Vía de Señalización Wnt , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Línea Celular , Complemento C1q/metabolismo , Modelos Animales de Enfermedad , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Ratones Transgénicos , Fatiga Muscular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Interferencia de ARN , Transfección
8.
Nat Commun ; 6: 6241, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25716000

RESUMEN

Hypertension induces structural remodelling of arteries, which leads to arteriosclerosis and end-organ damage. Hyperplasia of vascular smooth muscle cells (VSMCs) and infiltration of immune cells are the hallmark of hypertensive arterial remodelling. However, the precise molecular mechanisms of arterial remodelling remain elusive. We have recently reported that complement C1q activates ß-catenin signalling independent of Wnts. Here, we show a critical role of complement C1-induced activation of ß-catenin signalling in hypertensive arterial remodelling. Activation of ß-catenin and proliferation of VSMCs were observed after blood-pressure elevation, which were prevented by genetic and chemical inhibition of ß-catenin signalling. Macrophage depletion and C1qa gene deletion attenuated the hypertension-induced ß-catenin signalling, proliferation of VSMCs and pathological arterial remodelling. Our findings unveil the link between complement C1 and arterial remodelling and suggest that C1-induced activation of ß-catenin signalling becomes a novel therapeutic target to prevent arteriosclerosis in patients with hypertension.


Asunto(s)
Complemento C1q/metabolismo , Hipertensión/fisiopatología , Remodelación Vascular , beta Catenina/metabolismo , Animales , Aorta Abdominal/fisiopatología , Proliferación Celular , Células Cultivadas , Hipertensión/inmunología , Hipertensión/metabolismo , Macrófagos/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA