Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 615(7954): 884-891, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922596

RESUMEN

Calcium imaging with protein-based indicators1,2 is widely used to follow neural activity in intact nervous systems, but current protein sensors report neural activity at timescales much slower than electrical signalling and are limited by trade-offs between sensitivity and kinetics. Here we used large-scale screening and structure-guided mutagenesis to develop and optimize several fast and sensitive GCaMP-type indicators3-8. The resulting 'jGCaMP8' sensors, based on the calcium-binding protein calmodulin and a fragment of endothelial nitric oxide synthase, have ultra-fast kinetics (half-rise times of 2 ms) and the highest sensitivity for neural activity reported for a protein-based calcium sensor. jGCaMP8 sensors will allow tracking of large populations of neurons on timescales relevant to neural computation.


Asunto(s)
Señalización del Calcio , Calcio , Calmodulina , Neuronas , Óxido Nítrico Sintasa de Tipo III , Fragmentos de Péptidos , Calcio/análisis , Calcio/metabolismo , Calmodulina/metabolismo , Neuronas/metabolismo , Cinética , Óxido Nítrico Sintasa de Tipo III/química , Óxido Nítrico Sintasa de Tipo III/metabolismo , Factores de Tiempo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo
2.
Nat Methods ; 20(6): 925-934, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37142767

RESUMEN

The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.


Asunto(s)
Ácido Glutámico , Transmisión Sináptica , Ratones , Animales , Ácido Glutámico/metabolismo , Cinética , Neuronas/fisiología , Sinapsis/fisiología
3.
Nat Methods ; 16(7): 649-657, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209382

RESUMEN

Calcium imaging with genetically encoded calcium indicators (GECIs) is routinely used to measure neural activity in intact nervous systems. GECIs are frequently used in one of two different modes: to track activity in large populations of neuronal cell bodies, or to follow dynamics in subcellular compartments such as axons, dendrites and individual synaptic compartments. Despite major advances, calcium imaging is still limited by the biophysical properties of existing GECIs, including affinity, signal-to-noise ratio, rise and decay kinetics and dynamic range. Using structure-guided mutagenesis and neuron-based screening, we optimized the green fluorescent protein-based GECI GCaMP6 for different modes of in vivo imaging. The resulting jGCaMP7 sensors provide improved detection of individual spikes (jGCaMP7s,f), imaging in neurites and neuropil (jGCaMP7b), and may allow tracking larger populations of neurons using two-photon (jGCaMP7s,f) or wide-field (jGCaMP7c) imaging.


Asunto(s)
Calcio/metabolismo , Neuronas/metabolismo , Animales , Células Cultivadas , Drosophila , Femenino , Proteínas Fluorescentes Verdes , Ratones , Unión Neuromuscular/diagnóstico por imagen , Ratas , Corteza Visual/metabolismo
4.
Curr Biol ; 33(7): 1249-1264.e7, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36921605

RESUMEN

Mechanisms that entrain and pace rhythmic epileptiform discharges remain debated. Traditionally, the quest to understand them has focused on interneuronal networks driven by synaptic GABAergic connections. However, synchronized interneuronal discharges could also trigger the transient elevations of extracellular GABA across the tissue volume, thus raising tonic conductance (Gtonic) of synaptic and extrasynaptic GABA receptors in multiple cells. Here, we monitor extracellular GABA in hippocampal slices using patch-clamp GABA "sniffer" and a novel optical GABA sensor, showing that periodic epileptiform discharges are preceded by transient, region-wide waves of extracellular GABA. Neural network simulations that incorporate volume-transmitted GABA signals point to a cycle of GABA-driven network inhibition and disinhibition underpinning this relationship. We test and validate this hypothesis using simultaneous patch-clamp recordings from multiple neurons and selective optogenetic stimulation of fast-spiking interneurons. Critically, reducing GABA uptake in order to decelerate extracellular GABA fluctuations-without affecting synaptic GABAergic transmission or resting GABA levels-slows down rhythmic activity. Our findings thus unveil a key role of extrasynaptic, volume-transmitted GABA in pacing regenerative rhythmic activity in brain networks.


Asunto(s)
Hipocampo , Transmisión Sináptica , Transmisión Sináptica/fisiología , Neuronas , Interneuronas/fisiología , Ácido gamma-Aminobutírico
5.
Neuron ; 111(10): 1547-1563.e9, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37015225

RESUMEN

The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Rodopsina , Ratones , Animales , Potenciales de Acción/fisiología , Rodopsina/genética , Neuronas/fisiología , Mutación/genética
6.
Elife ; 52016 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-27011354

RESUMEN

Genetically encoded calcium indicators (GECIs) allow measurement of activity in large populations of neurons and in small neuronal compartments, over times of milliseconds to months. Although GFP-based GECIs are widely used for in vivo neurophysiology, GECIs with red-shifted excitation and emission spectra have advantages for in vivo imaging because of reduced scattering and absorption in tissue, and a consequent reduction in phototoxicity. However, current red GECIs are inferior to the state-of-the-art GFP-based GCaMP6 indicators for detecting and quantifying neural activity. Here we present improved red GECIs based on mRuby (jRCaMP1a, b) and mApple (jRGECO1a), with sensitivity comparable to GCaMP6. We characterized the performance of the new red GECIs in cultured neurons and in mouse, Drosophila, zebrafish and C. elegans in vivo. Red GECIs facilitate deep-tissue imaging, dual-color imaging together with GFP-based reporters, and the use of optogenetics in combination with calcium imaging.


Asunto(s)
Técnicas Biosensibles/métodos , Calcio/análisis , Microscopía Intravital/métodos , Proteínas Luminiscentes/metabolismo , Neuronas/química , Neuronas/fisiología , Neurofisiología/métodos , Animales , Caenorhabditis elegans , Células Cultivadas , Drosophila , Proteínas Luminiscentes/genética , Ratones , Pez Cebra , Proteína Fluorescente Roja
7.
PLoS One ; 8(10): e77728, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24155972

RESUMEN

Fluorescent protein-based sensors for detecting neuronal activity have been developed largely based on non-neuronal screening systems. However, the dynamics of neuronal state variables (e.g., voltage, calcium, etc.) are typically very rapid compared to those of non-excitable cells. We developed an electrical stimulation and fluorescence imaging platform based on dissociated rat primary neuronal cultures. We describe its use in testing genetically-encoded calcium indicators (GECIs). Efficient neuronal GECI expression was achieved using lentiviruses containing a neuronal-selective gene promoter. Action potentials (APs) and thus neuronal calcium levels were quantitatively controlled by electrical field stimulation, and fluorescence images were recorded. Images were segmented to extract fluorescence signals corresponding to individual GECI-expressing neurons, which improved sensitivity over full-field measurements. We demonstrate the superiority of screening GECIs in neurons compared with solution measurements. Neuronal screening was useful for efficient identification of variants with both improved response kinetics and high signal amplitudes. This platform can be used to screen many types of sensors with cellular resolution under realistic conditions where neuronal state variables are in relevant ranges with respect to timing and amplitude.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Genes Reporteros , Neuronas/metabolismo , Potenciales de Acción/fisiología , Animales , Células Cultivadas , Estimulación Eléctrica , Fluorescencia , Ácido Glutámico/metabolismo , Humanos , Indicadores y Reactivos , Ratas , Receptores de GABA/metabolismo , Soluciones
8.
Genome Biol ; 3(11): research0062, 2002 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-12429061

RESUMEN

BACKGROUND: 'Fold-change' cutoffs have been widely used in microarray assays to identify genes that are differentially expressed between query and reference samples. More accurate measures of differential expression and effective data-normalization strategies are required to identify high-confidence sets of genes with biologically meaningful changes in transcription. Further, the analysis of a large number of expression profiles is facilitated by a common reference sample, the construction of which must be carefully addressed. RESULTS: We carried out a series of 'self-self' hybridizations in which aliquots of the same RNA sample were labeled separately with Cy3 and Cy5 fluorescent dyes and co-hybridized to the same microarray. From this, we can analyze the intensity-dependent behavior of microarray data, define a statistically significant measure of differential expression that exploits the structure of the fluorescent signals, and measure the inherent reproducibility of the technique. We also devised a simple procedure for identifying and eliminating low-quality data for replicates within and between slides. We examine the properties required of a universal reference RNA sample and show how pooling a small number of samples with a diverse representation of expressed genes can outperform more complex mixtures as a reference sample. CONCLUSION: Analysis of cell-line samples can identify systematic structure in measured gene-expression levels. A general procedure for analyzing cDNA microarray data is proposed and validated. We show that pooled reference samples should be based not only on the expression of individual genes in each cell line but also on the expression levels of genes within cell lines.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Neoplasias Encefálicas/genética , Carcinoma/genética , Neoplasias del Colon/genética , ADN Complementario/análisis , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Hibridación de Ácido Nucleico/métodos , Especificidad de Órganos/genética , Neoplasias Ováricas/genética , Neoplasias Pancreáticas/genética , ARN Neoplásico/análisis , Valores de Referencia , Neoplasias Testiculares/genética , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA