Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 71(6): 882-895, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241605

RESUMEN

Age-associated changes to the mammalian DNA methylome are well documented and thought to promote diseases of aging, such as cancer. Recent studies have identified collections of individual methylation sites whose aggregate methylation status measures chronological age, referred to as the DNA methylation clock. DNA methylation may also have value as a biomarker of healthy versus unhealthy aging and disease risk; in other words, a biological clock. Here we consider the relationship between the chronological and biological clocks, their underlying mechanisms, potential consequences, and their utility as biomarkers and as targets for intervention to promote healthy aging and longevity.


Asunto(s)
Envejecimiento/genética , Senescencia Celular/genética , Metilación de ADN/genética , Animales , Relojes Biológicos/genética , Senescencia Celular/fisiología , Islas de CpG/genética , Epigénesis Genética/genética , Humanos , Longevidad/genética
2.
Appl Environ Microbiol ; 80(10): 3113-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24610856

RESUMEN

Inanimate surfaces, or fomites, can serve as routes of transmission of enteric and respiratory pathogens. No previous studies have evaluated the impact of surface disinfection on the level of pathogen transfer from fomites to fingers. Thus, the present study investigated the change in microbial transfer from contaminated fomites to fingers following disinfecting wipe use. Escherichia coli (10(8) to 10(9) CFU/ml), Staphylococcus aureus (10(9) CFU/ml), Bacillus thuringiensis spores (10(7) to 10(8) CFU/ml), and poliovirus 1 (10(8) PFU/ml) were seeded on ceramic tile, laminate, and granite in 10-µl drops and allowed to dry for 30 min at a relative humidity of 15 to 32%. The seeded fomites were treated with a disinfectant wipe and allowed to dry for an additional 10 min. Fomite-to-finger transfer trials were conducted to measure concentrations of transferred microorganisms on the fingers after the disinfectant wipe intervention. The mean log10 reduction of the test microorganisms on fomites by the disinfectant wipe treatment varied from 1.9 to 5.0, depending on the microorganism and the fomite. Microbial transfer from disinfectant-wipe-treated fomites was lower (up to <0.1% on average) than from nontreated surfaces (up to 36.3% on average, reported in our previous study) for all types of microorganisms and fomites. This is the first study quantifying microbial transfer from contaminated fomites to fingers after the use of disinfectant wipe intervention. The data generated in the present study can be used in quantitative microbial risk assessment models to predict the effect of disinfectant wipes in reducing microbial exposure.


Asunto(s)
Bacterias/efectos de los fármacos , Desinfectantes/farmacología , Desinfección/métodos , Dedos/microbiología , Dedos/virología , Fómites/microbiología , Fómites/virología , Virus/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Desinfección/instrumentación , Humanos , Virus/crecimiento & desarrollo
3.
Nat Aging ; 4(2): 185-197, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267705

RESUMEN

Sterile inflammation, also known as 'inflammaging', is a hallmark of tissue aging. Cellular senescence contributes to tissue aging, in part, through the secretion of proinflammatory factors collectively known as the senescence-associated secretory phenotype (SASP). The genetic variability of thioredoxin reductase 1 (TXNRD1) is associated with aging and age-associated phenotypes such as late-life survival, activity of daily living and physical performance in old age. TXNRD1's role in regulating tissue aging has been attributed to its enzymatic role in cellular redox regulation. Here, we show that TXNRD1 drives the SASP and inflammaging through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immune response pathway independently of its enzymatic activity. TXNRD1 localizes to cytoplasmic chromatin fragments and interacts with cGAS in a senescence-status-dependent manner, which is necessary for the SASP. TXNRD1 enhances the enzymatic activity of cGAS. TXNRD1 is required for both the tumor-promoting and immune surveillance functions of senescent cells, which are mediated by the SASP in vivo in mouse models. Treatment of aged mice with a TXNRD1 inhibitor that disrupts its interaction with cGAS, but not with an inhibitor of its enzymatic activity alone, downregulated markers of inflammaging in several tissues. In summary, our results show that TXNRD1 promotes the SASP through the innate immune response, with implications for inflammaging. This suggests that the TXNRD1-cGAS interaction is a relevant target for selectively suppressing inflammaging.


Asunto(s)
Transducción de Señal , Tiorredoxina Reductasa 1 , Animales , Ratones , Senescencia Celular/genética , Inmunidad Innata/genética , Inflamación/genética , Nucleotidiltransferasas/genética , Tiorredoxina Reductasa 1/metabolismo
4.
Nat Commun ; 15(1): 5410, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926365

RESUMEN

METTL3 is the catalytic subunit of the methyltransferase complex, which mediates m6A modification to regulate gene expression. In addition, METTL3 regulates transcription in an enzymatic activity-independent manner by driving changes in high-order chromatin structure. However, how these functions of the methyltransferase complex are coordinated remains unknown. Here we show that the methyltransferase complex coordinates its enzymatic activity-dependent and independent functions to regulate cellular senescence, a state of stable cell growth arrest. Specifically, METTL3-mediated chromatin loops induce Hexokinase 2 expression through the three-dimensional chromatin organization during senescence. Elevated Hexokinase 2 expression subsequently promotes liquid-liquid phase separation, manifesting as stress granule phase separation, by driving metabolic reprogramming. This correlates with an impairment of translation of cell-cycle related mRNAs harboring polymethylated m6A sites. In summary, our results report a coordination of m6A-dependent and -independent function of the methyltransferase complex in regulating senescence through phase separation driven by metabolic reprogramming.


Asunto(s)
Senescencia Celular , Cromatina , Metiltransferasas , Gránulos de Estrés , Metiltransferasas/metabolismo , Metiltransferasas/genética , Cromatina/metabolismo , Humanos , Gránulos de Estrés/metabolismo , Gránulos de Estrés/genética , Hexoquinasa/metabolismo , Hexoquinasa/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Adenosina/metabolismo , Adenosina/análogos & derivados , Células HEK293 , Reprogramación Metabólica , Separación de Fases
5.
bioRxiv ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38979156

RESUMEN

Cellular senescence, a stress-induced stable proliferation arrest associated with an inflammatory Senescence-Associated Secretory Phenotype (SASP), is a cause of aging. In senescent cells, Cytoplasmic Chromatin Fragments (CCFs) activate SASP via the anti-viral cGAS/STING pathway. PML protein organizes PML nuclear bodies (NBs), also involved in senescence and anti-viral immunity. The HIRA histone H3.3 chaperone localizes to PML NBs in senescent cells. Here, we show that HIRA and PML are essential for SASP expression, tightly linked to HIRA's localization to PML NBs. Inactivation of HIRA does not directly block expression of NF-κB target genes. Instead, an H3.3-independent HIRA function activates SASP through a CCF-cGAS-STING-TBK1-NF-κB pathway. HIRA physically interacts with p62/SQSTM1, an autophagy regulator and negative SASP regulator. HIRA and p62 co-localize in PML NBs, linked to their antagonistic regulation of SASP, with PML NBs controlling their spatial configuration. These results outline a role for HIRA and PML in regulation of SASP.

6.
bioRxiv ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37292952

RESUMEN

Gene expression programs are regulated by enhancers which act in a context-specific manner, and can reside at great distances from their target genes. Extensive three-dimensional (3D) genome reorganization occurs in senescence, but how enhancer interactomes are reconfigured during this process is just beginning to be understood. Here we generated high-resolution contact maps of active enhancers and their target genes, assessed chromatin accessibility, and established one-dimensional maps of various histone modifications and transcription factors to comprehensively understand the regulation of enhancer configuration during senescence. Hyper-connected enhancer communities/cliques formed around genes that are highly expressed and within essential gene pathways in each cell state. In addition, motif analysis indicates the involvement of specific transcription factors in hyper-connected regulatory elements in each condition; importantly, MafK, a bZIP family transcription factor, was upregulated in senescence, and reduced expression of MafK ameliorated the senescence phenotypes. Because the accumulation of senescent cells is a key feature of aging, we further investigated enhancer connectomes in the liver of young and aged mice. Hyper-connected enhancer communities were identified during aging, which regulate essential genes that maintain cell differentiation and homeostasis. These findings reveal that hyper-connected enhancer communities correlate with high gene expression in senescence and aging and provide potential hotspots for therapeutic intervention in aging and age-associated diseases.

7.
Res Sq ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37986947

RESUMEN

Biomarkers of biological age that predict the risk of disease and expected lifespan better than chronological age are key to efficient and cost-effective healthcare1-3. To advance a personalized approach to healthcare, such biomarkers must reliably and accurately capture individual biology, predict biological age, and provide scalable and cost-effective measurements. We developed a novel approach - image-based chromatin and epigenetic age (ImAge) that captures intrinsic progressions of biological age, which readily emerge as principal changes in the spatial organization of chromatin and epigenetic marks in single nuclei without regression on chronological age. ImAge captured the expected acceleration or deceleration of biological age in mice treated with chemotherapy or following a caloric restriction regimen, respectively. ImAge from chronologically identical mice inversely correlated with their locomotor activity (greater activity for younger ImAge), consistent with the widely accepted role of locomotion as an aging biomarker across species. Finally, we demonstrated that ImAge is reduced following transient expression of OSKM cassette in the liver and skeletal muscles and reveals heterogeneity of in vivo reprogramming. We propose that ImAge represents the first-in-class imaging-based biomarker of aging with single-cell resolution.

8.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045344

RESUMEN

Genomic instability and inflammation are distinct hallmarks of aging, but the connection between them is poorly understood. Understanding their interrelationship will help unravel new mechanisms and therapeutic targets of aging and age-associated diseases. Here we report a novel mechanism directly linking genomic instability and inflammation in senescent cells, through a mitochondria-regulated molecular circuit that connects the p53 tumor suppressor and cytoplasmic chromatin fragments (CCF), a driver of inflammation through the cGAS-STING pathway. Activation or inactivation of p53 by genetic and pharmacologic approaches showed that p53 suppresses CCF accumulation and the downstream inflammatory senescence-associated secretory phenotype (SASP), independent of its effects on cell cycle arrest. p53 activation suppressed CCF formation by promoting DNA repair, reflected in maintenance of genomic integrity, particularly in subtelomeric regions, as shown by single cell genome resequencing. Activation of p53 by pharmacological inhibition of MDM2 in old mice decreased features of SASP in liver, indicating a senomorphic role in vivo . Remarkably, mitochondria in senescent cells suppressed p53 activity by promoting CCF formation and thereby restricting ATM-dependent nuclear DNA damage signaling. These data provide evidence for a mitochondria-regulated p53-CCF circuit in senescent cells that controls DNA repair, genome integrity and inflammatory SASP, and is a potential target for senomorphic healthy aging interventions.

9.
Mol Oncol ; 16(18): 3213-3219, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36128609

RESUMEN

Many cancers show an increase in incidence with age, and age is the biggest single risk factor for many cancers. However, the molecular basis of this relationship is poorly understood. Through a collection of review articles, our thematic issue discusses the link between aging and cancer in aspects including somatic mutations, proteostasis, mitochondria, metabolism, senescence, epigenetic regulation, immune regulation, DNA damage, and telomere function.


Asunto(s)
Epigénesis Genética , Neoplasias , Envejecimiento/genética , Envejecimiento/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Telómero/genética
10.
Mol Cell Biol ; 42(10): e0017122, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36154662

RESUMEN

Cellular senescence is a stable form of cell cycle arrest associated with proinflammatory responses. Senescent cells can be cleared by the immune system as a part of normal tissue homeostasis. However, senescent cells can also accumulate in aged and diseased tissues, contributing to inflammation and disease progression. The mechanisms mediating the impaired immune-mediated clearance of senescent cells are poorly understood. Here, we report that senescent cells upregulate the immune checkpoint molecule PD-L1, the ligand for PD-1 on immune cells, which drives immune cell inactivation. The induction of PD-L1 in senescence is dependent on the proinflammatory program. Furthermore, the secreted factors released by senescent cells are sufficient to upregulate PD-L1 in nonsenescent control cells, mediated by the JAK-STAT pathway. In addition, we show that prolongevity intervention rapamycin downregulates PD-L1 in senescent cells. Last, we found that PD-L1 is upregulated in several tissues in naturally aged mice and in the lungs of idiopathic pulmonary fibrosis patients. Together, our results report that senescence and aging are associated with upregulation of a major immune checkpoint molecule, PD-L1. Targeting PD-L1 may offer new therapeutic opportunities in treating senescence and age-associated diseases.


Asunto(s)
Antígeno B7-H1 , Quinasas Janus , Ratones , Animales , Regulación hacia Arriba , Quinasas Janus/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas de Punto de Control Inmunitario , Ligandos , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Envejecimiento/metabolismo , Sirolimus
11.
Nat Cell Biol ; 24(8): 1202-1210, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35851616

RESUMEN

Cellular senescence plays a causal role in ageing and, in mice, depletion of p16INK4a-expressing senescent cells delays ageing-associated disorders1,2. Adenosine deaminases acting on RNA (ADARs) are RNA-editing enzymes that are also implicated as important regulators of human ageing, and ADAR inactivation causes age-associated pathologies such as neurodegeneration in model organisms3,4. However, the role, if any, of ADARs in cellular senescence is unknown. Here we show that ADAR1 is post-transcriptionally downregulated by autophagic degradation to promote senescence through p16INK4a upregulation. The ADAR1 downregulation is sufficient to drive senescence in both in vitro and in vivo models. Senescence induced by ADAR1 downregulation is p16INK4a-dependent and independent of its RNA-editing function. Mechanistically, ADAR1 promotes SIRT1 expression by affecting its RNA stability through HuR, an RNA-binding protein that increases the half-life and steady-state levels of its target mRNAs. SIRT1 in turn antagonizes translation of mRNA encoding p16INK4a. Hence, downregulation of ADAR1 and SIRT1 mediates p16INK4a upregulation by enhancing its mRNA translation. Finally, Adar1 is downregulated during ageing of mouse tissues such as brain, ovary and intestine, and Adar1 expression correlates with Sirt1 expression in these tissues in mice. Together, our study reveals an RNA-editing-independent role for ADAR1 in the regulation of senescence by post-transcriptionally controlling p16INK4a expression.


Asunto(s)
Adenosina Desaminasa , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Autofagia/genética , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Regulación hacia Abajo , Femenino , Humanos , Ratones , Edición de ARN/genética , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/metabolismo , Sirtuina 1/genética
12.
Cancer Biol Ther ; 17(12): 1240-1252, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27791595

RESUMEN

Diffuse Large B-cell lymphoma (DLBCL) is an aggressive malignancy that has a 60 percent 5-year survival rate, highlighting a need for new therapeutic approaches. Histone deacetylase inhibitors (HDACi) are novel therapeutics being clinically-evaluated in combination with a variety of other drugs. However, rational selection of companion therapeutics for HDACi is difficult due to their poorly-understood, cell-type specific mechanisms of action. To address this, we developed a pre-clinical model system of sensitivity and resistance to the HDACi belinostat using DLBCL cell lines. In the current study, we demonstrate that cell lines sensitive to the cytotoxic effects of HDACi undergo early mitotic arrest prior to apoptosis. In contrast, HDACi-resistant cell lines complete mitosis after a short delay and arrest in G1. To force mitotic arrest in HDACi-resistant cell lines, we used low dose vincristine or paclitaxel in combination with belinostat and observed synergistic cytotoxicity. Belinostat curtails vincristine-induced mitotic arrest and triggers a strong apoptotic response associated with downregulated MCL-1 expression and upregulated BIM expression. Resistance to microtubule targeting agents (MTAs) has been associated with their propensity to induce polyploidy and thereby increase the probability of genomic instability that enables cancer progression. Co-treatment with belinostat effectively eliminated a vincristine-induced, actively cycling polyploid cell population. Our study demonstrates that vincristine sensitizes DLBCL cells to the cytotoxic effects of belinostat and that belinostat prevents polyploidy that could cause vincristine resistance. Our findings provide a rationale for using low dose MTAs in conjunction with HDACi as a potential therapeutic strategy for treatment of aggressive DLBCL.


Asunto(s)
Citotoxinas/farmacología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Mitosis/efectos de los fármacos , Sulfonamidas/farmacología , Moduladores de Tubulina/farmacología , Vincristina/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Humanos , Modelos Biológicos , Paclitaxel/farmacología , Poliploidía , Regulación hacia Arriba
13.
Cancer Biol Ther ; 14(10): 949-61, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23982416

RESUMEN

Diffuse large B cell lymphoma (DLBCL) is an aggressive form of non-Hodgkin lymphoma. While the initial treatment strategy is highly effective, relapse occurs in 40% of cases. Histone deacetylase inhibitors (HDACi) are a promising class of anti-cancer drugs but their single agent efficacy against relapsed DLBCL has been variable, ranging from few complete/partial responses to some stable disease. However, most patients showed no response to HDACi monotherapy for unknown reasons. Here we show that sensitivity and resistance to the hydroxamate HDACi, PXD101, can be modeled in DLBCL cell lines. Sensitivity is characterized by G 2/M arrest and apoptosis and resistance by reversible G 1 growth arrest. These responses to PXD101 are independent of several negative prognostic indicators such as DLBCL subtype, BCL2 and MYC co-expression, and p53 mutation, suggesting that HDACi might be used effectively against highly aggressive DLBCL tumors if they are combined with other therapeutics that overcome HDACi resistance. Our investigation of mechanisms underlying HDACi resistance showed that cyclin-dependent kinase inhibitors (CKIs), p21 and p27, are upregulated by PXD101 in a sustained fashion in resistant cell lines concomitant with decreased activity of the cyclin E/cdk2 complex and decreased Rb phosphorylation. PXD101 treatment results in increased association of CKI with the cyclin E/cdk2 complex in resistant cell lines but not in a sensitive line, indicating that the CKIs play a key role in G 1 arrest. The results suggest several treatment strategies that might increase the efficacy of HDACi against aggressive DLBCL.


Asunto(s)
Antineoplásicos/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Sulfonamidas/farmacología , Apoptosis , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Linfoma de Células B Grandes Difuso/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína de Retinoblastoma/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA