Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(18): 8296-8305, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35486956

RESUMEN

Aryl halides are a fundamental motif in synthetic chemistry, playing a critical role in metal-mediated cross-coupling reactions and serving as important scaffolds in drug discovery. Although thermal decarboxylative functionalization of aryl carboxylic acids has been extensively explored, the scope of existing halodecarboxylation methods remains limited, and there currently exists no unified strategy that provides access to any type of aryl halide from an aryl carboxylic acid precursor. Herein, we report a general catalytic method for direct decarboxylative halogenation of (hetero)aryl carboxylic acids via ligand-to-metal charge transfer. This strategy accommodates an exceptionally broad scope of substrates. We leverage an aryl radical intermediate toward divergent functionalization pathways: (1) atom transfer to access bromo- or iodo(hetero)arenes or (2) radical capture by copper and subsequent reductive elimination to generate chloro- or fluoro(hetero)arenes. The proposed ligand-to-metal charge transfer mechanism is supported through an array of spectroscopic studies.


Asunto(s)
Ácidos Carboxílicos , Halogenación , Ácidos Carboxílicos/química , Catálisis , Cobre/química , Ligandos
2.
Inorg Chem ; 60(12): 8394-8403, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34097407

RESUMEN

A new long-lived, visible-light-absorbing homoleptic Cu(I) metal-to-ligand charge transfer (MLCT) photosensitizer, [Cu(dchtmp)2]PF6 (dchtmp = 2,9-dicyclohexyl-3,4,7,8-tetramethyl-1,10-phenanthroline), has been synthesized, structurally characterized, and evaluated in terms of its molecular photophysics, electrochemistry, and electronic structure. Static and time-resolved transient absorption (TA) and photoluminescence (PL) spectroscopy measured on the title compound in CH2Cl2 (τ = 2.6 µs, ΦPL = 5.5%), CH3CN (τ = 1.5 µs, ΦPL = 2.6%), and THF (τ = 2.0 µs, ΦPL = 3.7%) yielded impressive photophysical metrics even when dissolved in Lewis basic solvents. The combined static spectroscopic data along with ultrafast TA experiments revealed that the pseudo-Jahn-Teller distortion and intersystem crossing dynamics in the MLCT excited state displayed characteristics of being sterically arrested throughout its evolution. Electrochemical and static PL data illustrate that [Cu(dchtmp)2]PF6 is a potent photoreductant (-1.77 V vs Fc+/0 in CH3CN) equal to or greater than all previously investigated homoleptic Cu(I) diimine complexes. Although we successfully prepared the cyclopentyl analog dcptmp (2,9-dicyclopentyl-3,4,7,8-tetramethyl-1,10-phenanthroline) using the same C-C radical coupling photochemistry as dchtmp, the corresponding Cu(I) complex could not be isolated due to the steric hindrance presented at the metal center. Ultimately, the successful preparation of [Cu(dchtmp)2]+ represents a major step forward for the design and discovery of novel earth-abundant photosensitizers made possible through a newly conceived ligand synthetic strategy.

3.
J Am Chem Soc ; 141(8): 3717-3722, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30702872

RESUMEN

The local environment surrounding luminophores can significantly influence their photophysical properties. Herein, we report the self-assembly of a highly emissive platinum(II)-based metallacage. In order to accommodate the connectivity of the platinum(II) building block used in the self-assembly process, the luminophore-containing building block adopts a highly twisted geometry relative to its free form, leading to the emergence of an emissive transition with a radiative rate constant an order of magnitude higher than that of the free luminophore. This increased rate constant is the primary driver for the 10-fold increase in quantum yield from 4.2% to 40%. Model complexes with platinum or methyl groups bound to the nitrogen were synthesized. These complexes had lower quantum yields (10% and non-emissive, respectively) due mainly to decreases in radiative rate constants. Computational studies were conducted and indicated that the excited state of the ensembles, as well as the model complexes, is a result of charge transfer to the pyridyl groups, in contrast to the free luminophore, which involves the diphenyl sulfone moiety. The differences in quantum yields can be explained by a twist in the chromophore upon coordination of platinum or methylation on the pyridyl group, leading to intersystem crossing to a triplet state. This state then becomes more emissive with the addition of platinum, which increases the radiative rate constant via the heavy atom effect. The formation of a metallacage also decreases the non-radiative rate constant by inhibiting the intramolecular motions of the incorporated luminophore.


Asunto(s)
Complejos de Coordinación/síntesis química , Sustancias Luminiscentes/síntesis química , Fenotiazinas/química , Platino (Metal)/química , Complejos de Coordinación/química , Luminiscencia , Sustancias Luminiscentes/química , Estructura Molecular , Teoría Cuántica
4.
Inorg Chem ; 57(7): 3587-3595, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29278500

RESUMEN

Ruthenium polypyridyl complexes are among the most studied molecular species for photochemical applications such as light-harvesting and photocatalysis, with [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) serving as an iconic example. We report the use of the [Ru(bpy)2]2+ fragment as a 90° acceptor tecton (M) in coordination-driven self-assembly to synthesize a M4L4 metallacycle (L = 4,4'-bipyridine) and a M6L4 truncated tetrahedral cage [L = 2,4,6-tris(4-pyridyl)-1,3,5-triazine]. The M6L4 cage possesses emergent properties attributed to its unique electronic structure, which results in increased visible-light absorption and an emission band that decays biexponentially with times of 3 and 790 ns. The presence of multiple ruthenium centers in the cage results in multiple RuIII/II reduction events, with a cathodic shift of the first reduction relative to that of [Ru(bpy)3]Cl2 (0.56 V vs 1.05 V). The ligand-centered reduction shifts anodically (-1.29 vs -1.64 V) versus the first bpy reduction observed in the parent [Ru(bpy)3]Cl2. The photophysical properties are explained by the existence of two localized charge-transfer states in the cage molecule: one that draws upon the bipyridine π* orbitals and the other upon the 2,4,6-tris(4-pyridyl)-1,3,5-triazine π* orbitals.

5.
Chemistry ; 23(19): 4532-4536, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28191708

RESUMEN

The quantum yields of organic fluorophores used as donors in coordination-driven self-assembly often suffer from the heavy atom effect of nearby metal sites. Here, the role of intersystem crossing from a deactivating process to one that delivers emissive triplet states was reversed. A phosphorescent trans bis-N-heterocyclic carbene platinum(II) compound, Pt(dhim)2 (C≡C-4-py)2 (D1; dhim=1,3-dihexyl-2-H-imidazol-2-ylidene), was used along with other linear donors 4,4'-bipyridine (D2) and 1,4-bis(4-pyridyl ethynyl)benzene (D3) in self-assembly reactions with Pt(dtbpy)X2 acceptors (dtbpy=4,4'-di-tert-butyl-2,2'-bipyridine) to afford three metallacycles. Photophysical investigations revealed that, although the building blocks used to construct M1 have relatively low quantum yields (Φ=1.2 and <1 % for D1 and 2, respectively), the metallacycle has a quantum yield of 14 %. This increase reflects a change in radiative rate constant from 3.6×104  s-1 for D1 to 2.1×105  s-1 for M1.

6.
Inorg Chem ; 56(8): 4258-4262, 2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28368579

RESUMEN

Coordination-driven self-assembly delivers discrete, nanoscopic architectures that may preserve or enhance the physicochemical properties of their parent building blocks. Herein, we report the syntheses, characterization, and photophysical properties of two tetrahedral cages, [ZnII4L6](PF6)8 (C1) and [FeII4L6](OTf)8 (C2), where L = PtII(PEt3)2(C≡C-bpy)2 (PEt3 = triethylphosphine; C≡C-bpy = 5-ethynyl-2,2'-bipyridine) and OTf = trifluoromethanesulfonate. C1 and C2 were assembled in isolated yields of 72% and 81% by treating 2 equiv of Zn(NO3)2·6H2O or Fe(OTf)2 with 3 equiv of L, respectively. Both cages were fully characterized by NMR, electrospray ionization mass spectrometry, and single-crystal X-ray diffraction (SCXRD). The local D3 symmetry at each polypyridyl metal node raises the possibility of a number of isomeric cages; however, only the homochiral enantiomers (ΔΔΔΔ and ΛΛΛΛ) are formed based on 1H NMR and SCXRD. C1 exhibits phosphorescence centered at 545 nm with a quantum yield of 10% in N2-degassed acetonitrile at 25 °C. The quantum yield of C2 is significantly lower due to a nonradiative relaxation from 5MC (MC = metal-centered) states introduced by the FeII nodes.

7.
J Am Chem Soc ; 137(48): 15276-86, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26550682

RESUMEN

Materials that organize multiple functionally active sites, especially those with aggregation-induced emission (AIE) properties, are of growing interest due to their widespread applications. Despite promising early architectures, the fabrication and preparation of multiple AIEgens, such as multiple tetraphenylethylene (multi-TPE) units, in a single entity remain a big challenge due to the tedious covalent synthetic procedures often accompanying such preparations. Coordination-driven self-assembly is an alternative synthetic methodology with the potential to deliver multi-TPE architectures with light-emitting characteristics. Herein, we report the preparation of a new family of discrete multi-TPE metallacycles in which two pendant phenyl rings of the TPE units remain unused as a structural element, representing novel AIE-active metal-organic materials based on supramolecular coordination complex platforms. These metallacycles possess relatively high molar absorption coefficients but weak fluorescent emission under dilute conditions because of the ability of the untethered phenyl rings to undergo torsional motion as a non-radiative decay pathway. Upon molecular aggregation, the multi-TPE metallacycles show AIE-activity with markedly enhanced quantum yields. Moreover, on account of their AIE characteristics in the condensed state and ability to interact with electron-deficient substrates, the photophysics of these metallacycles is sensitive to the presence of nitroaromatics, motivating their use as sensors. This work represents a unification of themes including molecular self-assembly, AIE, and fluorescence sensing and establishes structure-property-application relationships of multi-TPE scaffolds. The fundamental knowledge obtained from the current research facilitates progress in the field of metal-organic materials, metal-coordination-induced emission, and fluorescent sensing.

8.
Artículo en Inglés | MEDLINE | ID: mdl-35830615

RESUMEN

Monitoring the viscosity of polymers in real-time remains a challenge, especially in confined environments where traditional rheological measurements are hard to apply. In this study, we have utilized the luminescent complex [Cu(diptmp)2]+ (diptmp = 2,9-diisopropyl-3,4,7,8-tetramethyl-1,10-phenanthroline) as an optical probe for real-time sensing of viscosity in various adhesives during the curing process (viscosity increases). The emission lifetime of the triplet metal-to-ligand charge transfer (3MLCT) state of [Cu(diptmp)2]+ in epoxy adhesive increased exponentially during curing, similar to viscosity values obtained from oscillatory rheology. The longer lifetime in higher viscosity materials was attributed to changes in the excited-state deactivation processes from a known Jahn-Teller distortion in the Cu(I) geometry from tetrahedral in the ground state to square planar in the excited state. The real-time viscosity was also monitored reversibly by emission lifetime during polymer swelling (viscosity and lifetime decrease) and unswelling (viscosity and lifetime increase). Monitoring emission lifetime, unlike measuring the excited-state lifetime via transient absorption measurements in our previous study, allowed us to measure viscosity in opaque samples which scatter light. The optical probe [Cu(diptmp)2]+ in Gorilla Glue adhesive showed a clear correlation of the emission intensity or lifetime to viscosity during the curing process. We have also compared these lifetime changes using [Ru(bpy)3]2+ (bpy = bipyridine) as a control. [Cu(diptmp)2]+ showed not only a higher emission lifetime but also more ubiquity as a real-time viscosity sensor.

9.
Dalton Trans ; 49(29): 9995-10002, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32643713

RESUMEN

The manipulation of the triplet excited state manifold leads to large differences in the photophysical properties within a given class of metal-organic chromophores. By the appropriate choice of ancillary ligand, large changes can be made both to the order and nature of the lowest excited states and therefore to the resulting photophysical properties. Herein, a series of four bis-2-phenylpyridine (ppy) cyclometalated Ir(iii) compounds bearing two arylisocyanide ligands were synthesized and photophysically characterized to understand the effects of using ancillary ligands featuring systematic changes in π-conjugation. By varying the arylisocyanide ligands, the photoluminescence quantum yield ranged from 5% to 49% and the excited state lifetime ranged between 24 µs and 2 ms. These variations in photophysical response are consistent with lowering the triplet ligand-centered (3LC) state of the arylisocyanide ligand as the π system was extended, confirmed by 77 K photoluminescence emission spectra and ultrafast transient absorption experiments. The latter analysis gleaned detailed insight into the importance of the interplay of the 3LC state of the phenylpyridine and arylisocyanide ligands in these polychromophic Ir(iii) molecules.

10.
J Phys Chem Lett ; 11(13): 5345-5349, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32539422

RESUMEN

Developments in the field of photoredox catalysis that leveraged the long-lived excited states of Ir(III) and Ru(II) photosensitizers to enable radical coupling processes paved the way for explorations of synthetic transformations that would otherwise remain unrealized. While first row transition metal photocatalysts have not been as extensively investigated, valuable synthetic transformations covering broad scopes of olefin functionalization have been recently reported featuring photoactivated chlorobis(phenanthroline) Cu(II) complexes. In this study, the photochemical processes underpinning the catalytic activity of [Cu(dmp)2Cl]Cl (dmp = 2,9-dimethyl-1,10-phenanthroline) were studied. The combined results from static spectroscopic measurements and conventional photochemistry, ultrafast transient absorption, and electron paramagnetic resonance spin trapping experiments strongly support blue light (λex = 427 or 470 nm)-induced Cu-Cl homolytic bond cleavage in [Cu(dmp)2Cl]+ occurring in <100 fs. On the basis of electronic structure calculations, this bond-breaking photochemistry corresponds to the Cl → Cu(II) ligand-to-metal charge transfer transition, unmasking a Cu(I) species [Cu(dmp)2]+ and a Cl atom, thereby serving as a departure point for both Cu(I)- or Cu(II)-based photoredox transformations. No net photochemistry was observed through direct excitation of the ligand-field transitions in the red (λex = 785 or 800 nm), and all combined experiments indicated no evidence of Cu-Cl bond cleavage under these conditions. The underlying visible light-induced homolysis of a metal-ligand bond yielding a one-electron-reduced photosensitizer and a radical species may form the basis for novel transformations initiated by photoinduced homolysis featuring in situ-formed metal-substrate adducts utilizing first row transition metal complexes.

11.
Dalton Trans ; 46(30): 9794-9800, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28678268

RESUMEN

The emission of platinum-alkynyl complexes with terminal pyridyl moieties changes upon simple alkylation reactions. Due to growing interest in photovoltaics, photocatalysis, and light-emitting devices, understanding the nature of these changes is important to develop simple synthetic pathways for the rational design of photophysically active molecules. Herein, the choice of ligand isomer, methylation, and Pt-coordination environment on phosphorescent quantum yields, lifetimes, and associated radiative and non-radiative rate constants of eight organometallic complexes were studied. Single-crystal X-ray diffraction experiments and computational studies provide evidence for stabilization of metallo-cumulene resonance forms whose increased rigidities manifest in the observed photophysical changes. This effect is more pronounced for 4-ethynylpyridyl complexes over 3-ethynylpyridyl variants since the metallo-cumulene form shifts electron density to the electronegative N-atom at the para site. Furthermore, the use of σ-donating N-heterocyclic carbenes to complete the Pt-coordination environment enhanced the quantum yield of phosphorescence as high as 39% (λmax = 512 nm) with a lifetime of 21.2 µs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA