Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(3): 457-466.e4, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34995482

RESUMEN

Recent surveillance has revealed the emergence of the SARS-CoV-2 Omicron variant (BA.1/B.1.1.529) harboring up to 36 mutations in spike protein, the target of neutralizing antibodies. Given its potential to escape vaccine-induced humoral immunity, we measured the neutralization potency of sera from 88 mRNA-1273, 111 BNT162b, and 40 Ad26.COV2.S vaccine recipients against wild-type, Delta, and Omicron SARS-CoV-2 pseudoviruses. We included individuals that received their primary series recently (<3 months), distantly (6-12 months), or an additional "booster" dose, while accounting for prior SARS-CoV-2 infection. Remarkably, neutralization of Omicron was undetectable in most vaccinees. However, individuals boosted with mRNA vaccines exhibited potent neutralization of Omicron, only 4-6-fold lower than wild type, suggesting enhanced cross-reactivity of neutralizing antibody responses. In addition, we find that Omicron pseudovirus infects more efficiently than other variants tested. Overall, this study highlights the importance of additional mRNA doses to broaden neutralizing antibody responses against highly divergent SARS-CoV-2 variants.

2.
Cell ; 184(9): 2372-2383.e9, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33743213

RESUMEN

Vaccination elicits immune responses capable of potently neutralizing SARS-CoV-2. However, ongoing surveillance has revealed the emergence of variants harboring mutations in spike, the main target of neutralizing antibodies. To understand the impact of these variants, we evaluated the neutralization potency of 99 individuals that received one or two doses of either BNT162b2 or mRNA-1273 vaccines against pseudoviruses representing 10 globally circulating strains of SARS-CoV-2. Five of the 10 pseudoviruses, harboring receptor-binding domain mutations, including K417N/T, E484K, and N501Y, were highly resistant to neutralization. Cross-neutralization of B.1.351 variants was comparable to SARS-CoV and bat-derived WIV1-CoV, suggesting that a relatively small number of mutations can mediate potent escape from vaccine responses. While the clinical impact of neutralization resistance remains uncertain, these results highlight the potential for variants to escape from neutralizing humoral immunity and emphasize the need to develop broadly protective interventions against the evolving pandemic.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Inmunidad Humoral , SARS-CoV-2/inmunología , Vacuna BNT162 , COVID-19/sangre , COVID-19/inmunología , COVID-19/virología , Células HEK293 , Humanos , Mutación/genética , Curva ROC , SARS-CoV-2/genética
3.
Cell ; 184(2): 476-488.e11, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33412089

RESUMEN

Coronavirus disease 2019 (COVID-19) exhibits variable symptom severity ranging from asymptomatic to life-threatening, yet the relationship between severity and the humoral immune response is poorly understood. We examined antibody responses in 113 COVID-19 patients and found that severe cases resulting in intubation or death exhibited increased inflammatory markers, lymphopenia, pro-inflammatory cytokines, and high anti-receptor binding domain (RBD) antibody levels. Although anti-RBD immunoglobulin G (IgG) levels generally correlated with neutralization titer, quantitation of neutralization potency revealed that high potency was a predictor of survival. In addition to neutralization of wild-type SARS-CoV-2, patient sera were also able to neutralize the recently emerged SARS-CoV-2 mutant D614G, suggesting cross-protection from reinfection by either strain. However, SARS-CoV-2 sera generally lacked cross-neutralization to a highly homologous pre-emergent bat coronavirus, WIV1-CoV, which has not yet crossed the species barrier. These results highlight the importance of neutralizing humoral immunity on disease progression and the need to develop broadly protective interventions to prevent future coronavirus pandemics.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Biomarcadores/análisis , COVID-19/inmunología , COVID-19/fisiopatología , Adulto , Anticuerpos Neutralizantes/análisis , Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/sangre , Biomarcadores/sangre , COVID-19/sangre , COVID-19/epidemiología , Comorbilidad , Coronavirus/clasificación , Coronavirus/fisiología , Reacciones Cruzadas , Citocinas/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina A/análisis , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Masculino , Massachusetts/epidemiología , Persona de Mediana Edad , Dominios Proteicos , SARS-CoV-2/química , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/química , Análisis de Supervivencia , Resultado del Tratamiento
4.
Cell ; 184(19): 4969-4980.e15, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34332650

RESUMEN

Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded antibodies from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found seven major antibody competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of antibody-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. Although emerging SARS-CoV-2 variants of concern escaped binding by many members of the groups associated with the most potent neutralizing activity, some antibodies in each of those groups retained affinity-suggesting that otherwise redundant components of a primary immune response are important for durable protection from evolving pathogens. Our results furnish a global atlas of S-specific memory B cell repertoires and illustrate properties driving viral escape and conferring robustness against emerging variants.

5.
Cell ; 184(16): 4203-4219.e32, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34242577

RESUMEN

SARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Antivirales/inmunología , Líquido del Lavado Bronquioalveolar/química , COVID-19/patología , COVID-19/virología , Citocinas/metabolismo , Femenino , Haplorrinos , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Dominios Proteicos , ARN Guía de Kinetoplastida/metabolismo , Receptores de IgG/metabolismo , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Carga Viral , Replicación Viral
6.
Cell ; 183(6): 1508-1519.e12, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33207184

RESUMEN

The urgent need for an effective SARS-CoV-2 vaccine has forced development to progress in the absence of well-defined correlates of immunity. While neutralization has been linked to protection against other pathogens, whether neutralization alone will be sufficient to drive protection against SARS-CoV-2 in the broader population remains unclear. Therefore, to fully define protective humoral immunity, we dissected the early evolution of the humoral response in 193 hospitalized individuals ranging from moderate to severe. Although robust IgM and IgA responses evolved in both survivors and non-survivors with severe disease, non-survivors showed attenuated IgG responses, accompanied by compromised Fcɣ receptor binding and Fc effector activity, pointing to deficient humoral development rather than disease-enhancing humoral immunity. In contrast, individuals with moderate disease exhibited delayed responses that ultimately matured. These data highlight distinct humoral trajectories associated with resolution of SARS-CoV-2 infection and the need for early functional humoral immunity.


Asunto(s)
COVID-19 , Inmunidad Humoral , Inmunoglobulina A/inmunología , Inmunoglobulina M/inmunología , Receptores de IgG/inmunología , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/mortalidad , Femenino , Células HL-60 , Humanos , Masculino
7.
Cell ; 183(6): 1496-1507.e16, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33171099

RESUMEN

Antibodies are key immune effectors that confer protection against pathogenic threats. The nature and longevity of the antibody response to SARS-CoV-2 infection are not well defined. We charted longitudinal antibody responses to SARS-CoV-2 in 92 subjects after symptomatic COVID-19. Antibody responses to SARS-CoV-2 are unimodally distributed over a broad range, with symptom severity correlating directly with virus-specific antibody magnitude. Seventy-six subjects followed longitudinally to ∼100 days demonstrated marked heterogeneity in antibody duration dynamics. Virus-specific IgG decayed substantially in most individuals, whereas a distinct subset had stable or increasing antibody levels in the same time frame despite similar initial antibody magnitudes. These individuals with increasing responses recovered rapidly from symptomatic COVID-19 disease, harbored increased somatic mutations in virus-specific memory B cell antibody genes, and had persistent higher frequencies of previously activated CD4+ T cells. These findings illuminate an efficient immune phenotype that connects symptom clearance speed to differential antibody durability dynamics.


Asunto(s)
Anticuerpos Antivirales/inmunología , Formación de Anticuerpos , Linfocitos T CD4-Positivos/inmunología , COVID-19 , Inmunoglobulina G/inmunología , Activación de Linfocitos , Mutación , COVID-19/genética , COVID-19/inmunología , Humanos , SARS-CoV-2/genética , SARS-CoV-2/inmunología
8.
Cell ; 183(4): 1043-1057.e15, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-32970989

RESUMEN

We show that SARS-CoV-2 spike protein interacts with both cellular heparan sulfate and angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD). Docking studies suggest a heparin/heparan sulfate-binding site adjacent to the ACE2-binding site. Both ACE2 and heparin can bind independently to spike protein in vitro, and a ternary complex can be generated using heparin as a scaffold. Electron micrographs of spike protein suggests that heparin enhances the open conformation of the RBD that binds ACE2. On cells, spike protein binding depends on both heparan sulfate and ACE2. Unfractionated heparin, non-anticoagulant heparin, heparin lyases, and lung heparan sulfate potently block spike protein binding and/or infection by pseudotyped virus and authentic SARS-CoV-2 virus. We suggest a model in which viral attachment and infection involves heparan sulfate-dependent enhancement of binding to ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin presents new therapeutic opportunities.


Asunto(s)
Betacoronavirus/fisiología , Heparitina Sulfato/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/aislamiento & purificación , Sitios de Unión , COVID-19 , Línea Celular , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Heparina/química , Heparina/metabolismo , Heparitina Sulfato/química , Humanos , Riñón/metabolismo , Pulmón/metabolismo , Simulación de Dinámica Molecular , Pandemias , Peptidil-Dipeptidasa A/química , Neumonía Viral/patología , Neumonía Viral/virología , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus
9.
Cell ; 183(1): 143-157.e13, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877699

RESUMEN

Humoral responses in coronavirus disease 2019 (COVID-19) are often of limited durability, as seen with other human coronavirus epidemics. To address the underlying etiology, we examined post mortem thoracic lymph nodes and spleens in acute SARS-CoV-2 infection and observed the absence of germinal centers and a striking reduction in Bcl-6+ germinal center B cells but preservation of AID+ B cells. Absence of germinal centers correlated with an early specific block in Bcl-6+ TFH cell differentiation together with an increase in T-bet+ TH1 cells and aberrant extra-follicular TNF-α accumulation. Parallel peripheral blood studies revealed loss of transitional and follicular B cells in severe disease and accumulation of SARS-CoV-2-specific "disease-related" B cell populations. These data identify defective Bcl-6+ TFH cell generation and dysregulated humoral immune induction early in COVID-19 disease, providing a mechanistic explanation for the limited durability of antibody responses in coronavirus infections, and suggest that achieving herd immunity through natural infection may be difficult.


Asunto(s)
Infecciones por Coronavirus/inmunología , Centro Germinal/inmunología , Neumonía Viral/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Anciano , Anciano de 80 o más Años , Linfocitos B/inmunología , COVID-19 , Femenino , Centro Germinal/patología , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Bazo/inmunología , Bazo/patología , Factor de Necrosis Tumoral alfa/metabolismo
10.
Cell ; 181(5): 1016-1035.e19, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32413319

RESUMEN

There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Enterocitos/metabolismo , Células Caliciformes/metabolismo , Interferón Tipo I/metabolismo , Mucosa Nasal/citología , Peptidil-Dipeptidasa A/genética , Adolescente , Células Epiteliales Alveolares/inmunología , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus/fisiología , COVID-19 , Línea Celular , Células Cultivadas , Niño , Infecciones por Coronavirus/virología , Enterocitos/inmunología , Células Caliciformes/inmunología , Infecciones por VIH/inmunología , Humanos , Gripe Humana/inmunología , Interferón Tipo I/inmunología , Pulmón/citología , Pulmón/patología , Macaca mulatta , Ratones , Mycobacterium tuberculosis , Mucosa Nasal/inmunología , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , Receptores Virales/genética , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Análisis de la Célula Individual , Tuberculosis/inmunología , Regulación hacia Arriba
11.
Immunity ; 55(10): 1856-1871.e6, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-35987201

RESUMEN

Vaccines generate high-affinity antibodies by recruiting antigen-specific B cells to germinal centers (GCs), but the mechanisms governing the recruitment to GCs on secondary challenges remain unclear. Here, using preclinical SARS-CoV and HIV mouse models, we demonstrated that the antibodies elicited during primary humoral responses shaped the naive B cell recruitment to GCs during secondary exposures. The antibodies from primary responses could either enhance or, conversely, restrict the GC participation of naive B cells: broad-binding, low-affinity, and low-titer antibodies enhanced recruitment, whereas, by contrast, the high titers of high-affinity, mono-epitope-specific antibodies attenuated cognate naive B cell recruitment. Thus, the directionality and intensity of that effect was determined by antibody concentration, affinity, and epitope specificity. Circulating antibodies can, therefore, be important determinants of antigen immunogenicity. Future vaccines may need to overcome-or could, alternatively, leverage-the effects of circulating primary antibodies on subsequent naive B cell recruitment.


Asunto(s)
Linfocitos B , Centro Germinal , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Antígenos , Epítopos , Inmunidad Humoral , Ratones
13.
Immunity ; 53(3): 524-532.e4, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32783920

RESUMEN

As SARS-CoV-2 infections and death counts continue to rise, it remains unclear why some individuals recover from infection, whereas others rapidly progress and die. Although the immunological mechanisms that underlie different clinical trajectories remain poorly defined, pathogen-specific antibodies often point to immunological mechanisms of protection. Here, we profiled SARS-CoV-2-specific humoral responses in a cohort of 22 hospitalized individuals. Despite inter-individual heterogeneity, distinct antibody signatures resolved individuals with different outcomes. Although no differences in SARS-CoV-2-specific IgG levels were observed, spike-specific humoral responses were enriched among convalescent individuals, whereas functional antibody responses to the nucleocapsid were elevated in deceased individuals. Furthermore, this enriched immunodominant spike-specific antibody profile in convalescents was confirmed in a larger validation cohort. These results demonstrate that early antigen-specific and qualitative features of SARS-CoV-2-specific antibodies point to differences in disease trajectory, highlighting the potential importance of functional antigen-specific humoral immunity to guide patient care and vaccine development.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/mortalidad , Proteínas de la Nucleocápside/inmunología , Neumonía Viral/inmunología , Neumonía Viral/mortalidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Betacoronavirus/inmunología , COVID-19 , Infecciones por Coronavirus/sangre , Proteínas de la Nucleocápside de Coronavirus , Femenino , Humanos , Inmunidad Humoral/inmunología , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Pandemias , Fosfoproteínas , Neumonía Viral/sangre , SARS-CoV-2
14.
Nature ; 586(7830): 583-588, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32731257

RESUMEN

A safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be required to end the coronavirus disease 2019 (COVID-19) pandemic1-8. For global deployment and pandemic control, a vaccine that requires only a single immunization would be optimal. Here we show the immunogenicity and protective efficacy of a single dose of adenovirus serotype 26 (Ad26) vector-based vaccines expressing the SARS-CoV-2 spike (S) protein in non-human primates. Fifty-two rhesus macaques (Macaca mulatta) were immunized with Ad26 vectors that encoded S variants or sham control, and then challenged with SARS-CoV-2 by the intranasal and intratracheal routes9,10. The optimal Ad26 vaccine induced robust neutralizing antibody responses and provided complete or near-complete protection in bronchoalveolar lavage and nasal swabs after SARS-CoV-2 challenge. Titres of vaccine-elicited neutralizing antibodies correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate robust single-shot vaccine protection against SARS-CoV-2 in non-human primates. The optimal Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in clinical trials.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Macaca mulatta , Pandemias/prevención & control , Neumonía Viral/inmunología , Neumonía Viral/prevención & control , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Animales , COVID-19 , Vacunas contra la COVID-19 , Modelos Animales de Enfermedad , Femenino , Inmunidad Celular , Inmunidad Humoral , Macaca mulatta/inmunología , Macaca mulatta/virología , Masculino , SARS-CoV-2 , Vacunación , Carga Viral
15.
Proc Natl Acad Sci U S A ; 119(42): e2211616119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215486

RESUMEN

Influenza B virus primarily infects humans, causing seasonal epidemics globally. Two antigenic variants-Victoria-like and Yamagata-like-were detected in the 1980s, of which the molecular basis of emergence is still incompletely understood. Here, the antigenic properties of a unique collection of historical virus isolates, sampled from 1962 to 2000 and passaged exclusively in mammalian cells to preserve antigenic properties, were determined with the hemagglutination inhibition assay and an antigenic map was built to quantify and visualize the divergence of the lineages. The antigenic map revealed only three distinct antigenic clusters-Early, Victoria, and Yamagata-with relatively little antigenic diversity in each cluster until 2000. Viruses with Victoria-like antigenic properties emerged around 1972 and diversified subsequently into two genetic lineages. Viruses with Yamagata-like antigenic properties evolved from one lineage and became clearly antigenically distinct from the Victoria-like viruses around 1988. Recombinant mutant viruses were tested to show that insertions and deletions (indels), as observed frequently in influenza B virus hemagglutinin, had little effect on antigenic properties. In contrast, amino-acid substitutions at positions 148, 149, 150, and 203, adjacent to the hemagglutinin receptor binding site, determined the main antigenic differences between the Early, Victoria-like, and Yamagata-like viruses. Surprisingly, substitutions at two of the four positions reverted in recent viruses of the Victoria lineage, resulting in antigenic properties similar to viruses circulating ∼50 y earlier. These data shed light on the antigenic diversification of influenza viruses and suggest there may be limits to the antigenic evolution of influenza B virus.


Asunto(s)
Gripe Humana , Animales , Variación Antigénica/genética , Sitios de Unión , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas , Humanos , Virus de la Influenza B/genética , Mamíferos , Filogenia
16.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35078919

RESUMEN

SARS-CoV-2 entry into host cells is a crucial step for virus tropism, transmission, and pathogenesis. Angiotensin-converting enzyme 2 (ACE2) has been identified as the primary entry receptor for SARS-CoV-2; however, the possible involvement of other cellular components in the viral entry has not yet been fully elucidated. Here we describe the identification of vimentin (VIM), an intermediate filament protein widely expressed in cells of mesenchymal origin, as an important attachment factor for SARS-CoV-2 on human endothelial cells. Using liquid chromatography-tandem mass spectrometry, we identified VIM as a protein that binds to the SARS-CoV-2 spike (S) protein. We showed that the S-protein receptor binding domain (RBD) is sufficient for S-protein interaction with VIM. Further analysis revealed that extracellular VIM binds to SARS-CoV-2 S-protein and facilitates SARS-CoV-2 infection, as determined by entry assays performed with pseudotyped viruses expressing S and with infectious SARS-CoV-2. Coexpression of VIM with ACE2 increased SARS-CoV-2 entry in HEK-293 cells, and shRNA-mediated knockdown of VIM significantly reduced SARS-CoV-2 infection of human endothelial cells. Moreover, incubation of A549 cells expressing ACE2 with purified VIM increased pseudotyped SARS-CoV-2-S entry. CR3022 antibody, which recognizes a distinct epitope on SARS-CoV-2-S-RBD without interfering with the binding of the spike with ACE2, inhibited the binding of VIM with CoV-2 S-RBD, and neutralized viral entry in human endothelial cells, suggesting a key role for VIM in SARS-CoV-2 infection of endothelial cells. This work provides insight into the pathogenesis of COVID-19 linked to the vascular system, with implications for the development of therapeutics and vaccines.


Asunto(s)
Células Endoteliales/virología , Espacio Extracelular/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vimentina/metabolismo , Internalización del Virus , Células A549 , Enzima Convertidora de Angiotensina 2/metabolismo , Técnicas de Cocultivo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Endotelio Vascular/virología , Células HEK293 , Humanos , Unión Proteica
17.
Pituitary ; 27(2): 204-212, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38345720

RESUMEN

PURPOSE: Pituitary adenomas are the most common tumor of the pituitary gland and comprise nearly 15% of all intracranial masses. These tumors are stratified into functional or silent categories based on their pattern of hormone expression and secretion. Preliminary evidence supports differential clinical outcomes between some functional pituitary adenoma (FPA) subtypes and silent pituitary adenoma (SPA) subtypes. METHODS: We collected and analyzed the medical records of all patients undergoing resection of SPAs or FPAs from a single high-volume neurosurgeon between 2007 and 2018 at Brigham and Women's Hospital. Descriptive statistics and the Mantel-Cox log-rank test were used to identify differences in outcomes between these cohorts, and multivariate logistic regression was used to identify predictors of radiographic recurrence for SPAs. RESULTS: Our cohort included 88 SPAs and 200 FPAs. The majority of patients in both cohorts were female (48.9% of SPAs and 63.5% of FPAs). SPAs were larger in median diameter than FPAs (2.1 cm vs. 1.2 cm, p < 0.001). The most frequent subtypes of SPA were gonadotrophs (55.7%) and corticotrophs (30.7%). Gross total resection (GTR) was achieved in 70.1% of SPA resections and 86.0% of FPA resections (p < 0.001). SPAs had a higher likelihood of recurring (hazard ratio [HR] 3.2, 95% confidence interval [95%CI] 1.6-7.2) and a higher likelihood of requiring retreatment for recurrence (HR 2.5; 95%CI 1.0-6.1). Subset analyses revealed that recurrence and retreatment were more both likely for subtotally resected SPAs than subtotally resected FPAs, but this pattern was not observed in SPAs and FPAs after GTR. Among SPAs, recurrence was associated with STR (odds ratio [OR] 9.3; 95%CI 1.4-64.0) and younger age (OR 0.92 per year; 95%CI 0.88-0.98) in multivariable analysis. Of SPAs that recurred, 12 of 19 (63.2%) were retreated with repeat surgery (n = 11) or radiosurgery (n = 1), while the remainder were observed (n = 7).There were similar rates of recurrence across different SPA subtypes. CONCLUSION: Patients undergoing resection of SPAs should be closely monitored for disease recurrence through more frequent clinical follow-up and diagnostic imaging than other adenomas, particularly among patients with STR and younger patients. Several patients can be observed after radiographic recurrence, and the decision to retreat should be individualized. Longitudinal clinical follow-up of SPAs, including an assessment of symptoms, endocrine function, and imaging remains critical.


Asunto(s)
Adenoma , Neoplasias Hipofisarias , Humanos , Masculino , Femenino , Neoplasias Hipofisarias/diagnóstico por imagen , Neoplasias Hipofisarias/cirugía , Neoplasias Hipofisarias/metabolismo , Estudios Retrospectivos , Recurrencia Local de Neoplasia/epidemiología , Adenoma/patología , Retratamiento , Resultado del Tratamiento
18.
Nat Chem Biol ; 17(10): 1057-1064, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34168368

RESUMEN

The predominant approach for antibody generation remains animal immunization, which can yield exceptionally selective and potent antibody clones owing to the powerful evolutionary process of somatic hypermutation. However, animal immunization is inherently slow, not always accessible and poorly compatible with many antigens. Here, we describe 'autonomous hypermutation yeast surface display' (AHEAD), a synthetic recombinant antibody generation technology that imitates somatic hypermutation inside engineered yeast. By encoding antibody fragments on an error-prone orthogonal DNA replication system, surface-displayed antibody repertoires continuously mutate through simple cycles of yeast culturing and enrichment for antigen binding to produce high-affinity clones in as little as two weeks. We applied AHEAD to generate potent nanobodies against the SARS-CoV-2 S glycoprotein, a G-protein-coupled receptor and other targets, offering a template for streamlined antibody generation at large.


Asunto(s)
Formación de Anticuerpos/inmunología , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/biosíntesis , Anticuerpos/inmunología , Antígenos , COVID-19/inmunología , Humanos , Biblioteca de Péptidos , Proteínas Recombinantes/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Saccharomyces cerevisiae/metabolismo , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología
19.
J Surg Res ; 279: 436-441, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35841812

RESUMEN

INTRODUCTION: Global surgery efforts have significantly expanded in the last decade. While an increasing number of general surgery residents are incorporating global surgery experiences and research into their training, few resources are available for residency applicants to evaluate opportunities at programs to which they are applying. MATERIALS AND METHODS: A 17-question survey of all general surgery residency program directors (PDs) was conducted by the Global Surgery Student Alliance through emails to the Association of Program Directors in Surgery listserv. PDs indicated if they wished to remain anonymous or include program information in an upcoming online database. RESULTS: Two hundred fifty eight general surgery PDs were emailed the survey and 45 (17%) responses were recorded. Twenty eight (62%) programs offered formal global surgery experiences for residents, including clinical rotations, research, and advocacy opportunities. Thirty one (69%) programs were developing a global health center. Forty two (93%) respondents indicated that global surgery education was an important aspect of surgical training. Barriers to global surgery participation included a lack of funding, time constraints, low faculty participation, and minimal institutional interest. CONCLUSIONS: While most respondents felt that global surgery was important, less than two-thirds offered formal experiences. Despite the significant increase in public awareness and participation in global surgery, these numbers remain low. While this study is limited by a 17% response rate, it demonstrates that more efforts are needed to bolster training, research, and advocacy opportunities for surgical trainees and promote a global perspective on healthcare.


Asunto(s)
Cirugía General , Internado y Residencia , Cirugía General/educación , Salud Global , Humanos , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA