Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 192(8): 533, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32691241

RESUMEN

The Ganga River is facing mounting environmental pressures due to rapidly increasing human population, urbanisation, industrialisation and agricultural intensification, resulting in worsening water quality, ecological status and impacts on human health. A combined inorganic chemical, algal and bacterial survey (using flow cytometry and 16S rRNA gene sequencing) along the upper and middle Ganga (from the Himalayan foothills to Kanpur) was conducted under pre-monsoon conditions. The upper Ganga had total phosphorus (TP) and total dissolved nitrogen concentrations of less than 100 µg l-1 and 1.0 mg l-1, but water quality declined at Kannauj (TP = 420 µg l-1) due to major nutrient pollution inputs from human-impacted tributaries (principally the Ramganga and Kali Rivers). The phosphorus and nitrogen loads in these two tributaries and the Yamuna were dominated by soluble reactive phosphorus and ammonium, with high bacterial loads and large numbers of taxa indicative of pathogen and faecal organisms, strongly suggesting sewage pollution sources. The high nutrient concentrations, low flows, warm water and high solar radiation resulted in major algal blooms in the Kali and Ramganga, which greatly impacted the Ganga. Microbial communities were dominated by members of the Phylum Proteobacteria, Bacteriodetes and Cyanobacteria, with communities showing a clear upstream to downstream transition in community composition. To improve the water quality of the middle Ganga, and decrease ecological and human health risks, future mitigation must reduce urban wastewater inputs in the urbanised tributaries of the Ramganga, Kali and Yamuna Rivers.


Asunto(s)
Contaminantes Químicos del Agua/análisis , Calidad del Agua , Monitoreo del Ambiente , Eutrofización , Humanos , India , Nitrógeno/análisis , Nutrientes , Fósforo/análisis , ARN Ribosómico 16S
2.
Int J Phytoremediation ; 17(9): 835-40, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26083824

RESUMEN

Phytoremediation is an emerging technology that uses green plants (living machines) for removal of contaminants of concern (COC). These plant species have the potential to remove the COC, thereby restoring the original condition of soil or water environment. The present study focuses on assessing the heavy metals (COC) present in the contaminated water bodies of Ranchi city, Jharkhand, India. Phytoremedial potential of three plant species: Typha latifolia, Eichornia crassipes and Monochoria hastata were assessed in the present study. Heterogenous accumulation of metals was found in the three plant species. It was observed that the ratio of heavy metal concentration was different in different parts, i.e., shoots and roots. Positive results were also obtained for translocation factor of all species with minimum of 0.10 and maximum of 1. It was found experimentally that M. hastata has the maximum BFC for root as 4.32 and shoot as 2.70 (for Manganese). For T. latifolia, BCF of maximum was observed for root (163.5) and respective shoot 86.46 (for Iron), followed by 7.3 and 5.8 for root and shoot (for Manganese) respectively. E. crassipes was found to possess a maximum BCF of 278.6 (for Manganese and 151 (for Iron) and shoot as 142 (for Manganese) and 36.13 (for Iron).


Asunto(s)
Metales Pesados/metabolismo , Pontederiaceae/metabolismo , Contaminantes del Suelo/metabolismo , Typhaceae/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , India
3.
Sci Total Environ ; 917: 170433, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38286289

RESUMEN

Antibiotic resistance is a globally recognized health concern which leads to longer hospital stays, increased morbidity, increased mortality, and higher medical costs. Understanding how antibiotic resistance persists and exchanges in environmental systems like soil, water, and wastewater are critically important for understanding the emergence of pathogens with new resistance profiles and the subsequent exposure of people who indirectly/directly come in contact with these pathogens. There are concerns about the widespread application of prophylactic antibiotics in the clinical and agriculture sectors, as well as chemicals/detergents used in food and manufacturing industries, especially the quaternary ammonium compounds which have been found responsible for the generation of resistant genes in water and soil. The rates of horizontal gene transfer increase where there is a lack of proper water/wastewater infrastructure, high antibiotic manufacturing industries, or endpoint users - such as hospitals and intensive agriculture. Conventional wastewater treatment technologies are often inefficient in the reduction of ARB/ARGs and provide the perfect combination of conditions for the development of antibiotic resistance. The wastewater discharged from municipal facilities may therefore be enriched with bacterial communities/pathogens and provide a suitable environment (due to the presence of nutrients and other pollutants) to enhance the transfer of antibiotic resistance. However, facilities with tertiary treatment (either traditional/emerging technologies) provide higher rates of reduction. This review provides a synthesis of the current understanding of wastewater treatment and antibiotic resistance, examining the drivers that may accelerate their possible transmission to a different environment, and highlighting the need for tertiary technologies used in treatment plants for the reduction of resistant bacteria/genes.


Asunto(s)
Aguas Residuales , Purificación del Agua , Humanos , Antibacterianos/análisis , Genes Bacterianos , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Bacterias/genética , Suelo , Agua
4.
Antibiotics (Basel) ; 11(1)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35052991

RESUMEN

Domestic and industrial wastewater discharges harbor rich bacterial communities, including both pathogenic and commensal organisms that are antibiotic-resistant (AR). AR pathogens pose a potential threat to human and animal health. In wastewater treatment plants (WWTP), bacteria encounter environments suitable for horizontal gene transfer, providing an opportunity for bacterial cells to acquire new antibiotic-resistant genes. With many entry points to environmental components, especially water and soil, WWTPs are considered a critical control point for antibiotic resistance. The primary and secondary units of conventional WWTPs are not designed for the reduction of resistant microbes. Constructed wetlands (CWs) are viable wastewater treatment options with the potential for mitigating AR bacteria, their genes, pathogens, and general pollutants. Encouraging performance for the removal of AR (2-4 logs) has highlighted the applicability of CW on fields. Their low cost of construction, operation and maintenance makes them well suited for applications across the globe, especially in developing and low-income countries. The present review highlights a better understanding of the performance efficiency of conventional treatment plants and CWs for the elimination/reduction of AR from wastewater. They are viable alternatives that can be used for secondary/tertiary treatment or effluent polishing in combination with WWTP or in a decentralized manner.

5.
Chemosphere ; 303(Pt 2): 135148, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35640694

RESUMEN

There is a growing concern that the use and misuse of antibiotics can increase the detection of antibiotic resistant genes (ARGs) in wastewater. Conventional wastewater treatment plants provide a pathway for ARGs and antibiotic resistant bacteria (ARB) to be released into natural water bodies. Research has indicated that conventional primary and secondary treatment systems can reduce ARGs/ARB to varying degrees. However, in developing/low-income countries, only 8-28% of wastewater is treated via conventional treatment processes, resulting in the environment being exposed to high levels of ARGs, ARB and pharmaceuticals in raw sewage. The use of constructed wetlands (CWs) has the potential to provide a low-cost solution for wastewater treatment, with respect to removal of nutrients, pathogens, ARB/ARGs either as a standalone treatment process or when integrated with conventional treatment systems. Recently, CWs have also been employed for the reduction of antibiotic residues, pharmaceuticals, and emerging contaminants. Given the benefits of ARG removal, low cost of construction, maintenance, energy requirement, and performance efficiencies, CWs offer a promising solution for developing/low-income countries. This review promotes a better understanding of the performance efficiency of treatment technologies (both conventional systems and CWs) for the reduction of antibiotics and ARGs/ARB from wastewater and explores workable alternatives.


Asunto(s)
Aguas Residuales , Humedales , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Preparaciones Farmacéuticas , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
6.
Water Res ; 211: 118054, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35066262

RESUMEN

Large river systems, such as the River Ganges (Ganga), provide crucial water resources for the environment and society, yet often face significant challenges associated with cumulative impacts arising from upstream environmental and anthropogenic influences. Understanding the complex dynamics of such systems remains a major challenge, especially given accelerating environmental stressors including climate change and urbanization, and due to limitations in data and process understanding across scales. An integrated approach is required which robustly enables the hydrogeochemical dynamics and underpinning processes impacting water quality in large river systems to be explored. Here we develop a systematic approach for improving the understanding of hydrogeochemical dynamics and processes in large river systems, and apply this to a longitudinal survey (> 2500 km) of the River Ganges (Ganga) and key tributaries in the Indo-Gangetic basin. This framework enables us to succinctly interpret downstream water quality trends in response to the underpinning processes controlling major element hydrogeochemistry across the basin, based on conceptual water source signatures and dynamics. Informed by a 2019 post-monsoonal survey of 81 river bank-side sampling locations, the spatial distribution of a suite of selected physico-chemical and inorganic parameters, combined with segmented linear regression, reveals minor and major downstream hydrogeochemical transitions. We use this information to identify five major hydrogeochemical zones, characterized, in part, by the inputs of key tributaries, urban and agricultural areas, and estuarine inputs near the Bay of Bengal. Dominant trends are further explored by investigating geochemical relationships (e.g. Na:Cl, Ca:Na, Mg:Na, Sr:Ca and NO3:Cl), and how water source signatures and dynamics are modified by key processes, to assess the relative importance of controls such as dilution, evaporation, water-rock interactions (including carbonate and silicate weathering) and anthropogenic inputs. Mixing/dilution between sources and water-rock interactions explain most regional trends in major ion chemistry, although localized controls plausibly linked to anthropogenic activities are also evident in some locations. Temporal and spatial representativeness of river bank-side sampling are considered by supplementary sampling across the river at selected locations and via comparison to historical records. Limitations of such large-scale longitudinal sampling programs are discussed, as well as approaches to address some of these inherent challenges. This approach brings new, systematic insight into the basin-wide controls on the dominant geochemistry of the River Ganga, and provides a framework for characterising dominant hydrogeochemical zones, processes and controls, with utility to be transferable to other large river systems.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente , India , Ríos , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA