Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 132(9): 1144-1161, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37017084

RESUMEN

BACKGROUND: Genome-wide association studies have identified hundreds of loci associated with common vascular diseases, such as coronary artery disease, myocardial infarction, and hypertension. However, the lack of mechanistic insights for many GWAS loci limits their translation into the clinic. Among these loci with unknown functions is UFL1-four-and-a-half LIM (LIN-11, Isl-1, MEC-3) domain 5 (FHL5; chr6q16.1), which reached genome-wide significance in a recent coronary artery disease/ myocardial infarction GWAS meta-analysis. UFL1-FHL5 is also associated with several vascular diseases, consistent with the widespread pleiotropy observed for GWAS loci. METHODS: We apply a multimodal approach leveraging statistical fine-mapping, epigenomic profiling, and ex vivo analysis of human coronary artery tissues to implicate FHL5 as the top candidate causal gene. We unravel the molecular mechanisms of the cross-phenotype genetic associations through in vitro functional analyses and epigenomic profiling experiments in coronary artery smooth muscle cells. RESULTS: We prioritized FHL5 as the top candidate causal gene at the UFL1-FHL5 locus through expression quantitative trait locus colocalization methods. FHL5 gene expression was enriched in the smooth muscle cells and pericyte population in human artery tissues with coexpression network analyses supporting a functional role in regulating smooth muscle cell contraction. Unexpectedly, under procalcifying conditions, FHL5 overexpression promoted vascular calcification and dysregulated processes related to extracellular matrix organization and calcium handling. Lastly, by mapping FHL5 binding sites and inferring FHL5 target gene function using artery tissue gene regulatory network analyses, we highlight regulatory interactions between FHL5 and downstream coronary artery disease/myocardial infarction loci, such as FOXL1 and FN1 that have roles in vascular remodeling. CONCLUSIONS: Taken together, these studies provide mechanistic insights into the pleiotropic genetic associations of UFL1-FHL5. We show that FHL5 mediates vascular disease risk through transcriptional regulation of downstream vascular remodeling gene programs. These transacting mechanisms may explain a portion of the heritable risk for complex vascular diseases.


Asunto(s)
Enfermedad de la Arteria Coronaria , Hipertensión , Infarto del Miocardio , Humanos , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Estudio de Asociación del Genoma Completo , Remodelación Vascular , Infarto del Miocardio/metabolismo , Hipertensión/metabolismo , Miocitos del Músculo Liso/metabolismo , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Factores de Transcripción/metabolismo , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo
2.
Angiogenesis ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780883

RESUMEN

The presence of atherosclerotic plaque vessels is a critical factor in plaque destabilization. This may be attributable to the leaky phenotype of these microvessels, although direct proof for this notion is lacking. In this study, we investigated molecular and cellular patterns of stable and hemorrhaged human plaque to identify novel drivers of intraplaque vessel dysfunction. From transcriptome data of a human atherosclerotic lesion cohort, we reconstructed a co-expression network, identifying a gene module strongly and selectively correlated with both plaque microvascular density and inflammation. Spectrin Beta Non-Erythrocytic 1 (sptbn1) was identified as one of the central hubs of this module (along with zeb1 and dock1) and was selected for further study based on its predominant endothelial expression. Silencing of sptbn1 enhanced leukocyte transmigration and vascular permeability in vitro, characterized by an increased number of focal adhesions and reduced junctional VE-cadherin. In vivo, sptbn1 knockdown in zebrafish impaired the development of the caudal vein plexus. Mechanistically, increased substrate stiffness was associated with sptbn1 downregulation in endothelial cells in vitro and in human vessels. Plaque SPTBN1 mRNA and protein expression were found to correlate with an enhanced presence of intraplaque hemorrhage and future cardiovascular disease (CVD) events during follow-up. In conclusion, we identify SPTBN1 as a central hub gene in a gene program correlating with plaque vascularisation. SPTBN1 was regulated by substrate stiffness in vitro while silencing blocked vascular development in vivo, and compromised barrier function in vitro. Together, SPTBN1 is identified as a new potential regulator of the leaky phenotype of atherosclerotic plaque microvessels.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38486367

RESUMEN

BACKGROUND: Risk-based thresholds for arteriovenous (AV) access creation has been proposed to aid vascular access planning. We aimed to assess the clinical impact of implementing the kidney failure risk equation (KFRE) for vascular access referral. METHODS: 16,102 nephrology-referred chronic kidney disease (CKD) patients from the Swedish Renal Registry 2008-2018 were included. The KFRE was calculated repeatedly, and the timing was identified for when the KFRE risk exceeded several pre-defined thresholds and/or the estimated glomerular filtration rate <15 ml/min/1.73m2 (eGFR15). To assess the utility of the KFRE/eGFR thresholds, cumulative incidence curves of kidney replacement therapy (KRT) or death, and decision-curve analyses were computed at 6, 12 months, and 2 years. The potential impact of using the different thresholds was illustrated by an example from the Swedish access registry. RESULTS: The 12-month specificity for KRT initiation was highest for KFRE>50% 94.5 (95% Confidence interval [CI] 94.3-94.7), followed by KFRE>40% 90.0 (95% CI 89.7-90.3), while sensitivity was highest for KFRE>30% 79.3 (95% CI 78.2-80.3) and eGFR<15 ml/min/1.73m2 81.2 (95% CI 80.2-82.2). The 2-year positive predictive value was 71.5 (95% CI 70.2-72.8), 61.7 (95% CI 60.4-63.0) and 47.2 (95% CI 46.1-48.3) for KFRE>50%, KFRE>40%, and eGFR<15 respectively. Decision curve analyses suggested the largest net benefit for KFRE>40% over two years and KFRE>50% over 12 months when it is important to avoid the harm of possibly unnecessary surgery. In Sweden, 54% of nephrology-referred patients started hemodialysis in a central venous catheter (CVC) of which only 5% had AV access surgery >6 months before initiation. 60% of the CVC patients exceeded KFRE>40% a median of 0.8 years (interquartile range 0.4-1.5) before KRT initiation. CONCLUSIONS: The utility of using KFRE>40% and KFRE>50% is higher compared to the more traditionally used eGFR threshold <15 ml/min/1.73m2 for vascular access planning.

4.
Arterioscler Thromb Vasc Biol ; 42(5): 659-676, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35321563

RESUMEN

BACKGROUND: Understanding the processes behind carotid plaque instability is necessary to develop methods for identification of patients and lesions with stroke risk. Here, we investigated molecular signatures in human plaques stratified by echogenicity as assessed by duplex ultrasound. METHODS: Lesion echogenicity was correlated to microarray gene expression profiles from carotid endarterectomies (n=96). The findings were extended into studies of human and mouse atherosclerotic lesions in situ, followed by functional investigations in vitro in human carotid smooth muscle cells (SMCs). RESULTS: Pathway analyses highlighted muscle differentiation, iron homeostasis, calcification, matrix organization, cell survival balance, and BCLAF1 (BCL2 [B-cell lymphoma 2]-associated transcription factor 1) as the most significant signatures. BCLAF1 was downregulated in echolucent plaques, positively correlated to proliferation and negatively to apoptosis. By immunohistochemistry, BCLAF1 was found in normal medial SMCs. It was repressed early during atherogenesis but reappeared in CD68+ cells in advanced plaques and interacted with BCL2 by proximity ligation assay. In cultured SMCs, BCLAF1 was induced by differentiation factors and mitogens and suppressed by macrophage-conditioned medium. BCLAF1 silencing led to downregulation of BCL2 and SMC markers, reduced proliferation, and increased apoptosis. Transdifferentiation of SMCs by oxLDL (oxidized low-denisty lipoprotein) was accompanied by upregulation of BCLAF1, CD36, and CD68, while oxLDL exposure with BCLAF1 silencing preserved MYH (myosin heavy chain) 11 expression and prevented transdifferentiation. BCLAF1 was associated with expression of cell differentiation, contractility, viability, and inflammatory genes, as well as the scavenger receptors CD36 and CD68. BCLAF1 expression in CD68+/BCL2+ cells of SMC origin was verified in plaques from MYH11 lineage-tracing atherosclerotic mice. Moreover, BCLAF1 downregulation associated with vulnerability parameters and cardiovascular risk in patients with carotid atherosclerosis. CONCLUSIONS: Plaque echogenicity correlated with enrichment of distinct molecular pathways and identified BCLAF1, previously not described in atherosclerosis, as the most significant gene. Functionally, BCLAF1 seems necessary for survival and transdifferentiation of SMCs into a macrophage-like phenotype. The role of BCLAF1 in plaque vulnerability should be further evaluated.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Proteínas Represoras/metabolismo , Animales , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/genética , Aterosclerosis/metabolismo , Transdiferenciación Celular , Humanos , Lípidos , Ratones , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Represoras/genética , Transcriptoma , Proteínas Supresoras de Tumor/genética , Ultrasonografía
5.
Eur J Vasc Endovasc Surg ; 65(6): 778-786, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871924

RESUMEN

OBJECTIVE: Carotid endarterectomy (CEA) is an effective surgical method for stroke prevention in selected patients with carotid stenosis. Few contemporary studies report on the long term mortality rate in CEA treated patients, despite continuous changes in medication, diagnostics, and patient selection. Here, the long term mortality rate is described in a well characterised cohort of asymptomatic and symptomatic CEA patients, sex differences evaluated, and mortality ratio compared with the general population. METHODS: This was a two centre, non-randomised, observational study evaluating all cause, long term mortality in CEA patients from Stockholm, Sweden between 1998 and 2017. Death and comorbidities were extracted from national registries and medical records. Cox regression was adapted to analyse associations between clinical characteristics and outcome. Sex differences and standardised mortality ratio (SMR, age and sex matched) were studied. RESULTS: A total of 1 033 patients were followed for 6.6 ± 4.8 years. Of those, 349 patients died during follow up where the overall mortality rate was similar in asymptomatic and symptomatic patients (34.2% vs. 33.7%, p = .89). Symptomatic disease did not influence the mortality risk (adjusted HR 1.14, 95% CI 0.81 - 1.62). Women had lower crude mortality rate than men in the first 10 years (20.8% vs. 27.6%, p = .019). In women, cardiac disease was associated with increased mortality (adjusted HR 3.55, 95% CI 2.18 - 5.79), while in men, lipid lowering medication was protective (adjusted HR 0.61, 95% CI 0.39 - 0.96). Within the first five years after surgery, SMR was increased for all patients (men 1.50, 95% CI 1.21 - 1.86; women 2.41, 95% CI 1.74 - 3.35), as well as in patients < 80 years (SMR 1.46, 95% CI 1.23 - 1.73). CONCLUSION: Symptomatic and asymptomatic carotid patients have similar long term mortality rates after CEA, but men had worse outcome than women. Sex, age, and time after surgery were shown to influence SMR. These results highlight the need for targeted secondary prevention, to alter the long term adverse effects in CEA patients.


Asunto(s)
Estenosis Carotídea , Endarterectomía Carotidea , Accidente Cerebrovascular , Humanos , Femenino , Masculino , Endarterectomía Carotidea/efectos adversos , Factores de Riesgo , Resultado del Tratamiento , Estenosis Carotídea/diagnóstico por imagen , Estenosis Carotídea/cirugía , Arterias Carótidas , Accidente Cerebrovascular/epidemiología , Estudios Retrospectivos , Medición de Riesgo , Stents
6.
PLoS Genet ; 16(1): e1008538, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31917787

RESUMEN

Genome-wide association studies have identified multiple novel genomic loci associated with vascular diseases. Many of these loci are common non-coding variants that affect the expression of disease-relevant genes within coronary vascular cells. To identify such genes on a genome-wide level, we performed deep transcriptomic analysis of genotyped primary human coronary artery smooth muscle cells (HCASMCs) and coronary endothelial cells (HCAECs) from the same subjects, including splicing Quantitative Trait Loci (sQTL), allele-specific expression (ASE), and colocalization analyses. We identified sQTLs for TARS2, YAP1, CFDP1, and STAT6 in HCASMCs and HCAECs, and 233 ASE genes, a subset of which are also GTEx eGenes in arterial tissues. Colocalization of GWAS association signals for coronary artery disease (CAD), migraine, stroke and abdominal aortic aneurysm with GTEx eGenes in aorta, coronary artery and tibial artery discovered novel candidate risk genes for these diseases. At the CAD and stroke locus tagged by rs2107595 we demonstrate colocalization with expression of the proximal gene TWIST1. We show that disrupting the rs2107595 locus alters TWIST1 expression and that the risk allele has increased binding of the NOTCH signaling protein RBPJ. Finally, we provide data that TWIST1 expression influences vascular SMC phenotypes, including proliferation and calcification, as a potential mechanism supporting a role for TWIST1 in CAD.


Asunto(s)
Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Nucleares/genética , Proteína 1 Relacionada con Twist/genética , Enfermedades Vasculares/genética , Células Cultivadas , Vasos Coronarios/citología , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Proteínas Nucleares/metabolismo , Polimorfismo de Nucleótido Simple , Unión Proteica , Transcriptoma , Proteína 1 Relacionada con Twist/metabolismo
7.
Circulation ; 144(19): 1567-1583, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34647815

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) are important regulators of biological processes involved in vascular tissue homeostasis and disease development. The present study assessed the functional contribution of the lncRNA myocardial infarction-associated transcript (MIAT) to atherosclerosis and carotid artery disease. METHODS: We profiled differences in RNA transcript expression in patients with advanced carotid artery atherosclerotic lesions from the Biobank of Karolinska Endarterectomies. The lncRNA MIAT was identified as the most upregulated noncoding RNA transcript in carotid plaques compared with nonatherosclerotic control arteries, which was confirmed by quantitative real-time polymerase chain reaction and in situ hybridization. RESULTS: Experimental knockdown of MIAT, using site-specific antisense oligonucleotides (LNA-GapmeRs) not only markedly decreased proliferation and migration rates of cultured human carotid artery smooth muscle cells (SMCs) but also increased their apoptosis. MIAT mechanistically regulated SMC proliferation through the EGR1 (Early Growth Response 1)-ELK1 (ETS Transcription Factor ELK1)-ERK (Extracellular Signal-Regulated Kinase) pathway. MIAT is further involved in SMC phenotypic transition to proinflammatory macrophage-like cells through binding to the promoter region of KLF4 and enhancing its transcription. Studies using Miat-/- and Miat-/-ApoE-/- mice, and Yucatan LDLR-/- mini-pigs, as well, confirmed the regulatory role of this lncRNA in SMC de- and transdifferentiation and advanced atherosclerotic lesion formation. CONCLUSIONS: The lncRNA MIAT is a novel regulator of cellular processes in advanced atherosclerosis that controls proliferation, apoptosis, and phenotypic transition of SMCs, and the proinflammatory properties of macrophages, as well.


Asunto(s)
Aterosclerosis/genética , Placa Aterosclerótica/genética , ARN Largo no Codificante/metabolismo , Animales , Humanos , Ratones
8.
Circulation ; 143(2): 163-177, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33222501

RESUMEN

BACKGROUND: Chronic activation of the innate immune system drives inflammation and contributes directly to atherosclerosis. We previously showed that macrophages in the atherogenic plaque undergo RIPK3 (receptor-interacting serine/threonine-protein kinase 3)-MLKL (mixed lineage kinase domain-like protein)-dependent programmed necroptosis in response to sterile ligands such as oxidized low-density lipoprotein and damage-associated molecular patterns and that necroptosis is active in advanced atherosclerotic plaques. Upstream of the RIPK3-MLKL necroptotic machinery lies RIPK1 (receptor-interacting serine/threonine-protein kinase 1), which acts as a master switch that controls whether the cell undergoes NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells)-dependent inflammation, caspase-dependent apoptosis, or necroptosis in response to extracellular stimuli. We therefore set out to investigate the role of RIPK1 in the development of atherosclerosis, which is driven largely by NF-κB-dependent inflammation at early stages. We hypothesize that, unlike RIPK3 and MLKL, RIPK1 primarily drives NF-κB-dependent inflammation in early atherogenic lesions, and knocking down RIPK1 will reduce inflammatory cell activation and protect against the progression of atherosclerosis. METHODS: We examined expression of RIPK1 protein and mRNA in both human and mouse atherosclerotic lesions, and used loss-of-function approaches in vitro in macrophages and endothelial cells to measure inflammatory responses. We administered weekly injections of RIPK1 antisense oligonucleotides to Apoe-/- mice fed a cholesterol-rich (Western) diet for 8 weeks. RESULTS: We find that RIPK1 expression is abundant in early-stage atherosclerotic lesions in both humans and mice. Treatment with RIPK1 antisense oligonucleotides led to a reduction in aortic sinus and en face lesion areas (47.2% or 58.8% decrease relative to control, P<0.01) and plasma inflammatory cytokines (IL-1α [interleukin 1α], IL-17A [interleukin 17A], P<0.05) in comparison with controls. RIPK1 knockdown in macrophages decreased inflammatory genes (NF-κB, TNFα [tumor necrosis factor α], IL-1α) and in vivo lipopolysaccharide- and atherogenic diet-induced NF-κB activation. In endothelial cells, knockdown of RIPK1 prevented NF-κB translocation to the nucleus in response to TNFα, where accordingly there was a reduction in gene expression of IL1B, E-selectin, and monocyte attachment. CONCLUSIONS: We identify RIPK1 as a central driver of inflammation in atherosclerosis by its ability to activate the NF-κB pathway and promote inflammatory cytokine release. Given the high levels of RIPK1 expression in human atherosclerotic lesions, our study suggests RIPK1 as a future therapeutic target to reduce residual inflammation in patients at high risk of coronary artery disease.


Asunto(s)
Aterosclerosis/metabolismo , Silenciador del Gen/fisiología , Mediadores de Inflamación/metabolismo , FN-kappa B/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/biosíntesis , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Células Cultivadas , Colesterol en la Dieta/administración & dosificación , Colesterol en la Dieta/efectos adversos , Femenino , Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
9.
Circ Res ; 127(7): 911-927, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32564697

RESUMEN

RATIONALE: Vascular calcification, the formation of calcium phosphate crystals in the vessel wall, is mediated by vascular smooth muscle cells (VSMCs). However, the underlying molecular mechanisms remain elusive, precluding mechanism-based therapies. OBJECTIVE: Phenotypic switching denotes a loss of contractile proteins and an increase in migration and proliferation, whereby VSMCs are termed synthetic. We examined how VSMC phenotypic switching influences vascular calcification and the possible role of the uniquely calcium-dependent reactive oxygen species (ROS)-forming Nox5 (NADPH oxidase 5). METHODS AND RESULTS: In vitro cultures of synthetic VSMCs showed decreased expression of contractile markers CNN-1 (calponin 1), α-SMA (α-smooth muscle actin), and SM22-α (smooth muscle protein 22α) and an increase in synthetic marker S100A4 (S100 calcium binding protein A4) compared with contractile VSMCs. This was associated with increased calcification of synthetic cells in response to high extracellular Ca2+. Phenotypic switching was accompanied by increased levels of ROS and Ca2+-dependent Nox5 in synthetic VSMCs. Nox5 itself regulated VSMC phenotype as siRNA knockdown of Nox5 increased contractile marker expression and decreased calcification, while overexpression of Nox5 decreased contractile marker expression. ROS production in synthetic VSMCs was cytosolic Ca2+-dependent, in line with it being mediated by Nox5. Treatment of VSMCs with Ca2+ loaded extracellular vesicles (EVs) lead to an increase in cytosolic Ca2+. Inhibiting EV endocytosis with dynasore blocked the increase in cytosolic Ca2+ and VSMC calcification. Increased ROS production resulted in increased EV release and decreased phagocytosis by VSMCs. CONCLUSIONS: We show here that contractile VSMCs are resistant to calcification and identify Nox5 as a key regulator of VSMC phenotypic switching. Additionally, we describe a new mechanism of Ca2+ uptake via EVs and show that Ca2+ induces ROS production in VSMCs via Nox5. ROS production is required for release of EVs, which promote calcification. Identifying molecular pathways that control Nox5 and VSMC-derived EVs provides potential targets to modulate vascular remodeling and calcification in the context of mineral imbalance. Graphic Abstract: A graphic abstract is available for this article.


Asunto(s)
Movimiento Celular , Proliferación Celular , Vesículas Extracelulares/enzimología , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , NADPH Oxidasa 5/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Calcificación Vascular/enzimología , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Vesículas Extracelulares/genética , Vesículas Extracelulares/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , NADPH Oxidasa 5/genética , Fagocitosis , Fenotipo , Transducción de Señal , Sus scrofa , Calcificación Vascular/genética , Calcificación Vascular/patología
10.
Circ Res ; 126(5): 571-585, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31893970

RESUMEN

RATIONALE: PCSKs (Proprotein convertase subtilisins/kexins) are a protease family with unknown functions in vasculature. Previously, we demonstrated PCSK6 upregulation in human atherosclerotic plaques associated with smooth muscle cells (SMCs), inflammation, extracellular matrix remodeling, and mitogens. OBJECTIVE: Here, we applied a systems biology approach to gain deeper insights into the PCSK6 role in normal and diseased vessel wall. METHODS AND RESULTS: Genetic analyses revealed association of intronic PCSK6 variant rs1531817 with maximum internal carotid intima-media thickness progression in high-cardiovascular risk subjects. This variant was linked with PCSK6 mRNA expression in healthy aortas and plaques but also with overall plaque SMA+ cell content and pericyte fraction. Increased PCSK6 expression was found in several independent human cohorts comparing atherosclerotic lesions versus healthy arteries, using transcriptomic and proteomic datasets. By immunohistochemistry, PCSK6 was localized to fibrous cap SMA+ cells and neovessels in plaques. In human, rat, and mouse intimal hyperplasia, PCSK6 was expressed by proliferating SMA+ cells and upregulated after 5 days in rat carotid balloon injury model, with positive correlation to PDGFB (platelet-derived growth factor subunit B) and MMP (matrix metalloprotease) 2/MMP14. Here, PCSK6 was shown to colocalize and cointeract with MMP2/MMP14 by in situ proximity ligation assay. Microarrays of carotid arteries from Pcsk6-/- versus control mice revealed suppression of contractile SMC markers, extracellular matrix remodeling enzymes, and cytokines/receptors. Pcsk6-/- mice showed reduced intimal hyperplasia response upon carotid ligation in vivo, accompanied by decreased MMP14 activation and impaired SMC outgrowth from aortic rings ex vivo. PCSK6 silencing in human SMCs in vitro leads to downregulation of contractile markers and increase in MMP2 expression. Conversely, PCSK6 overexpression increased PDGFBB (platelet-derived growth factor BB)-induced cell proliferation and particularly migration. CONCLUSIONS: PCSK6 is a novel protease that induces SMC migration in response to PDGFB, mechanistically via modulation of contractile markers and MMP14 activation. This study establishes PCSK6 as a key regulator of SMC function in vascular remodeling. Visual Overview: An online visual overview is available for this article.


Asunto(s)
Miocitos del Músculo Liso/metabolismo , Proproteína Convertasas/genética , Serina Endopeptidasas/genética , Remodelación Vascular , Animales , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Masculino , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/fisiología , Polimorfismo de Nucleótido Simple , Proproteína Convertasas/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Ratas , Ratas Sprague-Dawley , Serina Endopeptidasas/metabolismo , Transcriptoma
11.
Nephrol Dial Transplant ; 37(9): 1742-1750, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35138407

RESUMEN

BACKGROUND: There is no consensus whether an arteriovenous (AV) access thrombosis is best treated by surgical or endovascular intervention. We compared the influence of surgical versus endovascular intervention for AV access thrombosis on access survival using real-life data from a national access registry. METHODS: We included patients from the Swedish Renal Access Registry (SRR-Access) with a working AV access undergoing surgical or endovascular intervention for their first thrombosis between 2008 and 2020. The primary outcome was the risk of access abandonment (secondary patency at 30, 60, 90 and 365 days). Secondary outcomes were time to next intervention and 30-day mortality. Access characteristics were obtained from the SRR-Access and patient characteristics were collected from the Swedish Renal Registry. Outcomes were assessed with multivariable logistic regression and Cox proportional hazards regression models adjusted for demographics, clinical and access-related variables. RESULTS: A total of 904 patients with AV access thrombosis (54% arteriovenous fistula, 35% upper arm access) were included, with a mean age of 62 years, 60% were women, 75% had hypertension and 33% had diabetes. Secondary patency was superior after endovascular intervention versus surgical (85% versus 77% at 30 days and 76% versus 69% at 90 days). The adjusted odds of access abandonment within 90 days and 1 year were higher in the surgical thrombectomy group {odds ratio (OR) 1.44 [95% confidence interval (CI) 1.05-1.97] and OR 1.25 (0.94-1.66), respectively}. Results were consistent in the long-term analysis. There was no significant difference in time to next intervention or mortality, and results were consistent within subgroups. CONCLUSIONS: Endovascular intervention was associated with a small short- and long-term benefit as compared with open surgery in haemodialysis patients with AV access thrombosis.


Asunto(s)
Derivación Arteriovenosa Quirúrgica , Trombosis , Derivación Arteriovenosa Quirúrgica/efectos adversos , Derivación Arteriovenosa Quirúrgica/métodos , Femenino , Oclusión de Injerto Vascular/cirugía , Humanos , Masculino , Persona de Mediana Edad , Diálisis Renal/métodos , Estudios Retrospectivos , Factores de Riesgo , Trombosis/etiología , Trombosis/cirugía , Resultado del Tratamiento , Grado de Desobstrucción Vascular
13.
Nature ; 536(7614): 86-90, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27437576

RESUMEN

Atherosclerosis is the disease process that underlies heart attack and stroke. Advanced lesions at risk of rupture are characterized by the pathological accumulation of diseased vascular cells and apoptotic cellular debris. Why these cells are not cleared remains unknown. Here we show that atherogenesis is associated with upregulation of CD47, a key anti-phagocytic molecule that is known to render malignant cells resistant to programmed cell removal, or 'efferocytosis'. We find that administration of CD47-blocking antibodies reverses this defect in efferocytosis, normalizes the clearance of diseased vascular tissue, and ameliorates atherosclerosis in multiple mouse models. Mechanistic studies implicate the pro-atherosclerotic factor TNF-α as a fundamental driver of impaired programmed cell removal, explaining why this process is compromised in vascular disease. Similar to recent observations in cancer, impaired efferocytosis appears to play a pathogenic role in cardiovascular disease, but is not a fixed defect and may represent a novel therapeutic target.


Asunto(s)
Anticuerpos Bloqueadores/inmunología , Anticuerpos Bloqueadores/farmacología , Aterosclerosis/prevención & control , Antígeno CD47/inmunología , Fagocitosis/efectos de los fármacos , Animales , Apoptosis , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/terapia , Antígeno CD47/biosíntesis , Antígeno CD47/metabolismo , Arterias Carótidas/patología , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , FN-kappa B/metabolismo , Biosíntesis de Proteínas , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba
14.
Proc Natl Acad Sci U S A ; 116(33): 16410-16419, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31350345

RESUMEN

Atherosclerosis is a chronic inflammatory disease that is driven, in part, by activation of vascular endothelial cells (ECs). In response to inflammatory stimuli, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway orchestrates the expression of a network of EC genes that contribute to monocyte recruitment and diapedesis across the endothelium. Although many long noncoding RNAs (lncRNAs) are dysregulated in atherosclerosis, they remain poorly characterized, especially in the context of human vascular inflammation. Prior studies have illustrated that lncRNAs can regulate their neighboring protein-coding genes via interaction with protein complexes. We therefore identified and characterized neighboring interleukin-1ß (IL-1ß)-regulated messenger RNA (mRNA)-lncRNA pairs in ECs. We found these pairs to be highly correlated in expression, especially when located within the same chromatin territory. Additionally, these pairs were predominantly divergently transcribed and shared common gene regulatory elements, characterized by active histone marks and NF-κB binding. Further analysis was performed on lncRNA-CCL2, which is transcribed divergently to the gene, CCL2, encoding a proatherosclerotic chemokine. LncRNA-CCL2 and CCL2 showed coordinate up-regulation in response to inflammatory stimuli, and their expression was correlated in unstable symptomatic human atherosclerotic plaques. Knock-down experiments revealed that lncRNA-CCL2 positively regulated CCL2 mRNA levels in multiple primary ECs and EC cell lines. This regulation appeared to involve the interaction of lncRNA-CCL2 with RNA binding proteins, including HNRNPU and IGF2BP2. Hence, our approach has uncovered a network of neighboring mRNA-lncRNA pairs in the setting of inflammation and identified the function of an lncRNA, lncRNA-CCL2, which may contribute to atherogenesis in humans.


Asunto(s)
Aterosclerosis/genética , Quimiocina CCL2/genética , Inflamación/genética , ARN Largo no Codificante/genética , Aterosclerosis/patología , Línea Celular , Cromatina/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Código de Histonas/genética , Humanos , Inflamación/patología , Interleucina-1beta/genética , FN-kappa B/genética , ARN Mensajero/genética , Proteínas de Unión al ARN , Transducción de Señal/genética
15.
Nephrol Dial Transplant ; 36(2): 275-280, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-31665436

RESUMEN

BACKGROUND: There is controversial evidence on whether arteriovenous access (AVA) placement may protect renal function and hence should be considered in the timing of access placement. This study aimed to investigate the association between AVA placement and estimated glomerular filtration rate (eGFR) decline as compared with the placement of a peritoneal dialysis catheter (PDC) at a similar time point. METHODS: We studied a cohort of 744 pre-dialysis patients in Stockholm, Sweden, who underwent surgery for AVA or PDC between 2006 and 2012. Data on comorbidity, medication and laboratory measures were collected 100 days before and after surgery. Patients were followed until dialysis start, death or 100 days, whichever came first. The primary outcome was difference in eGFR decline after AVA surgery compared with PDC. Decline in eGFR was estimated through linear mixed models with random intercept and slope, before and after surgery. RESULTS: There were 435 AVA and 309 PDC patients. The AVA patients had higher eGFR (8.1 mL/min/1.73 m2 versus 7.0 mL/min/1.73 m2) and less rapid eGFR decline before surgery (-5.6 mL/min/1.73 m2/year compared with -6.7 mL/min/1.73 m2/year for PDC). We found no difference in eGFR decline after surgery in AVA patients compared with PDC patients [AVA progressed 0.26 (95% confidence interval -0.88 to 0.35) mL/min/1.73 m2/year faster after surgery compared with PDC]. CONCLUSIONS: There was no significant difference in eGFR decline after placement of an AVA compared with a PDC. Both forms of access were associated with reduced eGFR decline in our population. The need for dialysis remains the main determinant for timing of access surgery.


Asunto(s)
Derivación Arteriovenosa Quirúrgica/efectos adversos , Cateterismo/efectos adversos , Fallo Renal Crónico/patología , Insuficiencia Renal Crónica/cirugía , Dispositivos de Acceso Vascular/efectos adversos , Anciano , Estudios de Cohortes , Femenino , Tasa de Filtración Glomerular , Humanos , Fallo Renal Crónico/epidemiología , Fallo Renal Crónico/etiología , Masculino , Persona de Mediana Edad , Factores de Riesgo , Suecia/epidemiología
16.
Cerebrovasc Dis ; 50(1): 108-120, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33440369

RESUMEN

BACKGROUND: In the last 20-30 years, there have been many advances in imaging and therapeutic strategies for symptomatic and asymptomatic individuals with carotid artery stenosis. Our aim was to examine contemporary multinational practice standards. METHODS: Departmental Review Board approval for this study was obtained, and 3 authors prepared the 44 multiple choice survey questions. Endorsement was obtained by the European Society of Neuroradiology, American Society of Functional Neuroradiology, and African Academy of Neurology. A link to the online questionnaire was sent to their respective members and members of the Faculty Advocating Collaborative and Thoughtful Carotid Artery Treatments (FACTCATS). The questionnaire was open from May 16 to July 16, 2019. RESULTS: The responses from 223 respondents from 46 countries were included in the analyses including 65.9% from academic university hospitals. Neuroradiologists/radiologists comprised 68.2% of respondents, followed by neurologists (15%) and vascular surgeons (12.9%). In symptomatic patients, half (50.4%) the respondents answered that the first exam they used to evaluate carotid bifurcation was ultrasound, followed by computed tomography angiography (CTA, 41.6%) and then magnetic resonance imaging (MRI 8%). In asymptomatic patients, the first exam used to evaluate carotid bifurcation was ultrasound in 88.8% of respondents, CTA in 7%, and MRA in 4.2%. The percent stenosis upon which carotid endarterectomy or stenting was recommended was reduced in the presence of imaging evidence of "vulnerable plaque features" by 66.7% respondents for symptomatic patients and 34.2% for asymptomatic patients with a smaller subset of respondents even offering procedural intervention to patients with <50% symptomatic or asymptomatic stenosis. CONCLUSIONS: We found heterogeneity in current practices of carotid stenosis imaging and management in this worldwide survey with many respondents including vulnerable plaque imaging into their decision analysis despite the lack of proven benefit from clinical trials. This study highlights the need for new clinical trials using vulnerable plaque imaging to select high-risk patients despite maximal medical therapy who may benefit from procedural intervention.


Asunto(s)
Estenosis Carotídea/diagnóstico por imagen , Estenosis Carotídea/terapia , Endarterectomía Carotidea/tendencias , Procedimientos Endovasculares/tendencias , Neuroimagen/tendencias , Angiografía Cerebral/tendencias , Angiografía por Tomografía Computarizada/tendencias , Encuestas de Atención de la Salud , Humanos , Pautas de la Práctica en Medicina/tendencias , Valor Predictivo de las Pruebas , Resultado del Tratamiento , Ultrasonografía/tendencias
17.
Arterioscler Thromb Vasc Biol ; 40(2): 412-425, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31852219

RESUMEN

OBJECTIVE: Atherosclerosis is a leading cause of death in developed countries. MicroRNAs act as fine-tuners of gene expression and have been shown to have important roles in the pathophysiology and progression of atherosclerosis. We, and others, previously demonstrated that microRNA-144 (miR-144) functions to post-transcriptionally regulate ABCA1 (ATP binding cassette transporter A1) and plasma HDL (high-density lipoprotein) cholesterol levels. Here, we explore how miR-144 inhibition may protect against atherosclerosis. Approach and Results: We demonstrate that miR-144 silencing reduced atherosclerosis in male, but not female low-density lipoprotein receptor null (Ldlr-/-) mice. MiR-144 antagonism increased circulating HDL cholesterol levels, remodeled the HDL particle, and enhanced reverse cholesterol transport. Notably, the effects on HDL and reverse cholesterol transport were more pronounced in male mice suggesting sex-specific differences may contribute to the effects of silencing miR-144 on atherosclerosis. As a molecular mechanism, we identify the oxysterol metabolizing enzyme CYP7B1 (cytochrome P450 enzyme 7B1) as a miR-144 regulated gene in male, but not female mice. Consistent with miR-144-dependent changes in CYP7B1 activity, we show decreased levels of 27-hydroxycholesterol, a known proatherogenic sterol and the endogenous substrate for CYP7B1 in male, but not female mice. CONCLUSIONS: Our data demonstrate silencing miR-144 has sex-specific effects and that treatment with antisense oligonucleotides to target miR-144 might result in enhancements in reverse cholesterol transport and oxysterol metabolism in patients with cardiovascular disease.


Asunto(s)
Aterosclerosis/genética , Colesterol/metabolismo , Silenciador del Gen , MicroARNs/genética , ARN/genética , Animales , Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Western Blotting , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Noqueados , MicroARNs/biosíntesis , Factores Sexuales
18.
Eur J Vasc Endovasc Surg ; 62(5): 716-726, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34511314

RESUMEN

OBJECTIVE: Ischaemic strokes can be caused by unstable carotid atherosclerosis, but methods for identification of high risk lesions are lacking. Carotid plaque morphology imaging using software for visualisation of plaque components in computed tomography angiography (CTA) may improve assessment of plaque phenotype and stroke risk, but it is unknown if such analyses also reflect the biological processes related to lesion stability. Here, we investigated how carotid plaque morphology by image analysis of CTA is associated with biological processes assessed by transcriptomic analyses of corresponding carotid endarterectomies (CEAs). METHODS: Carotid plaque morphology was assessed in patients undergoing CEA for symptomatic or asymptomatic carotid stenosis consecutively enrolled between 2006 and 2015. Computer based analyses of pre-operative CTA was performed to define calcification, lipid rich necrotic core (LRNC), intraplaque haemorrhage (IPH), matrix (MATX), and plaque burden. Plaque morphology was correlated with molecular profiles obtained from microarrays of corresponding CEAs and models were built to assess the ability of plaque morphology to predict symptomatology. RESULTS: Carotid plaques (n = 93) from symptomatic patients (n = 61) had significantly higher plaque burden and LRNC compared with plaques from asymptomatic patients (n = 32). Lesions selected from the transcriptomic cohort (n = 40) with high LRNC, IPH, MATX, or plaque burden were characterised by molecular signatures coupled with inflammation and extracellular matrix degradation, typically linked with instability. In contrast, highly calcified plaques had a molecular signature signifying stability with enrichment of profibrotic pathways and repressed inflammation. In a cross validated prediction model for symptoms, plaque morphology by CTA alone was superior to the degree of stenosis. CONCLUSION: The study demonstrates that CTA image analysis for evaluation of carotid plaque morphology, also reflects prevalent biological processes relevant for assessment of plaque phenotype. The results support the use of CTA image analysis of plaque morphology for risk stratification and management of patients with carotid stenosis.


Asunto(s)
Estenosis Carotídea/diagnóstico por imagen , Estenosis Carotídea/metabolismo , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/metabolismo , Anciano , Estenosis Carotídea/etiología , Estudios de Cohortes , Angiografía por Tomografía Computarizada , Endarterectomía Carotidea , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Placa Aterosclerótica/etiología , Sensibilidad y Especificidad
19.
Vasc Med ; 26(1): 3-10, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33350884

RESUMEN

Interleukin (IL) 6 contributes to atherosclerotic plaque development through IL6 membrane-bound (IL6R and gp130) and soluble (sIL6R and sgp130) receptors. We investigated IL6 receptor expression in carotid plaques and its correlation with circulating IL6 and soluble receptor levels. Plasma samples and carotid plaques were obtained from 78 patients in the Biobank of Karolinska Endarterectomies study. IL6, sIL6R, and sgp130 were measured in plasma and IL6, IL6R, sIL6R, GP130, and sGP130-RAPS (sGP130) gene expression assessed in carotid plaques. Correlations between plaque IL6 signaling gene expression and plasma levels were determined by Spearman's correlation. Differences in plasma and gene expression levels between patients with (n = 53) and without (n = 25) a history of a cerebral event and statin-treated (n = 65) and non-treated (n = 11), were estimated by Kruskal-Wallis. IL6 and its receptors were all expressed in carotid plaques. There was a positive, borderline significant, moderate correlation between plasma IL6 and sIL6R and the respective gene expression levels (rho 0.23 and 0.22, both p = 0.05). IL6R expression was higher in patients with a history of a cerebrovascular event compared to those without (p = 0.007). Statin-treated had higher IL6R, sIL6R, and sGP130 expression levels and plasma sIL6R compared to non-treated patients (all p < 0.05). In conclusion, all components of the IL6 signaling pathways are expressed in carotid artery plaques and IL6 and sIL6R plasma levels correlate moderately with IL6 and sIL6R. Our data suggest that IL6 signaling in the circulation might mirror the system activity in the plaque, thus adding novel perspectives to the role of IL6 signaling in atherosclerosis.


Asunto(s)
Arterias Carótidas/metabolismo , Estenosis Carotídea/metabolismo , Receptor gp130 de Citocinas/metabolismo , Interleucina-6/metabolismo , Placa Aterosclerótica , Receptores de Interleucina-6/metabolismo , Anciano , Biomarcadores/metabolismo , Arterias Carótidas/cirugía , Estenosis Carotídea/sangre , Estenosis Carotídea/genética , Estenosis Carotídea/terapia , Estudios Transversales , Receptor gp130 de Citocinas/sangre , Receptor gp130 de Citocinas/genética , Endarterectomía Carotidea , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Interleucina-6/sangre , Interleucina-6/genética , Masculino , Receptores de Interleucina-6/sangre , Receptores de Interleucina-6/genética , Transducción de Señal
20.
PLoS Genet ; 14(11): e1007755, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30444878

RESUMEN

Recent genome-wide association studies (GWAS) have identified multiple new loci which appear to alter coronary artery disease (CAD) risk via arterial wall-specific mechanisms. One of the annotated genes encodes LMOD1 (Leiomodin 1), a member of the actin filament nucleator family that is highly enriched in smooth muscle-containing tissues such as the artery wall. However, it is still unknown whether LMOD1 is the causal gene at this locus and also how the associated variants alter LMOD1 expression/function and CAD risk. Using epigenomic profiling we recently identified a non-coding regulatory variant, rs34091558, which is in tight linkage disequilibrium (LD) with the lead CAD GWAS variant, rs2820315. Herein we demonstrate through expression quantitative trait loci (eQTL) and statistical fine-mapping in GTEx, STARNET, and human coronary artery smooth muscle cell (HCASMC) datasets, rs34091558 is the top regulatory variant for LMOD1 in vascular tissues. Position weight matrix (PWM) analyses identify the protective allele rs34091558-TA to form a conserved Forkhead box O3 (FOXO3) binding motif, which is disrupted by the risk allele rs34091558-A. FOXO3 chromatin immunoprecipitation and reporter assays show reduced FOXO3 binding and LMOD1 transcriptional activity by the risk allele, consistent with effects of FOXO3 downregulation on LMOD1. LMOD1 knockdown results in increased proliferation and migration and decreased cell contraction in HCASMC, and immunostaining in atherosclerotic lesions in the SMC lineage tracing reporter mouse support a key role for LMOD1 in maintaining the differentiated SMC phenotype. These results provide compelling functional evidence that genetic variation is associated with dysregulated LMOD1 expression/function in SMCs, together contributing to the heritable risk for CAD.


Asunto(s)
Autoantígenos/genética , Enfermedad de la Arteria Coronaria/genética , Proteínas del Citoesqueleto/genética , Miocitos del Músculo Liso/metabolismo , Alelos , Animales , Autoantígenos/metabolismo , Becaplermina/metabolismo , Sitios de Unión/genética , Células Cultivadas , Mapeo Cromosómico , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/metabolismo , Vasos Coronarios/metabolismo , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Proteína Forkhead Box O3/metabolismo , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Masculino , Ratones , Ratones Transgénicos , Modelos Cardiovasculares , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Unión Proteica , Sitios de Carácter Cuantitativo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA