Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D265-D272, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37855663

RESUMEN

Riboswitches are regulatory elements found in the untranslated regions (UTRs) of certain mRNA molecules. They typically comprise two distinct domains: an aptamer domain that can bind to specific small molecules, and an expression platform that controls gene expression. Riboswitches work by undergoing a conformational change upon binding to their specific ligand, thus activating or repressing the genes downstream. This mechanism allows gene expression regulation in response to metabolites or small molecules. To systematically summarise riboswitch structures and their related ligand binding functions, we present Ribocentre-switch, a comprehensive database of riboswitches, including the information as follows: sequences, structures, functions, ligand binding pockets and biological applications. It encompasses 56 riboswitches and 26 orphan riboswitches from over 430 references, with a total of 89 591 sequences. It serves as a good resource for comparing different riboswitches and facilitating the identification of potential riboswitch candidates. Therefore, it may facilitate the understanding of RNA structural conformational changes in response to ligand signaling. The database is publicly available at https://riboswitch.ribocentre.org.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Riboswitch , Ligandos , Conformación de Ácido Nucleico , Secuencias Reguladoras de Ácidos Nucleicos , Transducción de Señal
2.
Nucleic Acids Res ; 51(D1): D262-D268, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36177882

RESUMEN

Ribozymes are excellent systems in which to study 'sequence - structure - function' relationships in RNA molecules. Understanding these relationships may greatly help structural modeling and design of functional RNA structures and some functional structural modules could be repurposed in molecular design. At present, there is no comprehensive database summarising all the natural ribozyme families. We have therefore created Ribocentre, a database that collects together sequence, structure and mechanistic data on 21 ribozyme families. This includes available information on timelines, sequence families, secondary and tertiary structures, catalytic mechanisms, applications of the ribozymes together with key publications. The database is publicly available at https://www.ribocentre.org.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN Catalítico , Humanos , Secuencia de Bases , Conformación de Ácido Nucleico , ARN Catalítico/química
3.
Development ; 148(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34104941

RESUMEN

Zygotic genomic activation (ZGA) is a landmark event in the maternal-to-zygotic transition (MZT), and the regulation of ZGA by maternal factors remains to be elucidated. In this study, the depletion of maternal ring finger protein 114 (RNF114), a ubiquitin E3 ligase, led to developmental arrest of two-cell mouse embryos. Using immunofluorescence and transcriptome analysis, RNF114 was proven to play a crucial role in major ZGA. To study the underlying mechanism, we performed protein profiling in mature oocytes and found a potential substrate for RNF114, chromobox 5 (CBX5), ubiquitylation and degradation of which was regulated by RNF114. The overexpression of CBX5 prevented embryonic development and impeded major ZGA. Furthermore, TAB1 was abnormally accumulated in mutant two-cell embryos, which was consistent with the result of in vitro knockdown of Rnf114. Knockdown of Cbx5 or Tab1 in maternal RNF114-depleted embryos partially rescued developmental arrest and the defect of major ZGA. In summary, our study reveals that maternal RNF114 plays a precise role in degrading some important substrates during the MZT, the misregulation of which may impede the appropriate activation of major ZGA in mouse embryos.


Asunto(s)
Desarrollo Embrionario/fisiología , Genoma , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Cigoto/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Sistema de Señalización de MAP Quinasas/genética , Ratones , Factores de Transcripción/metabolismo , Transcriptoma
4.
Hepatology ; 76(4): 1013-1029, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35243668

RESUMEN

BACKGROUND AND AIMS: Innate lymphoid cells (ILCs) are tissue-resident lymphocytes that play critical roles in cytokine-mediated regulation of homeostasis and inflammation. However, relationships between their immune phenotypic characteristics and HCC remain largely unexplored. APPROACH AND RESULTS: We performed single-cell RNA sequencing analysis on sorted hepatic ILC cells from human patients with HCC and validated using flow cytometry, multiplex immunofluorescence staining, and functional experiments. Moreover, we applied selection strategies to enrich ILC populations in HCC samples to investigate the effects of B cells on the immune reaction of inducible T cell costimulator (ICOS)+ ILC2 cells. Dysregulation of ILCs was manifested by the changes in cell numbers or subset proportions in HCC. Seven subsets of 3433 ILCs were identified with unique properties, of which ICOS+ ILC2a were preferentially enriched in HCC and correlated with poor prognosis. Mechanistically, we report that B cells, particularly resting naïve B cells, have a previously unrecognized function that is involved in inflammatory differentiation of ILC2 cells. B cell-derived ICOSL signaling was responsible for exacerbating inflammation through the increased production of IL-13 in ICOS+ ILC2a cells. Heat shock protein 70 (HSP70) genes Heat Shock Protein Family A Member 1A (HSPA1A) and Heat Shock Protein Family A Member 1B (HSPA1B) were highly expressed in ILC2s in late-stage HCC, and targeting to ICOS and its downstream effector HSP70 in ILC2s suppressed tumor growth and remodeled the immunosuppressive tumor microenvironment. CONCLUSIONS: This in-depth understanding sheds light on B cell-driven innate type 2 inflammation and provides a potential strategy for HCC immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Citocinas/metabolismo , Proteínas HSP70 de Choque Térmico , Proteínas de Choque Térmico , Humanos , Inmunidad Innata , Inflamación/metabolismo , Interleucina-13/metabolismo , Neoplasias Hepáticas/metabolismo , Linfocitos , Fenotipo , Microambiente Tumoral
5.
Mar Drugs ; 21(3)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36976205

RESUMEN

Epi-aszonalenin A (EAA) is an alkaloid that is isolated and purified from the secondary metabolites of coral symbiotic fungi and has been shown to have good atherosclerotic intervention activity and anti-angiogenic activity in our previous studies. In the present study, antiangiogenic activity was used as a basis of an intensive study of its mechanism of action against tumor metastasis and invasion. Invasive metastatic pairs are a hallmark of malignancy, and the dissemination of tumor cells is the most dangerous process in the development of tumors. The results of cell wound healing and the Transwell chamber assay showed that EAA interfered well with PMA-induced migration and invasion of HT1080 cells. Western blot and the ELISA assay showed that EAA decreased MMPs and vascular endothelial growth factor (VEGF) activity and inhibited the expression of N-cadherin and hypoxia-inducible factor-1α (HIF-1α) by regulating the phosphorylation of downstream mitogen-activated protein kinase (MAPK), PI3K/AKT, and NF-κB pathways. Simultaneous molecular docking results revealed that the mimic coupling between the EAA and MMP-2/-9 molecules formed a stable interaction. The results of this study provide a research basis for the inhibition of tumor metastasis by EAA, and together with previous studies, confirm the potential pharmacology and drug potential for this class of compound for application in angiogenesis-related diseases and further improve the availability of coral symbiotic fungi.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Factor A de Crecimiento Endotelial Vascular , Factor A de Crecimiento Endotelial Vascular/metabolismo , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Movimiento Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia
6.
Eur J Clin Invest ; 51(1): e13443, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33131070

RESUMEN

BACKGROUND: To reveal detailed histopathological changes, virus distributions, immunologic properties and multi-omic features caused by SARS-CoV-2 in the explanted lungs from the world's first successful lung transplantation of a COVID-19 patient. MATERIALS AND METHODS: A total of 36 samples were collected from the lungs. Histopathological features and virus distribution were observed by optical microscope and transmission electron microscope (TEM). Immune cells were detected by flow cytometry and immunohistochemistry. Transcriptome and proteome approaches were used to investigate main biological processes involved in COVID-19-associated pulmonary fibrosis. RESULTS: The histopathological changes of the lung tissues were characterized by extensive pulmonary interstitial fibrosis and haemorrhage. Viral particles were observed in the cytoplasm of macrophages. CD3+ CD4- T cells, neutrophils, NK cells, γ/δ T cells and monocytes, but not B cells, were abundant in the lungs. Higher levels of proinflammatory cytokines iNOS, IL-1ß and IL-6 were in the area of mild fibrosis. Multi-omics analyses revealed a total of 126 out of 20,356 significant different transcription and 114 out of 8,493 protein expression in lung samples with mild and severe fibrosis, most of which were related to fibrosis and inflammation. CONCLUSIONS: Our results provide novel insight that the significant neutrophil/ CD3+ CD4- T cell/ macrophage activation leads to cytokine storm and severe fibrosis in the lungs of COVID-19 patient and may contribute to a better understanding of COVID-19 pathogenesis.


Asunto(s)
COVID-19/patología , Hemorragia/patología , Trasplante de Pulmón , Pulmón/patología , Ganglios Linfáticos/patología , Fibrosis Pulmonar/patología , Linfocitos B/patología , Linfocitos B/ultraestructura , Linfocitos B/virología , COVID-19/genética , COVID-19/metabolismo , COVID-19/cirugía , Cromatografía Liquida , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Células Asesinas Naturales/patología , Células Asesinas Naturales/ultraestructura , Células Asesinas Naturales/virología , Pulmón/metabolismo , Pulmón/ultraestructura , Pulmón/virología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/ultraestructura , Ganglios Linfáticos/virología , Macrófagos Alveolares/patología , Macrófagos Alveolares/ultraestructura , Macrófagos Alveolares/virología , Masculino , Persona de Mediana Edad , Monocitos/patología , Monocitos/ultraestructura , Monocitos/virología , Neutrófilos/patología , Neutrófilos/ultraestructura , Neutrófilos/virología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteómica , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/cirugía , RNA-Seq , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Linfocitos T/patología , Linfocitos T/ultraestructura , Linfocitos T/virología , Espectrometría de Masas en Tándem
7.
Mol Ther ; 28(4): 1200-1213, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32097602

RESUMEN

In mammals, resting primordial follicles serve as the ovarian reserve. The decline in ovarian function with aging is characterized by a gradual decrease in both the quantity and quality of the oocytes residing within the primordial follicles. Many reports show that mesenchymal stem cells have the ability to recover ovarian function in premature ovarian insufficiency (POI) or natural aging animal models; however, the underlying mechanism remains unclear. In this study, using exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-exos), we found the specific accumulation of exosomes in primordial oocytes. The stimulating effects of exosomes on primordial follicles were manifested as the activation of the oocyte phosphatidylinositol 3-kinase (PI3K)/mTOR signaling pathway and the acceleration of follicular development after kidney capsule transplantation. Further analysis revealed the stimulatory effects of HucMSC-exos on primordial follicles were through carrying functional microRNAs, such as miR-146a-5p or miR-21-5p. In aged female mice, the intrabursal injection of HucMSC-exos demonstrated the recovery of decreased fertility with increased oocyte production and improved oocyte quality. Although assisted reproductive technologies have been widely used to treat infertility, their overall success rates remain low, especially for women in advanced maternal age. We propose HucMSC-exos as a new approach to mitigate the age-related retardation of fertility in women.


Asunto(s)
Exosomas/trasplante , Infertilidad Femenina/terapia , Oocitos/metabolismo , Cordón Umbilical/citología , Envejecimiento/fisiología , Animales , Exosomas/genética , Femenino , Infertilidad Femenina/genética , Células Madre Mesenquimatosas/citología , Ratones , MicroARNs/genética , Transducción de Señal
8.
Mar Drugs ; 19(11)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34822497

RESUMEN

Marine microalgae can be used as sustainable protein sources in many fields with positive effects on human and animal health. DAPTMGY is a heptapeptide isolated from Isochrysis zhanjiangensis which is a microalga. In this study, we evaluated its anti-photoaging properties and mechanism of action in human immortalized keratinocytes cells (HaCaT). The results showed that DAPTMGY scavenged reactive oxygen species (ROS) and increase the level of endogenous antioxidants. In addition, through the exploration of its mechanism, it was determined that DAPIMGY exerted anti-photoaging effects. Specifically, the heptapeptide inhibits UVB-induced apoptosis through down-regulation of p53, caspase-8, caspase-3 and Bax and up-regulation of Bcl-2. Thus, DAPTMGY, isolated from I. zhanjiangensis, exhibits protective effects against UVB-induced damage.


Asunto(s)
Antioxidantes/farmacología , Haptophyta , Péptidos/farmacología , Antioxidantes/química , Apoptosis/efectos de los fármacos , Organismos Acuáticos , Células HaCaT/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Péptidos/química , Envejecimiento de la Piel/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo , Rayos Ultravioleta
9.
Mol Hum Reprod ; 25(8): 445-457, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31329230

RESUMEN

Ovarian hyperstimulation syndrome (OHSS) is a potentially life-threatening, iatrogenic complication of ovarian stimulation in assisted reproduction technology. This complex syndrome is characterised by enlarged ovaries with multiple corpora luteum, elevated sex steroid hormones in serum and increased capillary permeability. Until now, the pathogenesis of OHSS remains obscure, and no absolute strategy can fully prevent OHSS without any side effect on ovulation and clinical pregnancy. Using cultured human or mouse granulosa cells, our study revealed the time-dependent activation of the mTOR signaling pathway after human chorionic gonadotropin (hCG) treatment. The involvement of the mTOR signaling pathway was also observed in the development of OHSS in a mouse model. Selectively inhibiting mTOR signals by only two injections of rapamycin (2 mg/kg body weight), before or just after hCG treatment, significantly reduced vascular leakage and the severity of OHSS symptoms. Although ovarian angiogenesis was significantly inhibited, rapamycin could not decrease the elevated levels of vascular endothelial growth factor, IL-6 and IL-11 in OHSS ovaries. Further study showed the functional roles of the mTOR signaling pathway in the hyperstimulation-induced ovarian extracellular matrix remodeling as the expression of α2M, a broad proteolytic inhibitor in both ovary and serum, was dramatically decreased after rapamycin treatment. Since a single injection of rapamycin during superovulation had no side effects on ovulation and early embryonic development, we propose rapamycin may be a good candidate to lower and prevent the risk of OHSS in the future.


Asunto(s)
Síndrome de Hiperestimulación Ovárica/tratamiento farmacológico , Síndrome de Hiperestimulación Ovárica/metabolismo , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Animales , Gonadotropina Coriónica/uso terapéutico , Femenino , Interleucina-11/metabolismo , Interleucina-6/metabolismo , Ratones
10.
J Biol Chem ; 292(5): 1798-1807, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28031467

RESUMEN

Sall4 (Splat-like 4) plays important roles in maintaining pluripotency of embryonic stem cells and in various developmental processes. Here, we find that Sall4 is highly expressed in oocytes and early embryos. To investigate the roles of SALL4 in oogenesis, we generated Sall4 maternal specific knock-out mice by using CRISPR/Cas9 system, and we find that the maternal deletion of Sall4 causes developmental arrest of oocytes at germinal vesicle stage with non-surrounded nucleus, and the subsequent meiosis resumption is prohibited. We further discover that the loss of maternal Sall4 causes failure in establishment of DNA methylation in oocytes. Furthermore, we find that Sall4 modulates H3K4me3 and H3K27me3 modifications by regulating the expression of key histone demethylases coding genes Kdm5b, Kdm6a, and Kdm6b in oocytes. Moreover, we demonstrate that the aberrant H3K4me3 and H3K27me3 cause mis-expression of genes that are critical for oocytes maturation and meiosis resumption. Taken together, our study explores a pivotal role of Sall4 in regulating epigenetic maturation of mouse oocytes.


Asunto(s)
Metilación de ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética/fisiología , Meiosis/fisiología , Oocitos/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Femenino , Histona Demetilasas/biosíntesis , Histona Demetilasas/genética , Histona Demetilasas con Dominio de Jumonji/biosíntesis , Histona Demetilasas con Dominio de Jumonji/genética , Ratones , Ratones Noqueados , Oocitos/citología , Factores de Transcripción/genética
11.
Carbohydr Polym ; 335: 122084, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616102

RESUMEN

Mapping the N-glycome of porcine sperm before and after sperm capacitation is important for understanding the rearrangement of glycoconjugates during capacitation. In this work, we characterized the N-glycome on the membranes of 18 pairs of fresh porcine sperm before capacitation and porcine sperm after capacitation by MALDI-MS (Matrix-assisted laser desorption/ionization-mass spectrometry). A total of 377 N-glycans were detected and a comprehensive N-glycome map of porcine sperm membranes before and after capacitation was generated, which presents the largest N-glycome dataset of porcine sperm cell membranes. Statistical analysis revealed a significantly higher level of high mannose glycosylation and a significantly lower level of fucosylation, galactosylation, and α-2,6-NeuAc after capacitation, which is further verified by flow cytometry and lectin blotting. This research reveals new insights into the relationship between N-glycosylation variations and sperm capacitation, including the underlying mechanisms of the capacitation process.


Asunto(s)
Peróxido de Benzoílo , Semen , Masculino , Porcinos , Animales , Membranas , Membrana Celular , Espermatozoides
12.
Artículo en Inglés | MEDLINE | ID: mdl-38955498

RESUMEN

The development and maturation of follicles is a sophisticated and multistage process. The dynamic gene expression of oocytes and their surrounding somatic cells and the dialogs between these cells are critical to this process. In this study, we accurately classified the oocyte and follicle development into nine stages and profiled the gene expression of mouse oocytes and their surrounding granulosa cells and cumulus cells. The clustering of the transcriptomes showed the trajectories of two distinct development courses of oocytes and their surrounding somatic cells. Gene expression changes precipitously increased at Type 4 stage and drastically dropped afterward within both oocytes and granulosa cells. Moreover, the number of differentially expressed genes between oocytes and granulosa cells dramatically increased at Type 4 stage, most of which persistently passed on to the later stages. Strikingly, cell communications within and between oocytes and granulosa cells became active from Type 4 stage onward. Cell dialogs connected oocytes and granulosa cells in both unidirectional and bidirectional manners. TGFB2/3, TGFBR2/3, INHBA/B, and ACVR1/1B/2B of TGF-ß signaling pathway functioned in the follicle development. NOTCH signaling pathway regulated the development of granulosa cells. Additionally, many maternally DNA methylation- or H3K27me3-imprinted genes remained active in granulosa cells but silent in oocytes during oogenesis. Collectively, Type 4 stage is the key turning point when significant transcription changes diverge the fate of oocytes and granulosa cells, and the cell dialogs become active to assure follicle development. These findings shed new insights on the transcriptome dynamics and cell dialogs facilitating the development and maturation of oocytes and follicles.


Asunto(s)
Células de la Granulosa , Oocitos , Folículo Ovárico , Transcriptoma , Animales , Femenino , Oocitos/metabolismo , Oocitos/crecimiento & desarrollo , Oocitos/citología , Ratones , Células de la Granulosa/metabolismo , Células de la Granulosa/citología , Transcriptoma/genética , Folículo Ovárico/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/citología , Comunicación Celular/genética , Transducción de Señal/genética , Perfilación de la Expresión Génica/métodos , Metilación de ADN/genética , Oogénesis/genética
13.
Stem Cell Res Ther ; 15(1): 115, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38650029

RESUMEN

BACKGROUND: Studies have shown that chemotherapy and radiotherapy can cause premature ovarian failure and loss of fertility in female cancer patients. Ovarian cortex cryopreservation is a good choice to preserve female fertility before cancer treatment. Following the remission of the disease, the thawed ovarian tissue can be transplanted back and restore fertility of the patient. However, there is a risk to reintroduce cancer cells in the body and leads to the recurrence of cancer. Given the low success rate of current in vitro culture techniques for obtaining mature oocytes from primordial follicles, an artificial ovary with primordial follicles may be a good way to solve this problem. METHODS: In the study, we established an artificial ovary model based on the participation of mesenchymal stem cells (MSCs) to evaluate the effect of MSCs on follicular development and oocyte maturation. P2.5 mouse ovaries were digested into single cell suspensions and mixed with bone marrow derived mesenchymal stem cells (BM-MSCs) at a 1:1 ratio. The reconstituted ovarian model was then generated by using phytohemagglutinin. The phenotype and mechanism studies were explored by follicle counting, immunohistochemistry, immunofluorescence, in vitro maturation (IVM), in vitro fertilization (IVF), real-time quantitative polymerase chain reaction (RT-PCR), and Terminal-deoxynucleotidyl transferase mediated nick end labeling(TUNEL) assay. RESULTS: Our study found that the addition of BM-MSCs to the reconstituted ovary can enhance the survival of oocytes and promote the growth and development of follicles. After transplanting the reconstituted ovaries under kidney capsules of the recipient mice, we observed normal folliculogenesis and oocyte maturation. Interestingly, we found that BM-MSCs did not contribute to the formation of follicles in ovarian aggregation, nor did they undergo proliferation during follicle growth. Instead, the cells were found to be located around growing follicles in the reconstituted ovary. When theca cells were labeled with CYP17a1, we found some overlapped staining with green fluorescent protein(GFP)-labeled BM-MSCs. The results suggest that BM-MSCs may participate in directing the differentiation of theca layer in the reconstituted ovary. CONCLUSIONS: The presence of BM-MSCs in the artificial ovary was found to promote the survival of ovarian cells, as well as facilitate follicle formation and development. Since the cells didn't proliferate in the reconstituted ovary, this discovery suggests a potential new and safe method for the application of MSCs in clinical fertility preservation by enhancing the success rate of cryo-thawed ovarian tissues after transplantation.


Asunto(s)
Células Madre Mesenquimatosas , Oocitos , Ovario , Femenino , Animales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ovario/citología , Oocitos/citología , Oocitos/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Folículo Ovárico/metabolismo , Folículo Ovárico/citología
14.
Dev Cell ; 59(5): 613-626.e6, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38325372

RESUMEN

Initiation of timely and sufficient zygotic genome activation (ZGA) is crucial for the beginning of life, yet our knowledge of transcription factors (TFs) contributing to ZGA remains limited. Here, we screened the proteome of early mouse embryos after cycloheximide (CHX) treatment and identified maternally derived KLF17 as a potential TF for ZGA genes. Using a conditional knockout (cKO) mouse model, we further investigated the role of maternal KLF17 and found that it promotes embryonic development and full fertility. Mechanistically, KLF17 preferentially binds to promoters and recruits RNA polymerase II (RNA Pol II) in early 2-cell embryos, facilitating the expression of major ZGA genes. Maternal Klf17 knockout resulted in a downregulation of 9% of ZGA genes and aberrant RNA Pol II pre-configuration, which could be partially rescued by introducing exogenous KLF17. Overall, our study provides a strategy for screening essential ZGA factors and identifies KLF17 as a crucial TF in this process.


Asunto(s)
ARN Polimerasa II , Cigoto , Animales , Ratones , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Genoma , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Cigoto/metabolismo
15.
Nat Cell Biol ; 26(6): 962-974, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839978

RESUMEN

Dynamic epigenomic reprogramming occurs during mammalian oocyte maturation and early development. However, the underlying transcription circuitry remains poorly characterized. By mapping cis-regulatory elements using H3K27ac, we identified putative enhancers in mouse oocytes and early embryos distinct from those in adult tissues, enabling global transitions of regulatory landscapes around fertilization and implantation. Gene deserts harbour prevalent putative enhancers in fully grown oocytes linked to oocyte-specific genes and repeat activation. Embryo-specific enhancers are primed before zygotic genome activation and are restricted by oocyte-inherited H3K27me3. Putative enhancers in oocytes often manifest H3K4me3, bidirectional transcription, Pol II binding and can drive transcription in STARR-seq and a reporter assay. Finally, motif analysis of these elements identified crucial regulators of oogenesis, TCF3 and TCF12, the deficiency of which impairs activation of key oocyte genes and folliculogenesis. These data reveal distinctive regulatory landscapes and their interacting transcription factors that underpin the development of mammalian oocytes and early embryos.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Oocitos , Oogénesis , Animales , Oocitos/metabolismo , Femenino , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Oogénesis/genética , Ratones , Histonas/metabolismo , Histonas/genética , Embrión de Mamíferos/metabolismo , Ratones Endogámicos C57BL , Desarrollo Embrionario/genética , Folículo Ovárico/metabolismo , Ratones Noqueados
16.
Cell Discov ; 10(1): 44, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649348

RESUMEN

Exposure to PM2.5, a harmful type of air pollution, has been associated with compromised male reproductive health; however, it remains unclear whether such exposure can elicit transgenerational effects on male fertility. Here, we aim to examine the effect of paternal exposure to real-world PM2.5 on the reproductive health of male offspring. We have observed that paternal exposure to real-world PM2.5 can lead to transgenerational primary hypogonadism in a sex-selective manner, and we have also confirmed this phenotype by using an external model. Mechanically, we have identified small RNAs (sRNAs) that play a critical role in mediating these transgenerational effects. Specifically, miR6240 and piR016061, which are present in F0 PM sperm, regulate intergenerational transmission by targeting Lhcgr and Nsd1, respectively. We have also uncovered that piR033435 and piR006695 indirectly regulate F1 PM sperm methylation by binding to the 3'-untranslated region of Tet1 mRNA. The reduced expression of Tet1 resulted in hypermethylation of several testosterone synthesis genes, including Lhcgr and Gnas, impaired Leydig cell function and ultimately led to transgenerational primary hypogonadism. Our findings provide insights into the mechanisms underlying the transgenerational effects of paternal PM2.5 exposure on reproductive health, highlighting the crucial role played by sRNAs in mediating these effects. The findings underscore the significance of paternal pre-conception interventions in alleviating the adverse effects of environmental pollutants on reproductive health.

17.
Food Funct ; 14(8): 3659-3672, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36967639

RESUMEN

In this study, the structural characteristics and active sites of the octapeptide (IIAVEAGC), the pentapeptide (IIAVE) and tripeptide (AGC) were studied in silica and in vitro. The quantum mechanics results show that the pentapeptide has better structural features. In addition, the docking of three peptides with Keap1 was compared through molecular docking, indicating that the potential molecular mechanism may show antioxidant activity by occupying the Nrf2 binding site on Keap1. The above results are consistent with the cell (SH-SY5Y cell) experiment. In the cell experiment, the three peptides can reduce the damage of hydrogen peroxide to cells under a non-toxic effect. Among them, pentapeptide has better activity than the other two peptides, and can inhibit the production of reactive oxygen species and reduce the potential damage to the mitochondrial membrane. Interestingly, these three peptides can promote the nuclear expression of Nrf2 and inhibit the PI3K, MAPK, and NF-κB signaling pathways' corresponding influence, but their influence degree is different. This study can provide a theoretical basis for the structure-activity relationship of the active peptide, and also broaden the field of vision for the application of the polypeptide from the microalgal Isochrysis zhanjiangensis in food.


Asunto(s)
Haptophyta , Microalgas , Neuroblastoma , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Microalgas/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Simulación del Acoplamiento Molecular , Especies Reactivas de Oxígeno/metabolismo
18.
Dev Cell ; 58(21): 2376-2392.e6, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37643613

RESUMEN

Embryo implantation requires temporospatial maternal-embryonic dialog. Using single-cell RNA sequencing for the uterus from 2.5 to 4.5 days post-coitum (DPC) and bulk sequencing for the corresponding embryos of 3.5 and 4.0 DPC pregnant mice, we found that estrogen-responsive luminal epithelial cells (EECs) functionally differentiated into adhesive epithelial cells (AECs) and supporting epithelial cells (SECs), promoted by progesterone. Along with maternal signals, embryonic Pdgfa and Efna3/4 signaling activated AECs and SECs, respectively, enhancing the attachment of embryos to the endometrium and furthering embryo development. This differentiation process was largely conserved between humans and mice. Notably, the developmental defects of SOX9-positive human endometrial epithelial cells (similar to mouse EEC) were related to thin endometrium, whereas functional defects of SEC-similar unciliated epithelial cells were related to recurrent implantation failure (RIF). Our findings provide insights into endometrial luminal epithelial cell development directed by maternal and embryonic signaling, which is crucial for endometrial receptivity.


Asunto(s)
Implantación del Embrión , Células Epiteliales , Embarazo , Femenino , Humanos , Animales , Ratones , Implantación del Embrión/genética , Desarrollo Embrionario , Endometrio/fisiología , Diferenciación Celular
19.
Front Cell Dev Biol ; 10: 799042, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35178387

RESUMEN

Numerous studies have reported how inner cell mass (ICM) and trophectoderm (TE) was determined during the process of early mouse embryonic development from zygotes into organized blastocysts, however, multiple mysteries still remain. It is noteworthy that pluripotent stem cells (PSCs), which are derived from embryos at different developmental stages, have identical developmental potential and molecular characteristics to their counterpart embryos. Advances of PSCs research may provide us a distinctive perspective of deciphering embryonic development mechanism. Minocycline hydrochloride (MiH), a critical component for maintaining medium of novel type of extended pluripotent stem cells, which possesses developmental potential similar to both ICM and TE, can be substituted with genetic disruption of Parp1 in our previous study. Though Parp1-deficient mouse ESCs are more susceptible to differentiate into trophoblast derivatives, what role of MiH plays in mouse preimplantation embryonic development is still a subject of concern. Here, by incubating mouse zygotes in a medium containing MiH till 100 h after fertilization, we found that MiH could slow down embryonic developmental kinetics during cleavage stage without impairing blastocyst formation potential. Olaparib and Talazoparib, two FDA approved PARP1 inhibitors, exhibited similar effects on mouse embryos, indicating the aforementioned effects of MiH were through inhibiting of PARP1. Besides, we showed an embryonic protective role of MiH against suboptimal environment including long term exposure to external environment and H2O2 treatment, which could mimic inevitable manipulation during embryo culture procedures in clinical IVF laboratory. To our knowledge, it is not only for the first time to study MiH in the field of embryo development, but also for the first time to propose MiH as a protective supplement for embryo culture, giving the way to more studies on exploring the multiple molecular mechanisms on embryonic development that might be useful in assisted reproductive technology.

20.
Photochem Photobiol ; 98(5): 1131-1139, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34897721

RESUMEN

Skin is the outmost layer of human and sustains most of the external UVB irradiation, which possibly causes the skin photoaging. As a natural antioxidant, marine natural products have been paid more and more attention to their positive effects on photoaging. 6,6'-bieckol is a phlorotanin isolated from Ecklonia cava, while its antiphotoaging bioactivity and mechanism have not been clear yet. This study proves that 6,6'-bieckol enhances cells viability and decreases the level of ROS in UVB-induced human immortalized keratinocytes (HaCaT) cells. It also resulted in significant downregulation of matrix metalloproteinases (MMPs), p-c-Fos, phosphorylated JNK, p38, IκB and p65. In addition, molecular docking also showed that 6,6'-bieckol could bind to MMP-1, MMP-3 and MMP-9. Finally, it was proved that 6,6'-bieckol acts on MMPs through the MAPK/AP-1 and NF-κB pathways to reduce UVB-induced oxidative stress damage in HaCaT cells. Therefore, 6,6'-bieckol is a functional food and skin care ingredient with great potential in preventing photoaging.


Asunto(s)
Productos Biológicos , Envejecimiento de la Piel , Antioxidantes/farmacología , Dioxinas , Fibroblastos/efectos de la radiación , Humanos , Queratinocitos/efectos de la radiación , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz , Metaloproteinasa 9 de la Matriz/metabolismo , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno , Factor de Transcripción AP-1/metabolismo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA