Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(2): 373-391.e27, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585079

RESUMEN

Cells regulate gene expression in response to salient external stimuli. In neurons, depolarization leads to the expression of inducible transcription factors (ITFs) that direct subsequent gene regulation. Depolarization encodes both a neuron's action potential (AP) output and synaptic inputs, via excitatory postsynaptic potentials (EPSPs). However, it is unclear if distinct types of electrical activity can be transformed by an ITF into distinct modes of genomic regulation. Here, we show that APs and EPSPs in mouse hippocampal neurons trigger two spatially segregated and molecularly distinct induction mechanisms that lead to the expression of the ITF NPAS4. These two pathways culminate in the formation of stimulus-specific NPAS4 heterodimers that exhibit distinct DNA binding patterns. Thus, NPAS4 differentially communicates increases in a neuron's spiking output and synaptic inputs to the nucleus, enabling gene regulation to be tailored to the type of depolarizing activity along the somato-dendritic axis of a neuron.


Asunto(s)
Potenciales de Acción , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Potenciales Postsinápticos Excitadores , Neuronas/metabolismo , Activación Transcripcional , Regiones no Traducidas 3' , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Multimerización de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
3.
Cell ; 174(6): 1522-1536.e22, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30146161

RESUMEN

How transcription affects genome 3D organization is not well understood. We found that during influenza A (IAV) infection, rampant transcription rapidly reorganizes host cell chromatin interactions. These changes occur at the ends of highly transcribed genes, where global inhibition of transcription termination by IAV NS1 protein causes readthrough transcription for hundreds of kilobases. In these readthrough regions, elongating RNA polymerase II disrupts chromatin interactions by inducing cohesin displacement from CTCF sites, leading to locus decompaction. Readthrough transcription into heterochromatin regions switches them from the inert (B) to the permissive (A) chromatin compartment and enables transcription factor binding. Data from non-viral transcription stimuli show that transcription similarly affects cohesin-mediated chromatin contacts within gene bodies. Conversely, inhibition of transcription elongation allows cohesin to accumulate at previously transcribed intragenic CTCF sites and to mediate chromatin looping and compaction. Our data indicate that transcription elongation by RNA polymerase II remodels genome 3D architecture.


Asunto(s)
Cromatina/metabolismo , Genoma Humano , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Sitios de Unión , Factor de Unión a CCCTC/química , Factor de Unión a CCCTC/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cromatina/química , Proteínas Cromosómicas no Histona/metabolismo , Flavonoides/farmacología , Humanos , Interferón beta/farmacología , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/virología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Piperidinas/farmacología , Unión Proteica , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/metabolismo , Transcripción Genética/efectos de los fármacos , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Cohesinas
4.
J Biol Chem ; 300(8): 107454, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38852885

RESUMEN

Sequence-specific cytidine to uridine (C-to-U) and adenosine to inosine editing tools can alter RNA and DNA sequences and utilize a hydrolytic deamination mechanism requiring an active site zinc ion and a glutamate residue. In plant organelles, DYW-PG domain containing enzymes catalyze C-to-U edits through the canonical deamination mechanism. Proteins developed from consensus sequences of the related DYW-KP domain family catalyze what initially appeared to be uridine to cytidine (U-to-C) edits leading to this investigation into the U-to-C editing mechanism. The synthetic DYW-KP enzyme KP6 was found sufficient for C-to-U editing activity stimulated by the addition of carboxylic acids in vitro. Despite addition of putative amine/amide donors, U-to-C editing by KP6 could not be observed in vitro. C-to-U editing was found not to be concomitant with U-to-C editing, discounting a pyrimidine transaminase mechanism. RNAs containing base modifications were highly enriched in interphase fractions consistent with covalent crosslinks to KP6, KP2, and KP3 proteins. Mass spectrometry of purified KP2 and KP6 proteins revealed secondary peaks with mass shifts of 319 Da. A U-to-C crosslinking mechanism was projected to explain the link between crosslinking, RNA base changes, and the ∼319 Da mass. In this model, an enzymatic lysine attacks C4 of uridine to form a Schiff base RNA-protein conjugate. Sequenced RT-PCR products from the fern Ceratopteris richardii indicate U-to-C base edits do not preserve proteinaceous crosslinks in planta. Hydrolysis of a protonated Schiff base conjugate releasing cytidine is hypothesized to explain the completed pathway in plants.

5.
Plant J ; 117(5): 1528-1542, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38088241

RESUMEN

C-to-U RNA editing in angiosperm chloroplasts requires a large suite of proteins bound together in the editosome. The editosome is comprised of PPR proteins, RIP/MORFs, OZ proteins, and ORRM proteins that physically interact in high molecular weight complexes. The specific functions of non-PPR editing factors in the editosome are unclear, however, specific subsets of editing sites are affected by absence of non-PPR editing factors. Unlike the PPR components of editosomes that have predictable nucleotide specificities, domains present in non-PPR editing factors make RNA associations difficult to predict. In this study, chloroplast extracts were isolated from juvenile maize seedlings. RNAs were immunoprecipitated using polyclonal antibodies targeting non-PPR editing factors RIP9, OZ1, and ORRM1. RNA libraries from duplicate experiments were compared. RIP9 was associated with most of the non-ribosomal RNA content of chloroplasts, consistent with a general binding function to PPR L-motifs and tethering of large ribonucleoprotein complexes. The breadth of RNA associations was greater than predicted and include mRNAs without predicted editing sites, tRNA sequences, and introns. OZ1 and ORRM1 were associated with a highly similar pool of RNAs that have a bias toward lower translational efficiency values in mature chloroplasts. Lower translational efficiency was also associated with the pool of edited RNAs compared to RNAs without editing sites. The unexpected breadth of interactions by non-PPR editing factors suggests the editosome is large, diverse, and associated with RNAs with lower relative translational efficiency in mature chloroplasts.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Mensajero/metabolismo , Proteínas de Plantas/química
6.
Nature ; 567(7746): 109-112, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30787439

RESUMEN

Zoonotic influenza A viruses of avian origin can cause severe disease in individuals, or even global pandemics, and thus pose a threat to human populations. Waterfowl and shorebirds are believed to be the reservoir for all influenza A viruses, but this has recently been challenged by the identification of novel influenza A viruses in bats1,2. The major bat influenza A virus envelope glycoprotein, haemagglutinin, does not bind the canonical influenza A virus receptor, sialic acid or any other glycan1,3,4, despite its high sequence and structural homology with conventional haemagglutinins. This functionally uncharacterized plasticity of the bat influenza A virus haemagglutinin means the tropism and zoonotic potential of these viruses has not been fully determined. Here we show, using transcriptomic profiling of susceptible versus non-susceptible cells in combination with genome-wide CRISPR-Cas9 screening, that the major histocompatibility complex class II (MHC-II) human leukocyte antigen DR isotype (HLA-DR) is an essential entry determinant for bat influenza A viruses. Genetic ablation of the HLA-DR α-chain rendered cells resistant to infection by bat influenza A virus, whereas ectopic expression of the HLA-DR complex in non-susceptible cells conferred susceptibility. Expression of MHC-II from different bat species, pigs, mice or chickens also conferred susceptibility to infection. Notably, the infection of mice with bat influenza A virus resulted in robust virus replication in the upper respiratory tract, whereas mice deficient for MHC-II were resistant. Collectively, our data identify MHC-II as a crucial entry mediator for bat influenza A viruses in multiple species, which permits a broad vertebrate tropism.


Asunto(s)
Quirópteros/virología , Antígenos de Histocompatibilidad Clase II/metabolismo , Especificidad del Huésped , Virus de la Influenza A/inmunología , Virus de la Influenza A/fisiología , Zoonosis/inmunología , Zoonosis/virología , Animales , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Pollos/genética , Pollos/inmunología , Quirópteros/genética , Quirópteros/inmunología , Quirópteros/metabolismo , Femenino , Perfilación de la Expresión Génica , Antígenos HLA-DR/genética , Antígenos HLA-DR/inmunología , Antígenos HLA-DR/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Especificidad del Huésped/genética , Especificidad del Huésped/inmunología , Humanos , Masculino , Ratones , Ratones Noqueados , Sistema Respiratorio/virología , Porcinos/genética , Porcinos/inmunología , Tropismo Viral/genética , Tropismo Viral/inmunología , Replicación Viral , Zoonosis/genética , Zoonosis/metabolismo
7.
Brain ; 146(1): 42-49, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36343661

RESUMEN

Mitochondria are a culprit in the onset of Parkinson's disease, but their role during disease progression is unclear. Here we used Cox proportional hazards models to exam the effect of variation in the mitochondrial genome on longitudinal cognitive and motor progression over time in 4064 patients with Parkinson's disease. Mitochondrial macro-haplogroup was associated with reduced risk of cognitive disease progression in the discovery and replication population. In the combined analysis, patients with the super macro-haplogroup J, T, U# had a 41% lower risk of cognitive progression with P = 2.42 × 10-6 compared to those with macro-haplogroup H. Exploratory analysis indicated that the common mitochondrial DNA variant, m.2706A>G, was associated with slower cognitive decline with a hazard ratio of 0.68 (95% confidence interval 0.56-0.81) and P = 2.46 × 10-5. Mitochondrial haplogroups were not appreciably linked to motor progression. This initial genetic survival study of the mitochondrial genome suggests that mitochondrial haplogroups may be associated with the pace of cognitive progression in Parkinson's disease over time.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/epidemiología , Haplotipos , Mitocondrias/genética , ADN Mitocondrial/genética , Progresión de la Enfermedad , Cognición
8.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301870

RESUMEN

Genome-wide association studies have identified the chromosome 10q26 (Chr10) locus, which contains the age-related maculopathy susceptibility 2 (ARMS2) and high temperature requirement A serine peptidase 1 (HTRA1) genes, as the strongest genetic risk factor for age-related macular degeneration (AMD) [L.G. Fritsche et al., Annu. Rev. Genomics Hum. Genet. 15, 151-171, (2014)]. To date, it has been difficult to assign causality to any specific single nucleotide polymorphism (SNP), haplotype, or gene within this region because of high linkage disequilibrium among the disease-associated variants [J. Jakobsdottir et al. Am. J. Hum. Genet. 77, 389-407 (2005); A. Rivera et al. Hum. Mol. Genet. 14, 3227-3236 (2005)]. Here, we show that HTRA1 messenger RNA (mRNA) is reduced in retinal pigment epithelium (RPE) but not in neural retina or choroid tissues derived from human donors with homozygous risk at the 10q26 locus. This tissue-specific decrease is mediated by the presence of a noncoding, cis-regulatory element overlapping the ARMS2 intron, which contains a potential Lhx2 transcription factor binding site that is disrupted by risk variant rs36212733. HtrA1 protein increases with age in the RPE-Bruch's membrane (BM) interface in Chr10 nonrisk donors but fails to increase in donors with homozygous risk at the 10q26 locus. We propose that HtrA1, an extracellular chaperone and serine protease, functions to maintain the optimal integrity of the RPE-BM interface during the aging process and that reduced expression of HTRA1 mRNA and protein in Chr10 risk donors impairs this protective function, leading to increased risk of AMD pathogenesis. HtrA1 augmentation, not inhibition, in high-risk patients should be considered as a potential therapy for AMD.


Asunto(s)
Predisposición Genética a la Enfermedad , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Degeneración Macular/genética , Epitelio Pigmentado de la Retina/metabolismo , Coroides/metabolismo , Variación Genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Humanos , Desequilibrio de Ligamiento , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retina/metabolismo
9.
J Neurosci Res ; 101(2): 263-277, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36353842

RESUMEN

Substantia nigra (SN) hyperechogenicity, viewed with transcranial ultrasound, is a risk marker for Parkinson's disease. We hypothesized that SN hyperechogenicity in healthy adults aged 50-70 years is associated with reduced short-interval intracortical inhibition in primary motor cortex, and that the reduced intracortical inhibition is associated with neurochemical markers of activity in the pre-supplementary motor area (pre-SMA). Short-interval intracortical inhibition and intracortical facilitation in primary motor cortex was assessed with paired-pulse transcranial magnetic stimulation in 23 healthy adults with normal (n = 14; 61 ± 7 yrs) or abnormally enlarged (hyperechogenic; n = 9; 60 ± 6 yrs) area of SN echogenicity. Thirteen of these participants (7 SN- and 6 SN+) also underwent brain magnetic resonance spectroscopy to investigate pre-SMA neurochemistry. There was no relationship between area of SN echogenicity and short-interval intracortical inhibition in the ipsilateral primary motor cortex. There was a significant positive relationship, however, between area of echogenicity in the right SN and the magnitude of intracortical facilitation in the right (ipsilateral) primary motor cortex (p = .005; multivariate regression), evidenced by the amplitude of the conditioned motor evoked potential (MEP) at the 10-12 ms interstimulus interval. This relationship was not present on the left side. Pre-SMA glutamate did not predict primary motor cortex inhibition or facilitation. The results suggest that SN hyperechogenicity in healthy older adults may be associated with changes in excitability of motor cortical circuitry. The results advance understanding of brain changes in healthy older adults at risk of Parkinson's disease.


Asunto(s)
Excitabilidad Cortical , Corteza Motora , Enfermedad de Parkinson , Humanos , Anciano , Corteza Motora/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen
10.
Mov Disord ; 38(10): 1962-1967, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37539721

RESUMEN

BACKGROUND: Magnetic resonance guided focused ultrasound (MRgFUS) is United States Food and Drug Administration approved for the treatment of tremor-dominant Parkinson's disease (TdPD), but only limited studies have been described in practice. OBJECTIVES: To report the largest prospective experience of unilateral MRgFUS thalamotomy for the treatment of medically refractory TdPD. METHODS: Clinical outcomes of 48 patients with medically refractory TdPD who underwent MRgFUS thalamotomy were evaluated. Tremor outcomes were assessed using the Fahn-Tolosa-Marin scale and adverse effects were categorized using a structured questionnaire and clinical exam at 1 month (n = 44), 3 months (n = 34), 1 year (n = 22), 2 years (n = 5), and 3 years (n = 2). Patients underwent magnetic resonance imaging <24 hours post-procedure. RESULTS: Significant tremor control persisted at all follow-ups (P < 0.001). All side effects were mild. At 3 months, these included gait imbalance (38.24%), sensory deficits (26.47%), motor weakness (17.65%), dysgeusia (5.88%), and dysarthria (5.88%), with some persisting at 1 year. CONCLUSIONS: MRgFUS thalamotomy is an effective treatment for sustained tremor control in patients with TdPD. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Temblor Esencial , Enfermedad de Parkinson , Humanos , Temblor/etiología , Temblor/cirugía , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/cirugía , Estudios Prospectivos , Tálamo/cirugía , Resultado del Tratamiento , Imagen por Resonancia Magnética/métodos
11.
Nucleic Acids Res ; 49(6): 3490-3506, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33660772

RESUMEN

The RanBP2 zinc finger (Znf) domain is a prevalent domain that mediates protein interaction and RNA binding. In Arabidopsis, a clade of four RanBP2 Znf-containing proteins, named the Organelle Zinc (OZ) finger family, are known or predicted to be targeted to either the mitochondria or the plastids. Previously we reported that OZ1 is absolutely required for the editing of 14 sites in chloroplasts. We now have investigated the function of OZ2, whose null mutation is embryo lethal. We rescued the null mutant by expressing wild-type OZ2 under the control of the seed-specific ABSCISIC ACID-INSENSITIVE3 (ABI3) promoter. Rescued mutant plants exhibit severely delayed development and a distinctive morphological phenotype. Genetic and biochemical analyses demonstrated that OZ2 promotes the splicing of transcripts of several mitochondrial nad genes and rps3. The splicing defect of nad transcripts results in the destabilization of complex I, which in turn affects the respiratory ability of oz2 mutants, turning on the alternative respiratory pathway, and impacting the plant development. Protein-protein interaction assays demonstrated binding of OZ2 to several known mitochondrial splicing factors targeting the same splicing events. These findings extend the known functional repertoire of the RanBP2 zinc finger domain in nuclear splicing to include plant organelle splicing.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Complejo I de Transporte de Electrón/genética , Mitocondrias/genética , Proteínas Mitocondriales/fisiología , Empalme del ARN , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Genes Letales , Intrones , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Regiones Promotoras Genéticas , Factores de Empalme de ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Zinc/metabolismo
12.
Adv Exp Med Biol ; 1415: 263-267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440043

RESUMEN

The formation of higher-order protein assemblies (commonly called protein aggregates) has long been associated with disease states, particularly in neurodegenerative disorders. Within the eye, protein aggregation has also been implicated in various retinal degenerative diseases ranging from retinitis pigmentosa (RP) to Malattia Leventinese/Doyne Honeycomb Retinal Dystrophy (ML/DHRD) to age-related macular degeneration (AMD). Yet, many essential cellular processes including transcription, translation, and the formation of non-membrane bound organelles require the formation of functional, non-pathologic protein aggregates to maintain cellular homeostasis. Thus, functional protein aggregates, also called condensates, likely play essential roles in maintaining normal retina function. However, currently, there is a critical gap in our knowledge: What proteins form higher-order assemblies under normal conditions within the retina and what function do these structures serve? Herein, we present data suggesting that protein aggregation is identifiable in multiple retinal layers of normal, healthy murine retina, and briefly discuss the potential contributions of aggregated proteins to normal retinal function, with a focus on the photoreceptor inner and outer segment.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Humanos , Ratones , Animales , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Agregado de Proteínas , Degeneración Macular/genética , Degeneración Macular/patología , Retina/patología , Proteínas Amiloidogénicas
13.
Anal Chem ; 94(23): 8309-8316, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35657338

RESUMEN

The pharmaceutical industry is increasingly faced with challenging separations of complex crude reaction mixtures at the microscale that require the adoption of new platforms for rapid target isolation, impurity determination, and quantitation. In this study, we describe an online microscale one- or two-dimensional liquid chromatography (1D/2D-LC) system with heart-cutting and multi (triple) detector triggering in either dimension to address this need. The advantages of charged aerosol detection (CAD) are discussed for the direct quantitation of limited quantity samples, without utilizing a second analytical instrument or gradient compensation pump. In addition to the significant time and cost savings, there is no minimum recovery requirement that exists when compared to gravimetric methods for accurate microscale quantitation. This platform has been successfully used to purify 0.5-5.0 mg scale reactions in 96- or 384-well reaction plates with a gradient time of 4 min per sample. Separations performed in both dimensions are complete in less than 12 min, including trapping and column equilibration time. The isolated arrays of small-quantity investigational compounds at a high purity enable rapid exploration of chemical reaction parameters and synthetic route scouting for biological target validation.


Asunto(s)
Cromatografía Líquida de Alta Presión , Aerosoles/química , Cromatografía Líquida de Alta Presión/métodos
14.
Cerebellum ; 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36190676

RESUMEN

Multiple system atrophy (MSA) is a fatal neurodegenerative disease of unknown etiology characterized by widespread aggregation of the protein alpha-synuclein in neurons and glia. Its orphan status, biological relationship to Parkinson's disease (PD), and rapid progression have sparked interest in drug development. One significant obstacle to therapeutics is disease heterogeneity. Here, we share our process of developing a clinical trial-ready cohort of MSA patients (69 patients in 2 years) within an outpatient clinical setting, and recruiting 20 of these patients into a longitudinal "n-of-few" clinical trial paradigm. First, we deeply phenotype our patients with clinical scales (UMSARS, BARS, MoCA, NMSS, and UPSIT) and tests designed to establish early differential diagnosis (including volumetric MRI, FDG-PET, MIBG scan, polysomnography, genetic testing, autonomic function tests, skin biopsy) or disease activity (PBR06-TSPO). Second, we longitudinally collect biospecimens (blood, CSF, stool) and clinical, biometric, and imaging data to generate antecedent disease-progression scores. Third, in our Mass General Brigham SCiN study (stem cells in neurodegeneration), we generate induced pluripotent stem cell (iPSC) models from our patients, matched to biospecimens, including postmortem brain. We present 38 iPSC lines derived from MSA patients and relevant disease controls (spinocerebellar ataxia and PD, including alpha-synuclein triplication cases), 22 matched to whole-genome sequenced postmortem brain. iPSC models may facilitate matching patients to appropriate therapies, particularly in heterogeneous diseases for which patient-specific biology may elude animal models. We anticipate that deeply phenotyped and genotyped patient cohorts matched to cellular models will increase the likelihood of success in clinical trials for MSA.

15.
J Biol Chem ; 295(11): 3497-3505, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31996373

RESUMEN

Pentatricopeptide repeat (PPR) proteins with C-terminal DYW domains are present in organisms that undergo C-to-U editing of organelle RNA transcripts. PPR domains act as specificity factors through electrostatic interactions between a pair of polar residues and the nitrogenous bases of an RNA target. DYW-deaminase domains act as the editing enzyme. Two moss (Physcomitrella patens) PPR proteins containing DYW-deaminase domains, PPR65 and PPR56, can convert Cs to Us in cognate, exogenous RNA targets co-expressed in Escherichia coli We show here that purified, recombinant PPR65 exhibits robust editase activity on synthetic RNAs containing cognate, mitochondrial PpccmFC sequences in vitro, indicating that a PPR protein with a DYW domain is solely sufficient for catalyzing C-to-U RNA editing in vitro Monomeric fractions possessed the highest conversion efficiency, and oligomeric fractions had reduced activity. Inductively coupled plasma (ICP)-MS analysis indicated a stoichiometry of two zinc ions per highly active PPR65 monomer. Editing activity was sensitive to addition of zinc acetate or the zinc chelators 1,10-o-phenanthroline and EDTA. Addition of ATP or nonhydrolyzable nucleotide analogs stimulated PPR65-catalyzed RNA-editing activity on PpccmFC substrates, indicating potential allosteric regulation of PPR65 by ATP. Unlike for bacterial cytidine deaminase, addition of two putative transition-state analogs, zebularine and tetrahydrouridine, failed to disrupt RNA-editing activity. RNA oligonucleotides with a single incorporated zebularine also did not disrupt editing in vitro, suggesting that PPR65 cannot bind modified bases due to differences in the structure of the active site compared with other zinc-dependent nucleotide deaminases.


Asunto(s)
Biocatálisis , Bryopsida/metabolismo , Citosina/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Edición de ARN/genética , Secuencias Repetitivas de Aminoácido , Uracilo/metabolismo , Adenosina Trifosfato/farmacología , Citidina/análogos & derivados , Citidina/farmacología , Iones , Magnesio/farmacología , Mutación/genética , Extractos Vegetales/química , Proteínas de Plantas/aislamiento & purificación , Agregado de Proteínas , Dominios Proteicos , Multimerización de Proteína , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Temperatura , Tetrahidrouridina , Zea mays/química , Zinc/metabolismo
16.
Chembiochem ; 22(9): 1609-1620, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33480159

RESUMEN

Regulator of G protein signaling (RGS) proteins have attracted attention as a result of their primary role in directing the specificity as well as the temporal and spatial aspects of G protein-coupled receptor signaling. In addition, alterations in RGS protein expression have been observed in a number of disease states, including certain cancers. In this area, RGS17 is of particular interest. It has been demonstrated that, while RGS17 is expressed primarily in the central nervous system, it has been found to be inappropriately expressed in lung, prostate, breast, cervical, and hepatocellular carcinomas. Overexpression of RGS17 leads to dysfunction in inhibitory G protein signaling and an overproduction of the intracellular second messenger cAMP, which in turn alters the transcription patterns of proteins known to promote various cancer types. Suppressing RGS17 expression with RNA interference (RNAi) has been found to decrease tumorigenesis and sufficiently prevents cancer cell migration, leading to the hypothesis that pharmacological blocking of RGS17 function could be useful in anticancer therapies. We have identified small-molecule fragments capable of binding the RGS homology (RH) domain of RGS17 by using a nuclear magnetic resonance fragment-based screening approach. By chemical shift mapping of the two-dimensional 15 N,1 H heteronuclear single quantum coherence (HSQC) spectra of the backbone-assigned 15 N-labeled RGS17-RH, we determined the fragment binding sites to be distant from the Gα interface. Thus, our study identifies a putative fragment binding site on RGS17 that was previously unknown.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Proteínas RGS/metabolismo , Sitios de Unión , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Estabilidad Proteica , Proteínas RGS/antagonistas & inhibidores , Proteínas RGS/genética , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo
17.
Prev Chronic Dis ; 18: E46, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33988498

RESUMEN

PURPOSE AND OBJECTIVES: Effective community-based programs to manage arthritis exist, but many adults with arthritis are unaware that these programs are available in their communities. An electronic health record (EHR) referral intervention was designed to strengthen health care and community-based partnerships and increase participation in these arthritis programs. The intervention was developed in response to a national effort that aimed to enhance the health, wellness, and quality of life for people with arthritis by increasing the awareness and availability of, and participation in arthritis-appropriate evidence-based interventions. INTERVENTION APPROACH: The National Recreation and Park Association recruited 4 park and recreation agencies and their health care partners to implement an EHR-based retrospective and point-of-care referral intervention. Eligible for referral were adults aged 45 or older with an arthritis condition who were seen by a physician within the past 18 months, and were living within the park and recreation service area. After health care organizations identified eligible adults, they either mailed communication packages describing the availability and benefits of the intervention and conducted phone calls to encourage arthritis-appropriate intervention participation or counseled and referred patients during an office visit. EVALUATION METHODS: The pilot was assessed by using semi-structured interviews with key intervention staff members and the Consolidated Framework for Implementation Research. RESULTS: Our approach resulted in referrals for 3,660 people, 1,063 (29%) of whom participated in an intervention. Analysis of key informant interviews also highlighted the specific contextual factors, facilitators, and barriers that influenced the adaptation and overall implementation of the referral intervention. IMPLICATIONS FOR PUBLIC HEALTH: Our pilot demonstrates that successful coordination between health care organizations and community-based organizations can promote awareness of and participation in community-based programs. An understanding of the contextual factors and lessons learned can be used to inform processes that can lead to more effective and sustainable health care and community-based partnerships.


Asunto(s)
Artritis/terapia , Registros Electrónicos de Salud , Derivación y Consulta/estadística & datos numéricos , Adulto , Medicina Basada en la Evidencia , Humanos , Calidad de Vida , Estudios Retrospectivos
18.
BMC Med Inform Decis Mak ; 21(1): 8, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407427

RESUMEN

BACKGROUND: The patient ranking process for donor lung allocation in the United States is carried out by a classification-based, computerized algorithm, known as the match system. Experts have suggested that a continuous, points-based allocation framework would better serve waiting list candidates by removing hard boundaries and increasing transparency into the relative importance of factors used to prioritize candidates. We applied discrete choice modeling to match run data to determine the feasibility of approximating current lung allocation policy by one or more composite scores. Our study aimed to demystify the points-based approach to organ allocation policy; quantify the relative importance of factors used in current policy; and provide a viable policy option that adapts the current, classification-based system to the continuous allocation framework. METHODS: Rank ordered logistic regression models were estimated using 6466 match runs for 5913 adult donors and 534 match runs for 488 pediatric donors from 2018. Four primary attributes are used to rank candidates and were included in the models: (1) medical priority, (2) candidate age, (3) candidate's transplant center proximity to the donor hospital, and (4) blood type compatibility with the donor. RESULTS: Two composite scores were developed, one for adult and one for pediatric donor allocation. Candidate rankings based on the composite scores were highly correlated with current policy rankings (Kendall's Tau ~ 0.80, Spearman correlation > 90%), indicating both scores strongly reflect current policy. In both models, candidates are ranked higher if they have higher medical priority, are registered at a transplant center closer to the donor hospital, or have an identical blood type to the donor. Proximity was the most important attribute. Under a points-based scoring system, candidates in further away zones are sometimes ranked higher than more proximal candidates compared to current policy. CONCLUSIONS: Revealed preference analysis of lung allocation match runs produced composite scores that capture the essence of current policy while removing rigid boundaries of the current classification-based system. A carefully crafted, continuous version of lung allocation policy has the potential to make better use of the limited supply of donor lungs in a manner consistent with the priorities of the transplant community.


Asunto(s)
Obtención de Tejidos y Órganos , Adulto , Niño , Humanos , Pulmón , Políticas , Donantes de Tejidos , Estados Unidos , Listas de Espera
19.
Gut ; 69(10): 1750-1761, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31980446

RESUMEN

The myeloid differentiation factor Schlafen4 (Slfn4) marks a subset of myeloid-derived suppressor cells (MDSCs) in the stomach during Helicobacter-induced spasmolytic polypeptide-expressing metaplasia (SPEM). OBJECTIVE: To identify the gene products expressed by Slfn4+-MDSCs and to determine how they promote SPEM. DESIGN: We performed transcriptome analyses for both coding genes (mRNA by RNA-Seq) and non-coding genes (microRNAs using NanoString nCounter) using flow-sorted SLFN4+ and SLFN4- cells from Helicobacter-infected mice exhibiting metaplasia at 6 months postinfection. Thioglycollate-elicited myeloid cells from the peritoneum were cultured and treated with IFNα to induce the T cell suppressor phenotype, expression of MIR130b and SLFN4. MIR130b expression in human gastric tissue including gastric cancer and patient sera was determined by qPCR and in situ hybridisation. Knockdown of MiR130b in vivo in Helicobacter-infected mice was performed using Invivofectamine. Organoids from primary gastric cancers were used to generate xenografts. ChIP assay and Western blots were performed to demonstrate NFκb p65 activation by MIR130b. RESULTS: MicroRNA analysis identified an increase in MiR130b in gastric SLFN4+ cells. Moreover, MIR130b colocalised with SLFN12L, a human homologue of SLFN4, in gastric cancers. MiR130b was required for the T-cell suppressor phenotype exhibited by the SLFN4+ cells and promoted Helicobacter-induced metaplasia. Treating gastric organoids with the MIR130b mimic induced epithelial cell proliferation and promoted xenograft tumour growth. CONCLUSION: Taken together, MiR130b plays an essential role in MDSC function and supports metaplastic transformation.


Asunto(s)
Proteínas Portadoras/metabolismo , Infecciones por Helicobacter , MicroARNs/metabolismo , Neoplasias Gástricas , Animales , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/patología , Helicobacter pylori/fisiología , Interferón-alfa/metabolismo , Ratones , Ratones Noqueados , Células Supresoras de Origen Mieloide/metabolismo , Lesiones Precancerosas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología
20.
J Biol Chem ; 294(20): 8148-8160, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30940727

RESUMEN

Regulator of G protein signaling (RGS) proteins are negative regulators of G protein-coupled receptor (GPCR) signaling through their ability to act as GTPase-activating proteins (GAPs) for activated Gα subunits. Members of the RZ subfamily of RGS proteins bind to activated Gαo, Gαz, and Gαi1-3 proteins in the nervous system and thereby inhibit downstream pathways, including those involved in Ca2+-dependent signaling. In contrast to other RGS proteins, little is known about RZ subfamily structure and regulation. Herein, we present the 1.5-Å crystal structure of RGS17, the most complete and highest-resolution structure of an RZ subfamily member to date. RGS17 cocrystallized with Ca2+ bound to conserved positions on the predicted Gα-binding surface of the protein. Using NMR chemical shift perturbations, we confirmed that Ca2+ binds in solution to the same site. Furthermore, RGS17 had greater than 55-fold higher affinity for Ca2+ than for Mg2+ Finally, we found that Ca2+ promotes interactions between RGS17 and activated Gα and decreases the Km for GTP hydrolysis, potentially by altering the binding mechanism between these proteins. Taken together, these findings suggest that Ca2+ positively regulates RGS17, which may represent a general mechanism by which increased Ca2+ concentration promotes the GAP activity of the RZ subfamily, leading to RZ-mediated inhibition of Ca2+ signaling.


Asunto(s)
Señalización del Calcio , Calcio/química , Proteínas RGS/química , Calcio/metabolismo , Cristalografía por Rayos X , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Magnesio/química , Magnesio/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA