RESUMEN
Intestinal stem cells (ISCs) are maintained by stemness signaling for precise modulation of self-renewal and differentiation under homeostasis. However, the way in which intestinal immune cells regulate the self-renewal of ISCs remains elusive. Here we found that mouse and human Lgr5+ ISCs showed high expression of the immune cell-associated circular RNA circPan3 (originating from the Pan3 gene transcript). Deletion of circPan3 in Lgr5+ ISCs impaired their self-renewal capacity and the regeneration of gut epithelium in a manner dependent on immune cells. circPan3 bound mRNA encoding the cytokine IL-13 receptor subunit IL-13Rα1 (Il13ra1) in ISCs to increase its stability, which led to the expression of IL-13Rα1 in ISCs. IL-13 produced by group 2 innate lymphoid cells in the crypt niche engaged IL-13Rα1 on crypt ISCs and activated signaling mediated by IL-13âIL-13R, which in turn initiated expression of the transcription factor Foxp1. Foxp1 is associated with ß-catenin in rendering its nuclear translocation, which caused activation of the ß-catenin pathway and the maintenance of Lgr5+ ISCs.
Asunto(s)
Autorrenovación de las Células/inmunología , Interleucina-13/metabolismo , Mucosa Intestinal/inmunología , ARN/metabolismo , Células Madre/fisiología , Animales , Proteínas Portadoras/genética , Diferenciación Celular/inmunología , Autorrenovación de las Células/genética , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/inmunología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Femenino , Humanos , Interleucina-13/inmunología , Subunidad alfa1 del Receptor de Interleucina-13/genética , Subunidad alfa1 del Receptor de Interleucina-13/inmunología , Subunidad alfa1 del Receptor de Interleucina-13/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , ARN/genética , ARN/inmunología , ARN Circular , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regeneración/genética , Regeneración/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , beta Catenina/inmunología , beta Catenina/metabolismoRESUMEN
Chronic stress may induce learning and memory deficits that are associated with a depression-like state in Drosophila melanogaster. The molecular and neural mechanisms underlying the etiology of chronic stress-induced learning deficit (CSLD) remain elusive. Here, we show that the autophagy-lysosomal pathway, a conserved cellular signaling mechanism, is associated with chronic stress in Drosophila, as indicated by time-series transcriptome profiling. Our findings demonstrate that chronic stress induces the disruption of autophagic flux, and chronic disruption of autophagic flux could lead to a learning deficit. Remarkably, preventing the disruption of autophagic flux by up-regulating the basal autophagy level is sufficient to protect against CSLD. Consistent with the essential role of the dopaminergic system in modulating susceptibility to CSLD, dopamine neuronal activity is also indispensable for chronic stress to induce the disruption of autophagic flux. By screening knockout mutants, we found that neuropeptide F, the Drosophila homolog of neuropeptide Y, is necessary for normal autophagic flux and promotes resilience to CSLD. Moreover, neuropeptide F signaling during chronic stress treatment promotes resilience to CSLD by preventing the disruption of autophagic flux. Importantly, neuropeptide F receptor activity in dopamine neurons also promotes resilience to CSLD. Together, our data elucidate a mechanism by which stress-induced excessive dopaminergic activity precipitates the disruption of autophagic flux, and chronic disruption of autophagic flux leads to CSLD, while inhibitory neuropeptide F signaling to dopamine neurons promotes resilience to CSLD by preventing the disruption of autophagic flux.
Asunto(s)
Drosophila , Neuropéptido Y , Animales , Drosophila melanogaster/genética , Sistema Nervioso , Autofagia/genéticaRESUMEN
Achieving highly ionic conductive hydrogels from natural wood remains challenging owing to their insufficient surface area and low number of active sites on the cell wall. This study proposes a viable strategy to design a strong and anisotropic wood-based hydrogel through cell wall nanoengineering. By manipulating the microstructure of the wood cell wall, a flexible cellulosic hydrogel is achieved through Schiff base bonding via the polyacrylamide and cellulose molecular chains. This results in excellent flexibility and mechanical properties of the wood hydrogel with tensile strengths of 22.3 and 6.1 MPa in the longitudinal and transverse directions, respectively. Moreover, confining aqueous salt electrolytes within the porous structure gives anisotropic ionic conductivities (19.5 and 6.02 S/m in the longitudinal and transverse directions, respectively). The wood-based hydrogel sensor has a favorable sensitivity and a stable working performance at a low temperature of -25 °C in monitoring human motions, thereby demonstrating great potential applications in wearable sensor devices.
RESUMEN
Homocysteine (Hcy) is a metabolic intermediate product derived from methionine. Hyperhomocysteinemia is a condition associated with various diseases. Hcy is recognized as a risk factor for cardiovascular disease (CVD). Ferroptosis, a novel form of cell death, is primarily characterized by substantial iron accumulation and lipid peroxidation. Recent research indicates a close association between ferroptosis and the pathophysiological processes of tumors, neurological diseases, CVD, and other ailments. However, limited research has been conducted on the impact of Hcy on ferroptosis. Therefore, this paper aimed to investigate the potential roles and mechanisms of homocysteine and ferroptosis in the context of cardiovascular disease. By conducting comprehensive literature research and analysis, we aimed to summarize recent advancements in understanding the effects of homocysteine on ferroptosis in cardiovascular diseases. This research contributes to a profound understanding of this critical domain.
RESUMEN
Artificial enzymes, as alternatives to natural enzymes, have attracted enormous attention in the fields of catalysis, biosensing, diagnostics, and therapeutics because of their high stability and low cost. Polyoxometalates (POMs), a class of inorganic metal oxides, have recently shown great potential in mimicking enzyme activity due to their well-defined structure, tunable composition, high catalytic efficiency, and easy storage properties. This review focuses on the recent advances in POM-based artificial enzymes. Different types of POMs and their derivatives-based mimetic enzyme functions are covered, as well as the corresponding catalytic mechanisms (where available). An overview of the broad applications of representative POM-based artificial enzymes from biosensing to theragnostic is provided. Insight into the current challenges and the future directions for POMs-based artificial enzymes is discussed.
Asunto(s)
Aniones , Polielectrolitos , Aniones/química , Polielectrolitos/química , EnzimasRESUMEN
The performances of solid-state polymer electrolytes are urgently required to be further improved for high energy density lithium metal batteries. Herein, a highly reinforced ultrathin composite polymer electrolyte (PLPP) is successfully fabricated in a large scale by densely filling the well-dispersed mixture of polyethylene oxide (PEO), Li-salt (LiTFSI) and a polymer of intrinsic microporosity (PIM-1) into porous poly(tetrafluoroethylene) (PTFE) matrix. Based on the macro-plus-micro synergistic enhancement of the PTFE with excellent mechanical properties and the soluble PIM-1 with suitable functional groups, the PLPP electrolyte exhibits excellent properties including mechanical stress, thermal stability, lithium-ion transference number, voltage window and ionic conductivity, which are all superior to the typical PEO/LiTFSI electrolytes. As a result, the Li/PLPP/Li symmetric cell can stably cycle for > 2000 h, and the LiFePO4/PLPP/Li full cell exhibits excellent rate performance (>10 C) and high cycling stability with an initial capacity of 158.8 mAh g-1 and a capacity retention of 78.8% after 300 cycles. In addition, the excellent mechanical properties as well as the wide voltage window reasonably result in the stable operation of full cells with either high-loading cathode up to 28.1 mg cm-2 or high voltage cathode with high energy density.
RESUMEN
Despite the advantages of high tissue penetration depth, selectivity, and non-invasiveness of photothermal therapy for cancer treatment, developing NIR-II photothermal agents with desirable photothermal performance and advanced theranostics ability remains a key challenge. Herein, a universal surface modification strategy is proposed to effectively improve the photothermal performance of vanadium carbide MXene nanosheets (L-V2C) with the removal of surface impurity ions and generation of mesopores. Subsequently, MnOx coating capable of T1-weighted magnetic resonance imaging can be in situ formed through surface redox reaction on L-V2C, and then, stable nanoplatforms (LVM-PEG) under physiological conditions can be obtained after further PEGylation. In the tumor microenvironment irradiated by NIR-II laser, multivalent Mn ions released from LVM-PEG, as a reversible electronic station, can consume the overexpression of glutathione and catalyze a Fenton-like reaction to produce ·OH, resulting in synchronous cellular oxidative damage. Efficient synergistic therapy promotes immunogenic cell death, improving tumor-related immune microenvironment and immunomodulation, and thus, LVM-PEG can demonstrate high accuracy and excellent anticancer efficiency guided by multimodal imaging. As a result, this study provides a new approach for the customization of 2D surface strategies and the study of synergistic therapy mechanisms, highlighting the application of MXene-based materials in the biomedical field.
Asunto(s)
Nanomedicina Teranóstica , Nanomedicina Teranóstica/métodos , Humanos , Neoplasias/terapia , Animales , Microambiente Tumoral , Vanadio/química , Propiedades de Superficie , Rayos Infrarrojos , Ratones , Línea Celular Tumoral , Terapia Fototérmica , Nanopartículas/químicaRESUMEN
Research on the chemoselective metal-catalyzed hydrogenation of conjugated π-systems has mostly been focussed on enones. Herein, we communicate the understudied asymmetric hydrogenation of enimines catalyzed by N,P-iridium complexes and chemoselective toward the alkene. A number of enoxime ethers underwent hydrogenation smoothly to yield the desired products in high yield and stereopurity (up to 99 % yield, up to 99 % ee). No hydrogenation of the C=N π-bond was observed under the applied reaction conditions (20â bar H2, rt, DCM). It was demonstrated that the chiral oxime ether could be hydrolyzed into the ketone with complete preservation of the installed stereogenity at the α-carbon. At last, a binding mode of the substrate to the active iridium catalyst and the consequence for the stereoselective outcome was proposed.
RESUMEN
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evaded the efficacy of previously developed antibodies and vaccines, thus remaining a significant global public health threat. Therefore, it is imperative to develop additional antibodies that are capable of neutralizing emerging variants. Nanobodies, as the smallest functional single-domain antibodies, exhibit enhanced stability and penetration ability, enabling them to recognize numerous concealed epitopes that are inaccessible to conventional antibodies. Herein, we constructed an immune library based on the immunization of alpaca with the S1 subunit of the SARS-CoV-2 spike protein, from which two nanobodies, Nb1 and Nb2, were selected using phage display technology for further characterization. Both nanobodies, with the binding residues residing within the receptor-binding domain (RBD) region of the spike, exhibited high affinity toward the S1 subunit. Moreover, they displayed cross-neutralizing activity against both wild-type SARS-CoV-2 and 10 ο variants, including BA.1, BA.2, BA.3, BA.5, BA.2.75, BF.7, BQ.1, EG.5.1, XBB.1.5, and JN.1. Molecular modeling and dynamics simulations predicted that both nanobodies interacted with the viral RBD through their complementarity determining region 1 (CDR1) and CDR2. These two nanobodies are novel tools for the development of therapeutic and diagnostic countermeasures targeting SARS-CoV-2 variants and potentially emerging coronaviruses.
Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , SARS-CoV-2 , Anticuerpos de Dominio Único , Glicoproteína de la Espiga del Coronavirus , Anticuerpos de Dominio Único/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Animales , COVID-19/inmunología , COVID-19/terapia , COVID-19/virología , COVID-19/diagnóstico , Humanos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Camélidos del Nuevo Mundo/inmunología , Epítopos/inmunologíaRESUMEN
Acid mine drainage (AMD) sludge is waste generated in the process of acid mine wastewater treatment, and the use of AMD sludge to prepare Fe3O4 to activate H2O2 degradation pollutants is an effective means of resource utilization. In this study, the heterogeneous catalyst Fe3O4-based composites were synthesized by a one-step method using AMD sludge as a raw material, and the Fe3O4-based materials before and after catalysis were characterized by powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The effects of several key factors (pH values, H2O2 content, TC concentration, and Fe3O4 content) of tetracycline (TC) degradation were evaluated. The results revealed that the TC removal rate reached up to 95% within 120 min under optimal conditions (pH 3; H2O2, 5 mmol/L; TC concentration, 25 mg/L; Fe3O4 content, 1g/L). Moreover, â¢OH and â¢O2- radicals were generated during the Fenton-like degradation process, and the plausible degradation mechanism was discussed. Besides, the Fe3O4 catalyst exhibited fantastic stability after five cycles. In conclusion, this study is expected to promote the resource utilization of industrial sludge and provide a new material for the treatment of antibiotic-contaminated wastewater.
RESUMEN
BACKGROUND AND AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents the foremost cause of chronic liver disease, yet its underlying mechanisms remain elusive. Our group previously discovered a novel long non-coding RNA (lncRNA) in rats, termed lncHC and its human counterpart, LNCHC. This study aimed to explore the role of LNCHC in the progression of MASLD. METHODS: RNA-binding proteins bound to LNCHC were searched by mass spectrometry. The target genes of LNCHC and Y-Box binding protein 1 (YBX1) were identified by RNA-seq. MASLD animal models were utilised to examine the roles of LNCHC, YBX1 and patatin-like phospholipase domain containing 3 (PNPLA3) in MASLD progression. RESULTS: Here, we identified LNCHC as a native restrainer during MASLD development. Notably, LNCHC directly binds YBX1 and prevents protein ubiquitination. Up-regulation of YBX1 then stabilises PNPLA3 mRNA to alleviate lipid accumulation in hepatocytes. Furthermore, both cell and animal studies demonstrate that LNCHC, YBX1 and PNPLA3 function to improve hepatocyte lipid accumulation and exacerbate metabolic dysfunction-associated steatohepatitis development. CONCLUSIONS: In summary, our findings unveil a novel LNCHC functionality in regulating YBX1 and PNPLA3 mRNA stability during MASLD development, providing new avenues in MASLD treatment.
Asunto(s)
Progresión de la Enfermedad , ARN Largo no Codificante , Proteína 1 de Unión a la Caja Y , Animales , Humanos , Masculino , Ratas , Aciltransferasas , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Fosfolipasas A2 Calcio-Independiente , Ubiquitinación , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética , ARN Largo no Codificante/metabolismoRESUMEN
BACKGROUND: Metabolic syndrome is related to cardiovascular diseases, which is attributed in part, to arterial stiffness; however, the mechanisms remain unclear. The present study aimed to investigate the molecular mechanisms of metabolic syndrome-induced arterial stiffness and to identify new therapeutic targets. METHODS: Arterial stiffness was induced by high-fat/high-sucrose diet in mice, which was quantified by Doppler ultrasound. Four-dimensional label-free quantitative proteomic analysis, affinity purification and mass spectrometry, and immunoprecipitation and GST (glutathione S-transferase) pull-down experiments were performed to explore the mechanism of YAP (Yes-associated protein)-mediated TGF (transforming growth factor) ß pathway activation. RESULTS: YAP protein was upregulated in the aortic tunica media of mice fed a high-fat/high-sucrose diet for 2 weeks and precedes arterial stiffness. Smooth muscle cell-specific YAP knockdown attenuated high-fat/high-sucrose diet-induced arterial stiffness and activation of TGFß-Smad2/3 signaling pathway in arteries. By contrast, Myh11CreERT2-YapTg mice exhibited exacerbated high-fat/high-sucrose diet-induced arterial stiffness and enhanced TGFß-activated Smad2/3 phosphorylation in arteries. PPM1B (protein phosphatase, Mg2+/Mn2+-dependent 1B) was identified as a YAP-bound phosphatase that translocates into the nucleus to dephosphorylate Smads (mothers against decapentaplegic homologs) in response to TGFß. This process was inhibited by YAP through removal of the K63-linked ubiquitin chain of PPM1B at K326. CONCLUSIONS: This study provides a new mechanism by which smooth muscle cell YAP regulates the TGFß pathway and a potential therapeutic target in metabolic syndrome-associated arterial stiffness.
Asunto(s)
Síndrome Metabólico , Rigidez Vascular , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Proteómica , Sacarosa , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Rigidez Vascular/fisiología , Proteínas Señalizadoras YAPRESUMEN
BACKGROUND: Inflamed endothelial cells (ECs) trigger atherogenesis, especially at arterial regions experiencing disturbed blood flow. UCP2 (Uncoupling protein 2), a key mitochondrial antioxidant protein, improves endothelium-dependent relaxation in obese mice. However, whether UCP2 can be regulated by shear flow is unknown, and the role of endothelial UCP2 in regulating inflammation and atherosclerosis remains unclear. This study aims to investigate the mechanoregulation of UCP2 expression in ECs and the effect of UCP2 on endothelial inflammation and atherogenesis. METHODS: In vitro shear stress simulation system was used to investigate the regulation of UCP2 expression by shear flow. EC-specific Ucp2 knockout mice were used to investigate the role of UCP2 in flow-associated atherosclerosis. RESULTS: Shear stress experiments showed that KLF2 (Krüppel-like factor 2) mediates fluid shear stress-dependent regulation of UCP2 expression in human aortic and human umbilical vein ECs. Unidirectional shear stress, statins, and resveratrol upregulate whereas oscillatory shear stress and proinflammatory stimuli inhibit UCP2 expression through altered KLF2 expression. KLF2 directly binds to UCP2 promoter to upregulate its transcription in human umbilical vein ECs. UCP2 knockdown induced expression of genes involved in proinflammatory and profibrotic signaling, resulting in a proatherogenic endothelial phenotype. EC-specific Ucp2 deletion promotes atherogenesis and collagen production. Additionally, we found endothelial Ucp2 deficiency aggravates whereas adeno-associated virus-mediated EC-Ucp2 overexpression inhibits carotid atherosclerotic plaque formation in disturbed flow-enhanced atherosclerosis mouse model. RNA-sequencing analysis revealed FoxO1 (forkhead box protein O1) as the major proinflammatory transcriptional regulator activated by UCP2 knockdown, and FoxO1 inhibition reduced vascular inflammation and disturbed flow-enhanced atherosclerosis. We showed further that UCP2 level is critical for phosphorylation of AMPK (AMP-activated protein kinase), which is required for UCP2-induced inhibition of FoxO1. CONCLUSIONS: Altogether, our studies uncover that UCP2 is novel mechanosensitive gene under the control of fluid shear stress and KLF2 in ECs. UCP2 expression is critical for endothelial proinflammatory response and atherogenesis. Therapeutic strategies enhancing UCP2 level may have therapeutic potential against atherosclerosis.
Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Proteína Desacopladora 2/metabolismo , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Células Cultivadas , Endotelio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Placa Aterosclerótica/metabolismo , Estrés MecánicoRESUMEN
Double perovskites (DPs) have attracted attention in the field of luminescence due to their inherent broadband emission of self-trapping excitons. In this work, we choose [(CH3)3NCH2CHCH2]+ and [CH3CHOHCH2NH2]+ as organic cations to synthesize two new organic-inorganic hybrid DPs, [(CH3)3NCH2CHCH2]2KInCl6 (1) and [CH3CHOHCH2NH2]2KInCl6 (2). The [KCl6]3- and [InCl6]3- octahedra are interchangeably connected by sharing two opposite faces, forming a one-dimensional coordination chain. Each K atom coordinates with six chlorine atoms in 1, while it coordinates with two oxygen atoms in addition to the six chlorine atoms in 2. The coordination between ions K and O in compound 2 may have significantly reduced its luminescence. As a result, compound 1 shows bright-yellow light with a quantum yield of more than 90%, while 2 shows weak blue light with a quantum yield of only 0.98%. In addition, different from no phase transition found in 2, 1 undergoes a reversible phase transition at 324/307 K in the heating-cooling cycle. Through structural and spectral analysis and density functional theory calculation, we conclude that the larger degree of [InCl6]3- octahedral distortion and the larger anion distance (In···In) also cause the PLQY of compound 1 to be higher than that of compound 2.
RESUMEN
Given the high prevalence of avian leukosis virus subgroup K (ALV-K) in chickens in China, the positive rate of ALV-K in local chickens in Henan province was investigated, and the genetic region encoding the glycoprotein gp85 of isolates from positive chickens was analyzed. The positive rate of ALV-K in local chickens in Henan was found to be 87.2% (41/47). Phylogenetic analysis of gp85 sequences revealed six clusters that differed in their host range regions (hr1 and hr2) and variable regions (vr1, vr2, and vr3). Evidence of recombination of hr1, hr2, vr1, vr2, and vr3 was observed between the different clusters. The isolate HN23LS02 appears to have obtained its hr1 and hr2 regions from separate lineages via recombination but without having a significant affect on the replication capacity of the virus.
Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , Pollos , Especificidad del Huésped , Filogenia , Enfermedades de las Aves de Corral , Recombinación Genética , Proteínas del Envoltorio Viral , Animales , Virus de la Leucosis Aviar/genética , Virus de la Leucosis Aviar/clasificación , Virus de la Leucosis Aviar/aislamiento & purificación , Pollos/virología , Leucosis Aviar/virología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Enfermedades de las Aves de Corral/virología , ChinaRESUMEN
The influence and mechanisms of starvation on the bacterial mobile performance in porous media with different nutrition conditions are not well understood. The present study systematically investigated the impacts of starvation on the mobility and attachment of both Gram-negative and Gram-positive strains in porous media without and with nutrients on surfaces in both simulated and real water samples. We found that regardless of strain types and water chemistries, starvation would greatly inhibit bacterial attachment onto bare porous media without nutrients yet could significantly enhance cell attachment onto porous media with nutrients on their surfaces. The mechanisms driving the opposite transport behaviors induced by starvation in porous media without and with nutrients were totally different. We found that the starvation process decreased cell motility and increased repulsive force between bacteria and porous media via decreasing cell sizes and zeta potentials, reducing EPS secretion and cell hydrophobicity, thus increasing transport/inhibiting attachment of bacteria in porous media without nutrients on sand surfaces. In contrast, through strengthening the positive chemotactic response of bacteria to nutrients, the starvation process greatly enhanced bacterial attachment onto porous media with nutrients on sand surfaces. Clearly, via modification of the nutrient conditions in porous media, the mobility/attachment performance of bacteria could be regulated.
Asunto(s)
Adhesión Bacteriana , Porosidad , NutrientesRESUMEN
The biodegradation of polypropylene (PP), a highly persistent nonhydrolyzable polymer, by Tenebrio molitor has been confirmed using commercial PP microplastics (MPs) (Mn 26.59 and Mw 187.12 kDa). This confirmation was based on the reduction of the PP mass, change in molecular weight (MW), and a positive Δδ13C in the residual PP. A MW-dependent biodegradation mechanism was investigated using five high-purity PP MPs, classified into low (0.83 and 6.20 kDa), medium (50.40 and 108.0 kDa), and high (575.0 kDa) MW categories to access the impact of MW on the depolymerization pattern and associated gene expression of gut bacteria and the larval host. The larvae can depolymerize/biodegrade PP polymers with high MW although the consumption rate and weight losses increased, and survival rates declined with increasing PP MW. This pattern is similar to observations with polystyrene (PS) and polyethylene (PE), i.e., both Mn and Mw decreased after being fed low MW PP, while Mn and/or Mw increased after high MW PP was fed. The gut microbiota exhibited specific bacteria associations, such as Kluyvera sp. and Pediococcus sp. for high MW PP degradation, Acinetobacter sp. for medium MW PP, and Bacillus sp. alongside three other bacteria for low MW PP metabolism. In the host transcriptome, digestive enzymes and plastic degradation-related bacterial enzymes were up-regulated after feeding on PP depending on different MWs. The T. molitor host exhibited both defensive function and degradation capability during the biodegradation of plastics, with high MW PP showing a relatively negative impact on the larvae.
Asunto(s)
Microbiota , Tenebrio , Animales , Tenebrio/metabolismo , Tenebrio/microbiología , Plásticos , Polipropilenos/metabolismo , Microplásticos , Peso Molecular , Poliestirenos , Larva/metabolismo , Bacterias/metabolismo , Biodegradación AmbientalRESUMEN
Exosome analysis plays pivotal roles in various physiological and pathological processes. Plasmonic scattering microscopy (PSM) has proven to be an excellent label-free imaging platform for exosome detection. However, accurately detecting images scattered from exosomes remains a challenging task due to noise interference. Herein, we proposed an image processing strategy based on a new blind super-resolution deep learning neural network, named ESRGAN-SE, to improve the resolution of exosome PSI images. This model can obtain super-resolution reconstructed images without increasing experimental complexity. The trained model can directly generate high-resolution plasma scattering images from low-resolution images collected in experiments. The results of experiments involving the detection of light scattered by exosomes showed that the proposed super-resolution detection method has strong generalizability and robustness. Moreover, ESRGAN-SE achieved excellent results of 35.52036, 0.09081, and 8.13176 in terms of three reference-free image quality assessment metrics, respectively. These results show that the proposed network can effectively reduce image information loss, enhance mutual information between pixels, and decrease feature differentiation. And, the single-image SNR evaluation score of 3.93078 also showed that the distinction between the target and the background was significant. The suggested model lays the foundation for a potentially successful approach to imaging analysis. This approach has the potential to greatly improve the accuracy and efficiency of exosome analysis, leading to more accurate cancer diagnosis and potentially improving patient outcomes.
RESUMEN
AIMS: The incidence of nonalcoholic fatty liver disease (NAFLD) is increasing annually, leading to substantial medical and health burdens. Numerous studies have demonstrated the potential effectiveness of intestinal probiotics as a treatment strategy for NAFLD. Therefore, the objective of this study is to identify a probiotic for the treatment of NAFLD. METHODS AND RESULTS: In this study, blood and fecal samples were collected from 41 healthy volunteers and 44 patients diagnosed with NAFLD. Analysis of the 16S rDNA sequencing data and quantitative real-time PCR (RT-qPCR) revealed a significant reduction in the abundance of Coprococcus in NAFLD patients. Subsequent animal experiments demonstrated that Coprococcus was able to effectively reverse liver lipid accumulation, inflammation, and fibrosis induced by a high-fat diet (HFD) in mice. CONCLUSIONS: This study provides the first in vivo evidence that Coprococcus is a beneficial bacterium capable of preventing NAFLD and has the same probiotic effect in mice as Lactobacillus GG (LGG), a positive control. Therefore, Coprococcus has the potential to serve as a probiotic for the prevention and treatment of NAFLD in humans.
Asunto(s)
Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico , Probióticos , Animales , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Dieta Alta en Grasa/efectos adversos , Probióticos/farmacología , Probióticos/uso terapéutico , Ratones , Humanos , Masculino , Ratones Endogámicos C57BL , Heces/microbiología , Heces/química , Adulto , Femenino , Hígado/metabolismo , Microbioma Gastrointestinal , Persona de Mediana Edad , Modelos Animales de EnfermedadRESUMEN
Thymic egress is a crucial process for thymocyte maturation, strictly regulated by sphingosine-1-phosphate lyase (S1PL). Recently, cystathionine γ-lyase (CSE), one of the enzymes producing hydrogen sulfide (H2S), has emerged as a vital immune process regulator. However, the molecular connection between CSE, H2S and thymic egress remains largely unexplored. In this study, we investigated the regulatory function of CSE in the thymic egress of immune cells. We showed that genetic knockout of CSE or pharmacological inhibition by CSE enzyme inhibitor NSC4056 or D,L-propargylglycine (PAG) significantly enhanced the migration of mature lymphocytes and monocytes from the thymus to the peripheral blood, and this redistribution effect could be reversed by treatment with NaHS, an exogenous donor of H2S. In addition, the CSE-generated H2S significantly increased the levels of S1P in the peripheral blood, thymus and spleen of mice, suppressed the production of proinflammatory cytokines and rescued pathogen-induced sepsis in cells and in vivo. Notably, H2S or polysulfide inhibited S1PL activity in cells and an in vitro purified enzyme assay. We found that this inhibition relied on a newly identified C203XC205 redox motif adjacent to the enzyme's active site, shedding light on the biochemical mechanism of S1PL regulation. In conclusion, this study uncovers a new function and mechanism for CSE-derived H2S in thymic egress and provides a potential drug target for treating S1P-related immune diseases.