Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Genet ; 15: 1379865, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903751

RESUMEN

Background: Previous studies have shown that Alzheimer's disease (AD) can cause myocardial damage. However, whether there is a causal association between AD and non-ischemic cardiomyopathy (NICM) remains unclear. Using a comprehensive two-sample Mendelian randomization (MR) method, we aimed to determine whether AD and family history of AD (FHAD) affect left ventricular (LV) structure and function and lead to NICM, including hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Methods: The summary statistics for exposures [AD, paternal history of AD (PH-AD), and maternal history of AD (MH-AD)] and outcomes (NICM, HCM, DCM, and LV traits) were obtained from the large European genome-wide association studies. The causal effects were estimated using inverse variance weighted, MR-Egger, and weighted median methods. Sensitivity analyses were conducted, including Cochran's Q test, MR-Egger intercept test, MR pleiotropy residual sum and outlier, MR Steiger test, leave-one-out analysis, and the funnel plot. Results: Genetically predicted AD was associated with a lower risk of NICM [odds ratio (OR) 0.9306, 95% confidence interval (CI) 0.8825-0.9813, p = 0.0078], DCM (OR 0.8666, 95% CI 0.7752-0.9689, p = 0.0119), and LV remodeling index (OR 0.9969, 95% CI 0.9940-0.9998, p = 0.0337). Moreover, genetically predicted PH-AD was associated with a decreased risk of NICM (OR 0.8924, 95% CI 0.8332-0.9557, p = 0.0011). MH-AD was also strongly associated with a decreased risk of NICM (OR 0.8958, 95% CI 0.8449-0.9498, p = 0.0002). Different methods of sensitivity analysis demonstrated the robustness of the results. Conclusion: Our study revealed that AD and FHAD were associated with a decreased risk of NICM, providing a new genetic perspective on the pathogenesis of NICM.

2.
Front Microbiol ; 15: 1328641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357343

RESUMEN

Introduction: Mossy biocrust represents a stable stage in the succession of biological soil crust in arid and semi-arid areas, providing a microhabitat that maintains microbial diversity. However, the impact of mossy biocrust rhizoid soil and different particle sizes within the mossy biocrust layer and sublayer on microbial diversity and soil enzyme activities remains unclear. Methods: This study utilized Illumina MiSeq sequencing and high-throughput fluorometric technique to assess the differences in microbial diversity and soil extracellular enzymes between mossy biocrust rhizoid soil and different particle sizes within the mossy biocrust sifting and sublayer soil. Results: The results revealed that the total organic carbon (TOC), total nitrogen (TN), ammonium (NH4+) and nitrate (NO3-) in mossy biocrust rhizoid soil were the highest, with significantly higher TOC, TN, and total phosphorus (TP) in mossy biocrust sifting soil than those in mossy biocrust sublayer soil. Extracellular enzyme activities (EAAs) exhibited different responses to various soil particle sizes in mossy biocrust. Biocrust rhizoid soil (BRS) showed higher C-degrading enzyme activity and lower P-degrading enzyme activity, leading to a significant increase in enzyme C: P and N: P ratios. Mossy biocrust soils were all limited by microbial relative nitrogen while pronounced relative nitrogen limitation and microbial maximum relative carbon limitation in BRS. The diversity and richness of the bacterial community in the 0.2 mm mossy biocrust soil (BSS0.2) were notably lower than those in mossy biocrust sublayer, whereas the diversity and richness of the fungal community in the rhizoid soil were significantly higher than those in mossy biocrust sublayer. The predominant bacterial phyla in mossy biocrust were Actinobacteriota, Protebacteria, Chloroflexi, and Acidobacteriota, whereas in BSS0.2, the predominant bacterial phyla were Actinobacteriota, Protebacteria, and Cyanobacteria. Ascomycota and Basidiomycota were dominant phyla in mossy biocrust. The bacterial and fungal community species composition exhibited significant differences. The mean proportions of Actinobacteriota, Protebacteria, Chloroflexi, Acidobacteriota, Acidobacteria, Cyanobacteria, and Bacteroidota varied significantly between mossy biocrust rhizoid and different particle sizes of mossy biocrust sifting and sublayer soil (p < 0.05). Similarly, significant differences (p < 0.05) were observed in the mean proportions of Ascomycota, Basidiomycota, and Glomeromycota between mossy biocrust rhizoid and different particle sizes within the mossy biocrust sifting and sublayer soil. The complexity and connectivity of bacterial and fungal networks were higher in mossy biocrust rhizoid soil compared with different particle sizes within the mossy biocrust sifting and sublayer soil. Discussion: These results offer valuable insights to enhance our understanding of the involvement of mossy biocrust in the biogeochemical cycle of desert ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA