Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(7): 3150-3165, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36869674

RESUMEN

DNA double-strand breaks (DSBs) are functionally linked to genomic instability in spermatocytes and to male infertility. The heavy metal cadmium (Cd) is known to induce DNA damage in spermatocytes by unknown mechanisms. Here, we showed that Cd ions impaired the canonical non-homologous end-joining (NHEJ) repair pathway, but not the homologous recombination (HR) repair pathway, through stimulation of Ser2056 and Thr2609 phosphorylation of DNA-PKcs at DSB sites. Hyper-phosphorylation of DNA-PKcs led to its premature dissociation from DNA ends and the Ku complex, preventing recruitment of processing enzymes and further ligation of DNA ends. Specifically, this cascade was initiated by the loss of PP5 phosphatase activity, which results from the dissociation of PP5 from its activating ions (Mn), that is antagonized by Cd ions through a competitive mechanism. In accordance, in a mouse model Cd-induced genomic instability and consequential male reproductive dysfunction were effectively reversed by a high dosage of Mn ions. Together, our findings corroborate a protein phosphorylation-mediated genomic instability pathway in spermatocytes that is triggered by exchange of heavy metal ions.


Asunto(s)
Cadmio , Inestabilidad Genómica , Infertilidad Masculina , Espermatocitos , Animales , Humanos , Masculino , Ratones , Cadmio/toxicidad , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Inestabilidad Genómica/efectos de los fármacos , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Iones/metabolismo , Fosforilación , Reparación del ADN por Recombinación , Espermatocitos/efectos de los fármacos
2.
Acta Pharmacol Sin ; 45(4): 728-737, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38086898

RESUMEN

Stimulation of adult cardiomyocyte proliferation is a promising strategy for treating myocardial infarction (MI). Earlier studies have shown increased CCL2 levels in plasma and cardiac tissue both in MI patients and mouse models. In present study we investigated the role of CCL2 in cardiac regeneration and the underlying mechanisms. MI was induced in adult mice by permanent ligation of the left anterior descending artery, we showed that the serum and cardiac CCL2 levels were significantly increased in MI mice. Intramyocardial injection of recombinant CCL2 (rCCL2, 1 µg) immediately after the surgery significantly promoted cardiomyocyte proliferation, improved survival rate and cardiac function, and diminished scar sizes in post-MI mice. Alongside these beneficial effects, we observed an increased angiogenesis and decreased cardiomyocyte apoptosis in post-MI mice. Conversely, treatment with a selective CCL2 synthesis inhibitor Bindarit (30 µM) suppressed both CCL2 expression and cardiomyocyte proliferation in P1 neonatal rat ventricle myocytes (NRVMs). We demonstrated in NRVMs that the CCL2 stimulated cardiomyocyte proliferation through STAT3 signaling: treatment with rCCL2 (100 ng/mL) significantly increased the phosphorylation levels of STAT3, whereas a STAT3 phosphorylation inhibitor Stattic (30 µM) suppressed rCCL2-induced cardiomyocyte proliferation. In conclusion, this study suggests that CCL2 promotes cardiac regeneration via activation of STAT3 signaling, underscoring its potential as a therapeutic agent for managing MI and associated heart failure.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Humanos , Ratones , Animales , Ratas , Quimiocina CCL2/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos , Insuficiencia Cardíaca/metabolismo , Regeneración , Ratones Endogámicos C57BL , Apoptosis , Factor de Transcripción STAT3/metabolismo
3.
Acta Pharmacol Sin ; 44(6): 1149-1160, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36473990

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is highly prevalent, and lacks effective treatment. The aberration of WNT pathway underlies many pathological processes including cardiac fibrosis and hypertrophy, while porcupine is an acyltransferase essential for the secretion of WNT ligands. In this study we investigated the role of WNT signaling pathway in HFpEF as well as whether blocking WNT signaling by a novel porcupine inhibitor CGX1321 alleviated HFpEF. We established two experimental HFpEF mouse models, namely the UNX/DOCA model and high fat diet/L-NAME ("two-hit") model. The UNX/DOCA and "two-hit" mice were treated with CGX1321 (3 mg·kg-1·d-1) for 4 and 10 weeks, respectively. We showed that CGX1321 treatment significantly alleviated cardiac hypertrophy and fibrosis, thereby improving cardiac diastolic function and exercise performance in both models. Furthermore, both canonical and non-canonical WNT signaling pathways were activated, and most WNT proteins, especially WNT3a and WNT5a, were upregulated during the development of HEpEF in mice. CGX1321 treatment inhibited the secretion of WNT ligands and repressed both canonical and non-canonical WNT pathways, evidenced by the reduced phosphorylation of c-Jun and the nuclear translocation of ß-catenin and NFATc3. In an in vitro HFpEF model, MCM and ISO-treated cardiomyocytes, knockdown of porcupine by siRNA leads to a similar inhibitory effect on WNT pathways, cardiomyocyte hypertrophy and cardiac fibroblast activation as CGX1321 did, whereas supplementation of WNT3a and WNT5a reversed the anti-hypertrophy and anti-fibrosis effect of CGX1321. We conclude that WNT signaling activation plays an essential role in the pathogenesis of HFpEF, and porcupine inhibitor CGX1321 exerts a therapeutic effect on HFpEF in mice by attenuating cardiac hypertrophy, alleviating cardiac fibrosis and improving cardiac diastolic function.


Asunto(s)
Cardiomiopatías , Acetato de Desoxicorticosterona , Insuficiencia Cardíaca , Animales , Ratones , Cardiomegalia/patología , Cardiomiopatías/patología , Acetato de Desoxicorticosterona/farmacología , Acetato de Desoxicorticosterona/uso terapéutico , Fibrosis , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos , Volumen Sistólico/fisiología , Vía de Señalización Wnt
4.
Exp Cell Res ; 396(1): 112237, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32841643

RESUMEN

The proliferation and differentiation of myoblast cells are regulated by the fibroblast growth factor receptor (FGFR) signaling pathway. Although the regulation of FGFR signaling cascades has been widely investigated, the inhibitory mechanism that particularly function in skeletal muscle myogenesis remains obscure. In this study, we determined that LRTM1, an inhibitory regulator of the FGFR signaling pathway, negatively modulates the activation of ERK and promotes the differentiation of myoblast cells. LRTM1 is dynamically expressed during myoblast differentiation and skeletal muscle regeneration after injury. In mouse myoblast C2C12 cells, knockout (KO) of Lrtm1 significantly prevents the differentiation of myoblast cells; this effect is associated with the reduction of MyoD transcriptional activity and the overactivation of ERK kinase. Notably, further studies demonstrated that LRTM1 associates with p52Shc and inhibits the recruitment of p52Shc to FGFR1. Taken together, our findings identify a novel negative regulator of FGFR1, which plays an important role in regulating the differentiation of myoblast cells.


Asunto(s)
Proteínas de la Membrana/genética , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Proteínas del Tejido Nervioso/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/genética , Animales , Cardiotoxinas/toxicidad , Diferenciación Celular , Línea Celular , Proliferación Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/deficiencia , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Mioblastos/citología , Mioblastos/efectos de los fármacos , Miogenina/genética , Miogenina/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Biochem Biophys Res Commun ; 522(4): 924-930, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31806371

RESUMEN

Lysine-specific demethylase 1 (LSD1) is a well characterized transcriptional regulator functioning on the chromatin to remove mono- and di-methyl groups from lysine 4 or lysine 9 of histone 3 (H3K4 or H3K9). LSD1 also has non-transcriptional activities via targeting non-histone substrates that participate in diverse biological processes. In this report, we determined that LSD1 negatively regulates autophagy in skeletal muscle cells by promoting PTEN degradation in a transcription-independent mechanism. In C2C12 cells, LSD1 inhibition or depletion significantly induced the initiation of autophagy; and autophagy resulted from LSD1 inhibition is associated with AKT/mTORC1 inactivation. Notably, the proteins of PTEN, a prominent repressive AKT modulator, are stabilized by LSD1 inhibition despite a decrease of its mRNA levels. Further data demonstrated that LSD1 interacts with PTEN protein and enhances its ubiquitination and degradation. Together, our findings identify a novel biological function of LSD1 in autophagy, mediated by regulating the stability of PTEN and the activity of AKT/mTORC1.


Asunto(s)
Autofagia , Histona Demetilasas/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteolisis , Animales , Línea Celular , Activación Enzimática , Estabilidad de Enzimas , Histona Demetilasas/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mioblastos/ultraestructura , Fosfohidrolasa PTEN/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transcripción Genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA