Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886582

RESUMEN

Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.

2.
J Immunol ; 212(4): 534-540, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38117277

RESUMEN

In jawed vertebrates, adaptive immunity depends on the process of V(D)J recombination creating vast numbers of T and B lymphocytes that each expresses unique Ag receptors of uniform specificity. The asynchronous initiation of V-to-(D)J rearrangement between alleles and the resulting protein from one allele signaling feedback inhibition of V recombination on the other allele ensures homogeneous receptor specificity of individual cells. Upon productive Vß-to-DßJß rearrangements in noncycling double-negative thymocytes, TCRß protein signals induction of the cyclin D3 protein to accelerate cell cycle entry, thereby driving proliferative expansion of developing αß T cells. Through undetermined mechanisms, the inactivation of cyclin D3 in mice causes an increased frequency of αß T cells that express TCRß proteins from both alleles, producing lymphocytes of heterogeneous specificities. To determine how cyclin D3 enforces monogenic TCRß expression, we used our mouse lines with enhanced rearrangement of specific Vß segments due to replacement of their poor-quality recombination signal sequence (RSS) DNA elements with a better RSS. We show that cyclin D3 inactivation in these mice elevates the frequencies of αß T cells that display proteins from RSS-augmented Vß segments on both alleles. By assaying mature αß T cells, we find that cyclin D3 deficiency increases the levels of Vß rearrangements that occur within developing thymocytes. Our data demonstrate that a component of the cell cycle machinery mediates TCRß protein-signaled feedback inhibition in thymocytes to achieve monogenic TCRß expression and resulting uniform specificity of individual αß T cells.


Asunto(s)
Receptores de Antígenos de Linfocitos T alfa-beta , Timocitos , Animales , Ratones , Alelos , Ciclina D3/genética , Retroalimentación , Reordenamiento Génico de la Cadena beta de los Receptores de Antígenos de los Linfocitos T , Linfocitos , Receptores de Antígenos de Linfocitos T alfa-beta/genética
3.
Blood ; 142(20): 1724-1739, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37683180

RESUMEN

Aberrant skipping of coding exons in CD19 and CD22 compromises the response to immunotherapy in B-cell malignancies. Here, we showed that the MS4A1 gene encoding human CD20 also produces several messenger RNA (mRNA) isoforms with distinct 5' untranslated regions. Four variants (V1-4) were detected using RNA sequencing (RNA-seq) at distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma, only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform contained upstream open reading frames and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, whereas V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed chimeric antigen receptor T cells were able to kill both V3- and V1-expressing cells, but the bispecific T-cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on 4 postmosunetuzumab follicular lymphoma relapses and discovered that in 2 of them, the downregulation of CD20 was accompanied by a V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias , Humanos , Empalme Alternativo , ARN Mensajero/genética , Regiones no Traducidas 5' , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Antígenos CD20/genética , Isoformas de Proteínas/genética , Inmunoterapia , Biosíntesis de Proteínas , Neoplasias/genética
4.
Proc Natl Acad Sci U S A ; 119(18): e2123560119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35471909

RESUMEN

The duper mutation is a recessive mutation that shortens the period length of the circadian rhythm in Syrian hamsters. These animals show a large phase shift when responding to light pulses. Limited genetic resources for the Syrian hamster (Mesocricetus auratus) presented a major obstacle to cloning duper. This caused the duper mutation to remain unknown for over a decade. In this study, we did a de novo genome assembly of Syrian hamsters with long-read sequencing data from two different platforms, Pacific Biosciences and Oxford Nanopore Technologies. Using two distinct ecotypes and a fast homozygosity mapping strategy, we identified duper as an early nonsense allele of Cryptochrome 1 (Cry1) leading to a short, unstable protein. CRY1 is known as a highly conserved component of the repressive limb of the core circadian clock. The genome assembly and other genomic datasets generated in this study will facilitate the use of the Syrian hamster in biomedical research.


Asunto(s)
COVID-19 , Criptocromos , Animales , Ritmo Circadiano/genética , Cricetinae , Criptocromos/genética , Humanos , Mutación con Pérdida de Función , Mesocricetus , Mutación , Factores de Transcripción/genética
5.
PLoS Pathog ; 18(9): e1010797, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36095031

RESUMEN

Adenovirus is a common human pathogen that relies on host cell processes for transcription and processing of viral RNA and protein production. Although adenoviral promoters, splice junctions, and polyadenylation sites have been characterized using low-throughput biochemical techniques or short read cDNA-based sequencing, these technologies do not fully capture the complexity of the adenoviral transcriptome. By combining Illumina short-read and nanopore long-read direct RNA sequencing approaches, we mapped transcription start sites and RNA cleavage and polyadenylation sites across the adenovirus genome. In addition to confirming the known canonical viral early and late RNA cassettes, our analysis of splice junctions within long RNA reads revealed an additional 35 novel viral transcripts that meet stringent criteria for expression. These RNAs include fourteen new splice junctions which lead to expression of canonical open reading frames (ORFs), six novel ORF-containing transcripts, and 15 transcripts encoding for messages that could alter protein functions through truncation or fusion of canonical ORFs. In addition, we detect RNAs that bypass canonical cleavage sites and generate potential chimeric proteins by linking distinct gene transcription units. Among these chimeric proteins we detected an evolutionarily conserved protein containing the N-terminus of E4orf6 fused to the downstream DBP/E2A ORF. Loss of this novel protein, E4orf6/DBP, was associated with aberrant viral replication center morphology and poor viral spread. Our work highlights how long-read sequencing technologies combined with mass spectrometry can reveal further complexity within viral transcriptomes and resulting proteomes.


Asunto(s)
Adenoviridae , ARN Viral , Adenoviridae/genética , ADN Complementario , Humanos , Sistemas de Lectura Abierta/genética , Proteoma/metabolismo , Empalme del ARN/genética , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de ARN/métodos , Transcriptoma
6.
J Immunol ; 209(5): 938-949, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35948399

RESUMEN

RAG1/RAG2 (RAG) endonuclease-mediated assembly of diverse lymphocyte Ag receptor genes by V(D)J recombination is critical for the development and immune function of T and B cells. The RAG1 protein contains a ubiquitin ligase domain that stabilizes RAG1 and stimulates RAG endonuclease activity in vitro. We report in this study that mice with a mutation that inactivates the Rag1 ubiquitin ligase in vitro exhibit decreased rearrangements and altered repertoires of TCRß and TCRα genes in thymocytes and impaired thymocyte developmental transitions that require the assembly and selection of functional TCRß and/or TCRα genes. These Rag1 mutant mice present diminished positive selection and superantigen-mediated negative selection of conventional αß T cells, decreased genesis of invariant NK T lineage αß T cells, and mature CD4+ αß T cells with elevated autoimmune potential. Our findings reveal that the Rag1 ubiquitin ligase domain functions in vivo to stimulate TCRß and TCRα gene recombination and influence differentiation of αß T lineage cells, thereby establishing replete diversity of αß TCRs and populations of αß T cells while restraining generation of potentially autoreactive conventional αß T cells.


Asunto(s)
Proteínas de Homeodominio , Receptores de Antígenos de Linfocitos T alfa-beta , Ubiquitina , Animales , Linaje de la Célula , Endonucleasas/genética , Proteínas de Homeodominio/genética , Ligasas/genética , Ratones , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Superantígenos , Recombinación V(D)J/genética
7.
Nucleic Acids Res ; 50(3): 1201-1220, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34671803

RESUMEN

Eukaryotic cells recognize intracellular pathogens through pattern recognition receptors, including sensors of aberrant nucleic acid structures. Sensors of double-stranded RNA (dsRNA) are known to detect replication intermediates of RNA viruses. It has long been suggested that annealing of mRNA from symmetrical transcription of both top and bottom strands of DNA virus genomes can produce dsRNA during infection. Supporting this hypothesis, nearly all DNA viruses encode inhibitors of dsRNA-recognition pathways. However, direct evidence that DNA viruses produce dsRNA is lacking. Contrary to dogma, we show that the nuclear-replicating DNA virus adenovirus (AdV) does not produce detectable levels of dsRNA during infection. In contrast, abundant dsRNA is detected within the nucleus of cells infected with AdV mutants defective for viral RNA processing. In the presence of nuclear dsRNA, the cytoplasmic dsRNA sensor PKR is relocalized and activated within the nucleus. Accumulation of viral dsRNA occurs in the late phase of infection, when unspliced viral transcripts form intron/exon base pairs between top and bottom strand transcripts. We propose that DNA viruses actively limit dsRNA formation by promoting efficient splicing and mRNA processing, thus avoiding detection and restriction by host innate immune sensors of pathogenic nucleic acids.


Asunto(s)
Adenoviridae , Empalme del ARN , ARN Viral , Adenoviridae/genética , Adenoviridae/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo
8.
Bioinformatics ; 38(11): 3113-3115, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35426900

RESUMEN

MOTIVATION: The chemical modification of ribonucleotides regulates the structure, stability and interactions of RNAs. Profiling of these modifications using short-read (Illumina) sequencing techniques provides high sensitivity but low-to-medium resolution i.e. modifications cannot be assigned to specific transcript isoforms in regions of sequence overlap. An alternative strategy uses current fluctuations in nanopore-based long read direct RNA sequencing (DRS) to infer the location and identity of nucleotides that differ between two experimental conditions. While highly sensitive, these signal-level analyses require high-quality transcriptome annotations and thus are best suited to the study of model organisms. By contrast, the detection of RNA modifications in microbial organisms which typically have no or low-quality annotations requires an alternative strategy. Here, we demonstrate that signal fluctuations directly influence error rates during base-calling and thus provides an alternative approach for identifying modified nucleotides. RESULTS: DRUMMER (Detection of Ribonucleic acid Modifications Manifested in Error Rates) (i) utilizes a range of statistical tests and background noise correction to identify modified nucleotides with high confidence, (ii) operates with similar sensitivity to signal-level analysis approaches and (iii) correlates very well with orthogonal approaches. Using well-characterized DRS datasets supported by independent meRIP-Seq and miCLIP-Seq datasets we demonstrate that DRUMMER operates with high sensitivity and specificity. AVAILABILITY AND IMPLEMENTATION: DRUMMER is written in Python 3 and is available as open source in the GitHub repository: https://github.com/DepledgeLab/DRUMMER. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Secuenciación de Nanoporos , Programas Informáticos , Análisis de Secuencia de ARN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN/química , Nucleótidos
9.
EMBO Rep ; 22(9): e52145, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34347354

RESUMEN

The APOBEC3 cytidine deaminases are implicated as the cause of a prevalent somatic mutation pattern found in cancer genomes. The APOBEC3 enzymes act as viral restriction factors by mutating viral genomes. Mutation of the cellular genome is presumed to be an off-target activity of the enzymes, although the regulatory measures for APOBEC3 expression and activity remain undefined. It is therefore difficult to predict circumstances that enable APOBEC3 interaction with cellular DNA that leads to mutagenesis. The APOBEC3A (A3A) enzyme is the most potent deaminase of the family. Using proteomics, we evaluate protein interactors of A3A to identify potential regulators. We find that A3A interacts with the chaperonin-containing TCP-1 (CCT) complex, a cellular machine that assists in protein folding and function. Importantly, depletion of CCT results in A3A-induced DNA damage and cytotoxicity. Evaluation of cancer genomes demonstrates an enrichment of A3A mutational signatures in cancers with silencing mutations in CCT subunit genes. Together, these data suggest that the CCT complex interacts with A3A, and that disruption of CCT function results in increased A3A mutational activity.


Asunto(s)
Chaperonina con TCP-1 , Citidina Desaminasa , Chaperonina con TCP-1/genética , Citidina Desaminasa/genética , Mutagénesis , Proteínas/genética
10.
Nat Methods ; 14(2): 135-139, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27941783

RESUMEN

Alignment is the first step in most RNA-seq analysis pipelines, and the accuracy of downstream analyses depends heavily on it. Unlike most steps in the pipeline, alignment is particularly amenable to benchmarking with simulated data. We performed a comprehensive benchmarking of 14 common splice-aware aligners for base, read, and exon junction-level accuracy and compared default with optimized parameters. We found that performance varied by genome complexity, and accuracy and popularity were poorly correlated. The most widely cited tool underperforms for most metrics, particularly when using default settings.


Asunto(s)
Plasmodium falciparum/genética , Alineación de Secuencia/métodos , Análisis de Secuencia de ARN/métodos , Benchmarking , Simulación por Computador , Exones , Genoma Humano , Humanos , Intrones , Anotación de Secuencia Molecular , Polimorfismo Genético , Empalme del ARN , Programas Informáticos
11.
Nucleic Acids Res ; 46(21): 11357-11369, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30357359

RESUMEN

Aberrant splicing is a hallmark of leukemias with mutations in splicing factor (SF)-encoding genes. Here we investigated its prevalence in pediatric B-cell acute lymphoblastic leukemias (B-ALL), where SFs are not mutated. By comparing these samples to normal pro-B cells, we found thousands of aberrant local splice variations (LSVs) per sample, with 279 LSVs in 241 genes present in every comparison. These genes were enriched in RNA processing pathways and encoded ∼100 SFs, e.g. hnRNPA1. HNRNPA1 3'UTR was most pervasively mis-spliced, yielding the transcript subject to nonsense-mediated decay. To mimic this event, we knocked it down in B-lymphoblastoid cells and identified 213 hnRNPA1-regulated exon usage events comprising the hnRNPA1 splicing signature in pediatric leukemia. Some of its elements were LSVs in DICER1 and NT5C2, known cancer drivers. We searched for LSVs in other leukemia and lymphoma drivers and discovered 81 LSVs in 41 additional genes. Seventy-seven LSVs out of 81 were confirmed using two large independent B-ALL RNA-seq datasets, and the twenty most common B-ALL drivers, including NT5C2, showed higher prevalence of aberrant splicing than of somatic mutations. Thus, post-transcriptional deregulation of SF can drive widespread changes in B-ALL splicing and likely contributes to disease pathogenesis.


Asunto(s)
Empalme Alternativo , Linfocitos B/metabolismo , Regulación Leucémica de la Expresión Génica , Ribonucleoproteína Nuclear Heterogénea A1/genética , Degradación de ARNm Mediada por Codón sin Sentido , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Regiones no Traducidas 3' , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Adulto , Linfocitos B/patología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Línea Celular Tumoral , Niño , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Exones , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Humanos , Intrones , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Cultivo Primario de Células , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Factores de Empalme Serina-Arginina/antagonistas & inhibidores , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
12.
BMC Genomics ; 18(1): 602, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28797240

RESUMEN

BACKGROUND: Though Illumina has largely dominated the RNA-Seq field, the simultaneous availability of Ion Torrent has left scientists wondering which platform is most effective for differential gene expression (DGE) analysis. Previous investigations of this question have typically used reference samples derived from cell lines and brain tissue, and do not involve biological variability. While these comparisons might inform studies of tissue-specific expression, marked by large-scale transcriptional differences, this is not the common use case. RESULTS: Here we employ a standard treatment/control experimental design, which enables us to evaluate these platforms in the context of the expression differences common in differential gene expression experiments. Specifically, we assessed the hepatic inflammatory response of mice by assaying liver RNA from control and IL-1ß treated animals with both the Illumina HiSeq and the Ion Torrent Proton sequencing platforms. We found the greatest difference between the platforms at the level of read alignment, a moderate level of concordance at the level of DGE analysis, and nearly identical results at the level of differentially affected pathways. Interestingly, we also observed a strong interaction between sequencing platform and choice of aligner. By aligning both real and simulated Illumina and Ion Torrent data with the twelve most commonly-cited aligners in the literature, we observed that different aligner and platform combinations were better suited to probing different genomic features; for example, disentangling the source of expression in gene-pseudogene pairs. CONCLUSIONS: Taken together, our results indicate that while Illumina and Ion Torrent have similar capacities to detect changes in biology from a treatment/control experiment, these platforms may be tailored to interrogate different transcriptional phenomena through careful selection of alignment software.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de Secuencia de ARN/métodos , Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento
13.
Bioinformatics ; 31(24): 3938-45, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26338770

RESUMEN

MOTIVATION: Because of the advantages of RNA sequencing (RNA-Seq) over microarrays, it is gaining widespread popularity for highly parallel gene expression analysis. For example, RNA-Seq is expected to be able to provide accurate identification and quantification of full-length splice forms. A number of informatics packages have been developed for this purpose, but short reads make it a difficult problem in principle. Sequencing error and polymorphisms add further complications. It has become necessary to perform studies to determine which algorithms perform best and which if any algorithms perform adequately. However, there is a dearth of independent and unbiased benchmarking studies. Here we take an approach using both simulated and experimental benchmark data to evaluate their accuracy. RESULTS: We conclude that most methods are inaccurate even using idealized data, and that no method is highly accurate once multiple splice forms, polymorphisms, intron signal, sequencing errors, alignment errors, annotation errors and other complicating factors are present. These results point to the pressing need for further algorithm development. AVAILABILITY AND IMPLEMENTATION: Simulated datasets and other supporting information can be found at http://bioinf.itmat.upenn.edu/BEERS/bp2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Empalme Alternativo , Perfilación de la Expresión Génica/métodos , Isoformas de ARN/análisis , Análisis de Secuencia de ARN/métodos , Animales , Benchmarking , Humanos , Ratones , ARN Mensajero/análisis
15.
J Exp Med ; 221(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38189780

RESUMEN

The dynamic folding of genomes regulates numerous biological processes, including antigen receptor (AgR) gene assembly. We show that, unlike other AgR loci, homotypic chromatin interactions and bidirectional chromosome looping both contribute to structuring Tcrb for efficient long-range V(D)J recombination. Inactivation of the CTCF binding element (CBE) or promoter at the most 5'Vß segment (Trbv1) impaired loop extrusion originating locally and extending to DßJß CBEs at the opposite end of Tcrb. Promoter or CBE mutation nearly eliminated Trbv1 contacts and decreased RAG endonuclease-mediated Trbv1 recombination. Importantly, Trbv1 rearrangement can proceed independent of substrate orientation, ruling out scanning by DßJß-bound RAG as the sole mechanism of Vß recombination, distinguishing it from Igh. Our data indicate that CBE-dependent generation of loops cooperates with promoter-mediated activation of chromatin to juxtapose Vß and DßJß segments for recombination through diffusion-based synapsis. Thus, the mechanisms that fold a genomic region can influence molecular processes occurring in that space, which may include recombination, repair, and transcriptional programming.


Asunto(s)
Cromatina , Receptores de Antígenos , Cromatina/genética , Endonucleasas , Mutación , Regiones Promotoras Genéticas/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética
16.
bioRxiv ; 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38077016

RESUMEN

Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.

17.
Blood Adv ; 7(7): 1077-1091, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36322817

RESUMEN

Noncanonical exon usage plays many important roles in cellular phenotypes, but its contribution to human B-cell development remains sketchily understood. To fill this gap, we collected various B-cell fractions from bone marrow (BM) and tonsil donors, performed RNA sequencing, and examined transcript variants. We identified 150 genes that harbor local splicing variations in all pairwise comparisons. One of them encodes FBXW7, an E3 ubiquitin ligase implicated as a driver in several blood cancers. Surprisingly, we discovered that in normal human pro-B cells, the predominant transcript used an alternative first exon to produce the poorly characterized FBXW7ß isoform, previously thought to be restricted to neural tissues. The FBXW7ß transcript was also abundant in cell lines and primary samples of pediatric B-cell acute lymphoblastic leukemia (B-ALL), which originates in the BM. When overexpressed in a heterologous cell system, this transcript yielded the expected protein product, as judged by anti-FLAG immunoblotting and mass spectrometry. Furthermore, in REH B-ALL cells, FBXW7ß mRNA was the only FBXW7 isoform enriched in the polyribosome fraction. To shed light on possible functions of FBXW7ß, we used gain- and loss-of-function approaches and identified an FBXW7-dependent inflammatory gene signature, apparent in a subset of B-ALL with high FBXW7ß expression. This signature contained several members of the tumor necrosis factor superfamily, including those comprising the HLA Class III cluster (LTB, LST1, NCR3, LTA, and NFKBIL1). Our findings suggest that FBXW7ß expression drives proinflammatory responses, which could contribute to normal B-cell development, leukemogenesis, and responses to anticancer therapies.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Células Precursoras de Linfocitos B , Niño , Humanos , Línea Celular , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Activación Transcripcional
18.
bioRxiv ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37066277

RESUMEN

Intestinal epithelial transit amplifying cells are essential stem progenitors required for intestinal homeostasis, but their rapid proliferation renders them vulnerable to DNA damage from radiation and chemotherapy. Despite their critical roles in intestinal homeostasis and disease, few studies have described genes that are essential to transit amplifying cell function. We report that the RNA methyltransferase, METTL3, is required for survival of transit amplifying cells in the murine small intestine. Transit amplifying cell death after METTL3 deletion was associated with crypt and villus atrophy, loss of absorptive enterocytes, and uniform wasting and death in METTL3-depleted mice. Ribosome profiling and sequencing of methylated RNAs in enteroids and in vivo demonstrated decreased translation of hundreds of unique methylated transcripts after METTL3 deletion, particularly transcripts involved in growth factor signal transduction such as Kras. Further investigation confirmed a novel relationship between METTL3 and Kras methylation and protein levels in vivo. Our study identifies METTL3 as an essential factor supporting the homeostasis of small intestinal tissue via direct maintenance of transit amplifying cell survival. We highlight the crucial role of RNA modifications in regulating growth factor signaling in the intestine, with important implications for both homeostatic tissue renewal and epithelial regeneration.

19.
JCI Insight ; 8(23)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37883185

RESUMEN

Intestinal epithelial transit-amplifying cells are essential stem progenitors required for intestinal homeostasis, but their rapid proliferation renders them vulnerable to DNA damage from radiation and chemotherapy. Despite these cells' critical roles in intestinal homeostasis and disease, few studies have described genes that are essential to transit-amplifying cell function. We report that RNA methyltransferase-like 3 (METTL3) is required for survival of transit-amplifying cells in the murine small intestine. Transit-amplifying cell death after METTL3 deletion was associated with crypt and villus atrophy, loss of absorptive enterocytes, and uniform wasting and death in METTL3-depleted mice. Sequencing of polysome-bound and methylated RNAs in enteroids and in vivo demonstrated decreased translation of hundreds of methylated transcripts after METTL3 deletion, particularly transcripts involved in growth factor signal transduction such as Kras. Further investigation verified a relationship between METTL3 and Kras methylation and protein levels in vivo. Our study identifies METTL3 as an essential factor supporting the homeostasis of small intestinal tissue via direct maintenance of transit-amplifying cell survival. We highlight the crucial role of RNA modifications in regulating growth factor signaling in the intestine with important implications for both homeostatic tissue renewal and epithelial regeneration.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Células Madre , Animales , Ratones , Proliferación Celular/fisiología , Supervivencia Celular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Intestinos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN/metabolismo , Transducción de Señal/fisiología , Células Madre/metabolismo
20.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645778

RESUMEN

Aberrant skipping of coding exons in CD19 and CD22 compromises responses to immunotherapy for B-cell malignancies. Here, we show that the MS4A1 gene encoding human CD20 also produces several mRNA isoforms with distinct 5' untranslated regions (5'-UTR). Four variants (V1-4) were detectable by RNA-seq in distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant by far. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform was found to contain upstream open reading frames (uORFs) and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching Morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, while V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed CAR T cells were able to kill both V3- and V1-expressing cells, but the bispecific T cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on four post-mosunetuzumab follicular lymphoma relapses and discovered that in two of them downregulation of CD20 was accompanied by the V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies. Key Points: In normal & malignant human B cells, CD20 mRNA is alternatively spliced into four 5'-UTR isoforms, some of which are translation-deficient.The balance between translation-deficient and -competent isoforms modulates CD20 protein levels & responses to CD20-directed immunotherapies. Explanation of Novelty: We discovered that in normal and malignant B-cells, CD20 mRNA is alternatively spliced to generate four distinct 5'-UTRs, including the longer translation-deficient V1 variant. Cells predominantly expressing V1 were still sensitive to CD20-targeting chimeric antigen receptor T-cells. However, they were resistant to the bispecific anti-CD3/CD20 antibody mosunetuzumab, and the shift to V1 were observed in CD20-negative post-mosunetuzumab relapses of follicular lymphoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA