Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proteins ; 91(12): 1822-1828, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37697630

RESUMEN

In the ligand prediction category of CASP15, the challenge was to predict the positions and conformations of small molecules binding to proteins that were provided as amino acid sequences or as models generated by the AlphaFold2 program. For most targets, we used our template-based ligand docking program ClusPro ligTBM, also implemented as a public server available at https://ligtbm.cluspro.org/. Since many targets had multiple chains and a number of ligands, several templates, and some manual interventions were required. In a few cases, no templates were found, and we had to use direct docking using the Glide program. Nevertheless, ligTBM was shown to be a very useful tool, and by any ranking criteria, our group was ranked among the top five best-performing teams. In fact, all the best groups used template-based docking methods. Thus, it appears that the AlphaFold2-generated models, despite the high accuracy of the predicted backbone, have local differences from the x-ray structure that make the use of direct docking methods more challenging. The results of CASP15 confirm that this limitation can be frequently overcome by homology-based docking.


Asunto(s)
Proteínas , Programas Informáticos , Conformación Proteica , Simulación del Acoplamiento Molecular , Ligandos , Proteínas/química , Unión Proteica , Sitios de Unión
2.
J Comput Chem ; 42(5): 271-292, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33306852

RESUMEN

The kinematic geometry of protein backbone structures, constrained by either single or multiple hydrogen bonds (H-bonds), possibly in a periodic array, is discussed. These structures include regular secondary structure elements α-helices and ß-sheets but also include other short H-bond stabilized irregular structural elements like ß-turns. The work here shows that the variations observed in such structures have simple geometrical correlations consistent with constrained motion kinematics. A new classification of the ideal helices is given, in terms of the parameter α, the angle at a Cα atom to its two neighboring Cα 's along the helix, and shown how it can be generalized to include nonideal helices. Specifically, we derive an analytical expression of the backbone dihedrals, (ϕ, ψ), in terms of the parameter α subject to the constraint that the peptide planes are parallel to the helical axis. Helices constructed in this way exhibit near-vertical alignment of the C = O and N - H units and are the canonical objects of this study. These expressions are easily modifiable to include perturbations of parameters relevant to nonplanar peptide units and noncanonical angles. The addition of a second parameter, ε0 , inclination of successive peptide planes along a helix with respect to the helical axis leads to a generalization of the previous expression and provides an efficient parametrization of such structures in terms of coordinates consistent with H-bond parameters. An analogs parametrization of ß-turns, using inverse kinematic methods, is also given. Besides offering a unifying viewpoint, our results may find useful applications to protein and peptide design.


Asunto(s)
Proteínas/química , Fenómenos Biomecánicos , Cristalografía por Rayos X , Enlace de Hidrógeno , Estructura Secundaria de Proteína
3.
J Chem Inf Model ; 61(10): 4975-5000, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34570494

RESUMEN

We present an algorithm, QBKR (Quaternary Backbone Kinematic Reconstruction), a fast analytical method for an all-atom backbone reconstruction of proteins and linear or cyclic peptide chains from Cα coordinate traces. Unlike previous analytical methods for deriving all-atom representations from coarse-grained models that rely on canonical geometry with planar peptides in the trans conformation, our de novo kinematic model incorporates noncanonical, cis-trans, geometry naturally. Perturbations to this geometry can be effected with ease in our formulation, for example, to account for a continuous change from cis to trans geometry. A simple optimization of a spring-based objective function is employed for Cα-Cα distance variations that extend beyond the cis-trans limit. The kinematic construction produces a linked chain of peptide units, Cα-C-N-Cα, hinged at the Cα atoms spanning all possible planar and nonplanar peptide conformations. We have combined our method with a ring closure algorithm for the case of ring peptides and missing loops in a protein structure. Here, the reconstruction proceeding from both the N and C termini of the protein backbone (or in both directions from a starting position for rings) requires freedom in the position of one Cα atom (a capstone) to achieve a successful loop or ring closure. A salient feature of our reconstruction method is the ability to enrich conformational ensembles to produce alternative feasible conformations in which H-bond forming C-O or N-H pairs in the backbone can reverse orientations, thus addressing a well-known shortcoming in Cα-based RMSD structure comparison, wherein very close structures may lead to significantly different overall H-bond behavior. We apply the fixed Cα-based design to the reverse reconstruction from noisy Cryo-EM data, a posteriori to the optimization. Our method can be applied to speed up the process of an all-atom description from voluminous experimental data or subpar electron density maps.


Asunto(s)
Péptidos Cíclicos , Proteínas , Fenómenos Biomecánicos , Péptidos , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA