Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
Blood ; 140(1): 16-24, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35325065

RESUMEN

Subsequent malignancies are well-documented complications in long-term follow-up of cancer patients. Recently, genetically modified immune effector (IE) cells have shown benefit in hematologic malignancies and are being evaluated in clinical trials for solid tumors. Although the short-term complications of IE cells are well described, there is limited literature summarizing long-term follow-up, including subsequent malignancies. We retrospectively reviewed data from 340 patients treated across 27 investigator-initiated pediatric and adult clinical trials at our center. All patients received IE cells genetically modified with γ-retroviral vectors to treat relapsed and/or refractory hematologic or solid malignancies. In a cumulative 1027 years of long-term follow-up, 13 patients (3.8%) developed another cancer with a total of 16 events (4 hematologic malignancies and 12 solid tumors). The 5-year cumulative incidence of a first subsequent malignancy in the recipients of genetically modified IE cells was 3.6% (95% confidence interval, 1.8% to 6.4%). For 11 of the 16 subsequent tumors, biopsies were available, and no sample was transgene positive by polymerase chain reaction. Replication-competent retrovirus testing of peripheral blood mononuclear cells was negative in the 13 patients with subsequent malignancies tested. Rates of subsequent malignancy were low and comparable to standard chemotherapy. These results suggest that the administration of IE cells genetically modified with γ retroviral vectors does not increase the risk for subsequent malignancy.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Adulto , Niño , Estudios de Seguimiento , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Humanos , Leucocitos Mononucleares , Neoplasias/genética , Neoplasias/terapia , Estudios Retrospectivos
3.
Cytotherapy ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38819365

RESUMEN

BACKGROUND AIMS: The success of chimeric antigen receptor (CAR) T-cell therapy in treating B-cell malignancies has led to the evaluation of CAR T-cells targeting a variety of other malignancies. Although the efficacy of CAR T-cells is enhanced when administered post-lymphodepleting chemotherapy, this can trigger bone marrow suppression and sustained cytopenia after CD19.CAR T-cell therapy. Additionally, systemic inflammation associated with CAR T-cell activity may contribute to myelosuppression. Cytopenias, such as neutropenia and thrombocytopenia, elevate the risk of severe infections and bleeding, respectively. However, data on the incidence of prolonged cytopenias after immune effector therapy in the solid tumor context remain limited. OBJECTIVE: We compared the incidence of prolonged cytopenias after immune effector therapy including genetically modified T-cells, virus-specific T-cells (VSTs) and NKT-cells, as well non-gene-modified VSTs for leukemia, lymphoma, and solid tumors (ST) to identify associated risk factors. METHODS: A retrospective analysis was conducted of 112 pediatric and adult patients with relapsed and/or refractory cancers who received lymphodepleting chemotherapy followed by immune effector therapy. Patients treated with 13 distinct immune effector cell therapies through 11 single-center clinical trials and 2 commercial products over a 6-year period were categorized into 3 types of malignancies: leukemia, lymphoma and ST. We obtained baseline patient characteristics and adverse events data for each participant, and tracked neutrophil and platelet counts following lymphodepletion. RESULTS: Of 112 patients, 104 (92.9%) experienced cytopenias and 88 (79%) experienced severe cytopenias. Patients with leukemia experienced significantly longer durations of severe neutropenia (median duration of 14 days) compared with patients with lymphoma (7 days) or ST (11 days) (P = 0.002). Patients with leukemia also had a higher incidence of severe thrombocytopenia (74.1%), compared with lymphoma (46%, P = 0.03) and ST (14.3%, P < 0.0001). Prolonged cytopenias were significantly associated with disease type (63% of patients with leukemia, 44% of patients with lymphoma, and 22.9% of patients with ST, P = 0.006), prior hematopoietic stem cell transplant (HSCT) (66.7% with prior HSCT versus 38.3% without prior HSCT, P = 0.039), and development of immune effector cell-associated neurotoxicity syndrome (ICANS) (75% with ICANS versus 38% without ICANS, P = 0.027). There was no significant association between prolonged cytopenias and cytokine release syndrome. CONCLUSIONS: Immune effector recipients often experience significant cytopenias due to marrow suppression following lymphodepletion regardless of disease, but prolonged severe cytopenias are significantly less common after treatment of patients with lymphoma and solid tumors.

4.
Nature ; 561(7723): 331-337, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30185905

RESUMEN

Successful T cell immunotherapy for brain cancer requires that the T cells can access tumour tissues, but this has been difficult to achieve. Here we show that, in contrast to inflammatory brain diseases such as multiple sclerosis, where endothelial cells upregulate ICAM1 and VCAM1 to guide the extravasation of pro-inflammatory cells, cancer endothelium downregulates these molecules to evade immune recognition. By contrast, we found that cancer endothelium upregulates activated leukocyte cell adhesion molecule (ALCAM), which allowed us to overcome this immune-evasion mechanism by creating an ALCAM-restricted homing system (HS). We re-engineered the natural ligand of ALCAM, CD6, in a manner that triggers initial anchorage of T cells to ALCAM and conditionally mediates a secondary wave of adhesion by sensitizing T cells to low-level ICAM1 on the cancer endothelium, thereby creating the adhesion forces necessary to capture T cells from the bloodstream. Cytotoxic HS T cells robustly infiltrated brain cancers after intravenous injection and exhibited potent antitumour activity. We have therefore developed a molecule that targets the delivery of T cells to brain cancer.

5.
Cancer ; 125(20): 3514-3525, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31355930

RESUMEN

Patients who are diagnosed with osteosarcoma (OS) today receive the same therapy that patients have received over the last 4 decades. Extensive efforts to identify more effective or less toxic regimens have proved disappointing. As we enter a postgenomic era in which we now recognize OS not as a cancer of mutations but as one defined by p53 loss, chromosomal complexity, copy number alteration, and profound heterogeneity, emerging threads of discovery leave many hopeful that an improving understanding of biology will drive discoveries that improve clinical care. Under the organization of the Bone Tumor Biology Committee of the Children's Oncology Group, a team of clinicians and scientists sought to define the state of the science and to identify questions that, if answered, have the greatest potential to drive fundamental clinical advances. Having discussed these questions in a series of meetings, each led by invited experts, we distilled these conversations into a series of seven Provocative Questions. These include questions about the molecular events that trigger oncogenesis, the genomic and epigenomic drivers of disease, the biology of lung metastasis, research models that best predict clinical outcomes, and processes for translating findings into clinical trials. Here, we briefly present each Provocative Question, review the current scientific evidence, note the immediate opportunities, and speculate on the impact that answered questions might have on the field. We do so with an intent to provide a framework around which investigators can build programs and collaborations to tackle the hardest problems and to establish research priorities for those developing policies and providing funding.


Asunto(s)
Epigenómica , Genómica , Osteosarcoma/terapia , Investigación Biomédica Traslacional , Niño , Humanos , Mutación/genética , Osteosarcoma/epidemiología , Osteosarcoma/genética , Osteosarcoma/patología , Proteómica , Proteína p53 Supresora de Tumor/genética
6.
Biol Blood Marrow Transplant ; 24(7): 1424-1431, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29550628

RESUMEN

Hematopoietic stem cell transplantation (HSCT) is the only curative option for a subset of patients with high-risk or relapsed acute lymphoblastic leukemia (ALL). Given evolving practices, it is important to continually evaluate outcomes for pediatric ALL following HSCT. Outcomes after HSCT are influenced by the type of donor used as this determines the degree and method of T cell depletion used and, consequently, specific transplant-related morbidities. We retrospectively analyzed HSCT data from our center for transplants performed between January 2008 and May 2016, comparing outcomes among different donor types. One hundred and twenty-four pediatric patients underwent HSCT from a matched sibling donor (MSD; n = 48), an unrelated matched donor (UMD; n = 56), or a haploidentical donor (n = 20). We observed a similar 3-year event-free survival (EFS) for MSD recipients (of .64) and for UMD recipients (.62), but a significantly lower EFS for recipients of haploidentical transplants (.35; P = .01). Relapse was the main cause of HSCT failure and was significantly higher in the haploidentical donor group (.47 versus .19 for MSD and .24 for UMD; P = .02). Treatment-related mortality was evenly distributed among the donor groups (.17, .16, and .15 for the MSD, UMD, and haploidentical groups, respectively). Rates of infection-related mortality were lower than previously reported. Relapse is the main obstacle for successful HSCT in the contemporary era, and this effect is most evident in recipients of haploidentical donor grafts. Newer methods to improve graft-versus-leukemia effect are being evaluated and will need to be incorporated into the management of high-risk patients.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Acondicionamiento Pretrasplante/métodos , Trasplante Homólogo/métodos , Adolescente , Niño , Preescolar , Femenino , Historia del Siglo XXI , Humanos , Lactante , Recién Nacido , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología
7.
Biol Blood Marrow Transplant ; 24(3): 537-541, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29196075

RESUMEN

Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder characterized by a triad of immunodeficiency, eczema, and thrombocytopenia. Currently, hematopoietic stem cell transplantation (HSCT) is the most reliable curative treatment with excellent results for patients with HLA-matched family or unrelated donors. However, even after fully myeloablative preparative regimens, mixed donor chimerism is a potential concern. We performed a retrospective chart review of 12 children who underwent allogeneic HSCT for WAS to report our experience. The median age at transplant was 10.5 months (range, 3 to 39). The median nucleated cell dose from the marrow was 4.55 × 109/kg (range, .3 to 7.9). The median times to neutrophil and platelet engraftment were 19 days (range, 13 to 27) and 18.5 days (range, 12 to 31), respectively. The rate of overall survival was 92% with median follow-up of 67 months (range, 3 to 146). Two patients developed grade IV acute graft-versus-host disease, and 1 died on day +99. Five of 12 patient's (42%) had mixed donor chimerism (range, 12% to 85%) at day +180. None of the pretransplant patient parameters was predictive of mixed chimerism. Nonetheless, of these 5 patients, 2 had normalization of the platelet count despite the mixed chimerism, 2 had full donor chimerism after receiving a second transplant with the same donor, and 1 remains transfusion dependent awaiting a second transplant. Hence, even with a significant rate of mixed chimerism, HSCT provides substantial benefit to WAS patients, with excellent overall survival.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Acondicionamiento Pretrasplante , Síndrome de Wiskott-Aldrich , Adolescente , Adulto , Aloinjertos , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Estudios Retrospectivos , Factores de Riesgo , Tasa de Supervivencia , Síndrome de Wiskott-Aldrich/sangre , Síndrome de Wiskott-Aldrich/mortalidad , Síndrome de Wiskott-Aldrich/terapia
8.
Biol Blood Marrow Transplant ; 24(8): 1643-1650, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29630926

RESUMEN

There is a lack of consensus regarding the role and method of hematopoietic stem cell transplantation (HSCT) on patients with chronic granulomatous disease (CGD). Long-term follow-up after HSCT in these patient population is essential to know its potential complications and decide who will benefit the most from HSCT. We report the outcome of HSCT and long-term follow-up in 24 patients with CGD, transplanted in our center from either related (n = 6) or unrelated (n = 18) donors, over a 12-year period (2003 to 2015), using high-dose alemtuzumab in the preparative regimen. We evaluated the incidence and timing of adverse events and potential risk factors. We described in detailed the novel finding of increased autoimmunity after HSCT in patients with CGD. At a median follow-up of 1460 days, 22 patients were full donor chimeras, and 2 patients had stable mixed chimerism. All assessable patients showed normalization of their neutrophil oxidative burst test. None of the patients developed grades II to IV acute graft-versus-host disease, and no patient had chronic graft-versus-host disease. Twelve of 24 patients developed 17 autoimmune diseases (ADs). Severe ADs (cytopenia and neuropathy) occurred exclusively in the unrelated donor setting and mainly in the first year after HSCT, whereas thyroid AD occurred in the related donor setting as well and more than 3 years after HSCT. Two patients died due to infectious complications after developing autoimmune cytopenias. One additional patient suffered severe brain injury. The remaining 21 patients have long-term Lansky scores ≥ 80. The outcome of HSCT from unrelated donors is comparable with related donors but might carry an increased risk of developing severe AD. A lower dose of alemtuzumab may reduce this risk and should be tested in further studies.


Asunto(s)
Alemtuzumab/uso terapéutico , Enfermedades Autoinmunes/etiología , Enfermedad Granulomatosa Crónica/complicaciones , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Quimerismo , Estudios de Seguimiento , Enfermedad Granulomatosa Crónica/terapia , Síndrome de Guillain-Barré/etiología , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Incidencia , Pancitopenia/etiología , Donante no Emparentado
9.
Cytometry A ; 87(11): 1038-46, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26202733

RESUMEN

Compensation is a critical process for the unbiased analysis of flow cytometry data. Numerous compensation strategies exist, including the use of bead-based products. The purpose of this study was to determine whether beads, specifically polystyrene microspheres (PSMS) compare to the use of primary leukocytes for single color based compensation when conducting polychromatic flow cytometry. To do so, we stained individual tubes of both PSMS and leukocytes with panel specific antibodies conjugated to fluorochromes corresponding to fluorescent channels FL1-FL10. We compared the matrix generated by PSMS to that generated using peripheral blood mononuclear cells (PBMC). Ideal for compensation is a sample with both a discrete negative population and a bright positive population. We demonstrate that PSMS display autofluorescence properties similar to PBMC. When comparing PSMS to PBMC for compensation PSMS yielded more evenly distributed and discrete negative and positive populations to use for compensation. We analyzed three donors' PBMC stained with our 10-color T cell subpopulation panel using compensation generated by PSMS vs.PBMC and detected no significant differences in the population distribution. Panel specific antibodies bound to PSMS represent an invaluable valid tool to generate suitable compensation matrices especially when sample material is limited and/or the sample requires analysis of dynamically modulated or rare events.


Asunto(s)
Citometría de Flujo , Inmunofenotipificación , Leucocitos Mononucleares/citología , Microesferas , Anticuerpos/metabolismo , Color , Citometría de Flujo/métodos , Colorantes Fluorescentes/metabolismo , Humanos , Inmunofenotipificación/métodos , Leucocitos/citología , Leucocitos/inmunología , Poliestirenos/inmunología
10.
Cytotherapy ; 17(1): 3-17, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25082406

RESUMEN

Substantial progress has been made in the treatment of pediatric solid tumors over the past 4 decades. However, children with metastatic and or recurrent disease continue to do poorly despite the aggressive multi-modality conventional therapies. The increasing understanding of the tumor biology and the interaction between the tumor and the immune system over the recent years have led to the development of novel immune-based therapies as alternative options for some of these high-risk malignancies. The safety and anti-tumor efficacy of various tumor vaccines and tumor-antigen specific immune cells are currently being investigated for various solid tumors. In early clinical trials, most of these cellular therapies have been well tolerated and have shown promising clinical responses. Although substantial work is being done in this field, the available knowledge for pediatric tumors remains limited. We review the contemporary early phase cell-based immunotherapy efforts for pediatric solid tumors and discuss the rationale and the challenges thereof.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Tratamiento Basado en Trasplante de Células y Tejidos , Neoplasias del Sistema Nervioso Central/terapia , Inmunoterapia , Humanos , Pediatría
11.
J Neurooncol ; 125(2): 307-15, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26341370

RESUMEN

While the 5-year overall survival is better in pediatric than in adult patients diagnosed with glioblastoma (GBM), outcomes in children remain very poor. Understanding the mechanisms of tumorigenesis and tumor propagation can identify therapeutic targets to improve these outcomes. Human cytomegalovirus (CMV) proteins and nucleic acids are present in the majority of adult GBM. Indeed, CMV is emerging as a potential glioma-associated target for anti-CMV agents and cellular therapeutics. Furthermore, CMV appears to contribute to GBM's malignant phenotype, although its role in tumorigenesis is less certain. In this cohort of 25 serially diagnosed pediatric GBMs, the largest described cohort to date, we used immunohistochemical staining and in situ hybridization to show the presence of CMV antigens pp65 and IE1-72 as well as CMV nucleic acids, respectively. Our cohort indicated either CMV antigen pp65 or IE1-72 was present in approximately 67 % of pediatric GBM samples. The majority of samples stained positive for either CMV antigen showing a cytoplasmic pattern in 25-50 % of cells within the sample at a moderate intensity, while a few samples showed nuclear staining and higher grade/intensity. Of 16 samples where in situ hybridization was performed, 13 (81 %) showed specific staining using a CMV genome specific probe cocktail. ISH positive samples showed high concordance with being pp65 or IE1-72 positive. These findings, paired with the association of CMV expression with poor prognosis and overall survival, indicate the need to further investigate how these antigens are promoting tumor growth and preventing cell death. Also, the expression of these antigens in a majority of tumor tissues should be considered for immunotherapeutic targets in cases of pediatric GBM.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Glioblastoma/diagnóstico , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Adolescente , Neoplasias Encefálicas/virología , Niño , Preescolar , Estudios de Cohortes , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidad , Femenino , Glioblastoma/virología , Humanos , Lactante , Masculino
12.
Cytotherapy ; 16(8): 1121-31, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24841514

RESUMEN

BACKGROUND AIMS: Outcomes for patients with glioblastoma remain poor despite aggressive multimodal therapy. Immunotherapy with genetically modified T cells expressing chimeric antigen receptors (CARs) targeting interleukin (IL) 13Rα2, human epidermal growth factor receptor 2, epidermal growth factor variant III or erythropoietin-producing hepatocellular carcinoma A2 has shown promise for the treatment of glioma in preclinical models. On the basis of IL13Rα2 immunotoxins that contain IL13 molecules with one or two amino acid substitutions (IL13 muteins) to confer specificity to IL13Rα2, investigators have constructed CARS with IL13 muteins as antigen-binding domains. Whereas the specificity of IL13 muteins in the context of immunotoxins is well characterized, limited information is available for CAR T cells. METHODS: We constructed four second-generation CARs with IL13 muteins with one or two amino acid substitutions, and evaluated the effector function of IL13-mutein CAR T cells in vitro and in vivo. RESULTS: T cells expressing all four CARs recognized IL13Rα1 or IL13Rα2 recombinant protein in contrast to control protein (IL4R) as judged by interferon-γ production. IL13 protein produced significantly more IL2, indicating that IL13 mutein-CAR T cells have a higher affinity to IL13Rα2 than to IL13Rα1. In cytotoxicity assays, CAR T cells killed IL13Rα1- and/or IL13Rα2-positive cells in contrast to IL13Rα1- and IL13Rα2-negative controls. Although we observed no significant differences between IL13 mutein-CAR T cells in vitro, only T cells expressing IL13 mutein-CARs with an E13K amino acid substitution had anti-tumor activity in vivo that resulted in a survival advantage of treated animals. CONCLUSIONS: Our study highlights that the specificity/avidity of ligands is context-dependent and that evaluating CAR T cells in preclinical animal model is critical to assess their potential benefit.


Asunto(s)
Glioblastoma/terapia , Inmunoterapia , Subunidad alfa2 del Receptor de Interleucina-13/genética , Linfocitos T/inmunología , Sustitución de Aminoácidos , Animales , Regulación Neoplásica de la Expresión Génica/inmunología , Glioblastoma/inmunología , Glioblastoma/patología , Humanos , Inmunotoxinas/genética , Subunidad alfa1 del Receptor de Interleucina-13/genética , Subunidad alfa1 del Receptor de Interleucina-13/inmunología , Subunidad alfa2 del Receptor de Interleucina-13/inmunología , Ratones , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Mol Ther ; 21(11): 2087-101, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23939024

RESUMEN

Preclinical and early clinical studies have demonstrated that chimeric antigen receptor (CAR)-redirected T cells are highly promising in cancer therapy. We observed that targeting HER2 in a glioblastoma (GBM) cell line results in the emergence of HER2-null tumor cells that maintain the expression of nontargeted tumor-associated antigens. Combinational targeting of these tumor-associated antigens could therefore offset this escape mechanism. We studied the single-cell coexpression patterns of HER2, IL-13Rα2, and EphA2 in primary GBM samples using multicolor flow cytometry and immunofluorescence, and applied a binomial routine to the permutations of antigen expression and the related odds of complete tumor elimination. This mathematical model demonstrated that cotargeting HER2 and IL-13Rα2 could maximally expand the therapeutic reach of the T cell product in all primary tumors studied. Targeting a third antigen did not predict an added advantage in the tumor cohort studied. We therefore generated bispecific T cell products from healthy donors and from GBM patients by pooling T cells individually expressing HER2 and IL-13Rα2-specific CARs and by making individual T cells to coexpress both molecules. Both HER2/IL-13Rα2-bispecific T cell products offset antigen escape, producing enhanced effector activity in vitro immunoassays (against autologous glioma cells in the case of GBM patient products) and in an orthotopic xenogeneic murine model. Further, T cells coexpressing HER2 and IL-13Rα2-CARs exhibited accentuated yet antigen-dependent downstream signaling and a particularly enhanced antitumor activity.


Asunto(s)
Traslado Adoptivo , Antígenos de Neoplasias/metabolismo , Glioblastoma/terapia , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Línea Celular Tumoral , Terapia Combinada , Glioblastoma/inmunología , Glioblastoma/patología , Células HEK293 , Humanos , Subunidad alfa2 del Receptor de Interleucina-13/genética , Subunidad alfa2 del Receptor de Interleucina-13/inmunología , Subunidad alfa2 del Receptor de Interleucina-13/metabolismo , Ratones , Ratones SCID , Modelos Biológicos , Receptor ErbB-2/genética , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Células Tumorales Cultivadas , Escape del Tumor , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Nat Cancer ; 5(6): 880-894, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38658775

RESUMEN

In this prospective, interventional phase 1 study for individuals with advanced sarcoma, we infused autologous HER2-specific chimeric antigen receptor T cells (HER2 CAR T cells) after lymphodepletion with fludarabine (Flu) ± cyclophosphamide (Cy): 1 × 108 T cells per m2 after Flu (cohort A) or Flu/Cy (cohort B) and 1 × 108 CAR+ T cells per m2 after Flu/Cy (cohort C). The primary outcome was assessment of safety of one dose of HER2 CAR T cells after lymphodepletion. Determination of antitumor responses was the secondary outcome. Thirteen individuals were treated in 14 enrollments, and seven received multiple infusions. HER2 CAR T cells expanded after 19 of 21 infusions. Nine of 12 individuals in cohorts A and B developed grade 1-2 cytokine release syndrome. Two individuals in cohort C experienced dose-limiting toxicity with grade 3-4 cytokine release syndrome. Antitumor activity was observed with clinical benefit in 50% of individuals treated. The tumor samples analyzed showed spatial heterogeneity of immune cells and clustering by sarcoma type and by treatment response. Our results affirm HER2 as a CAR T cell target and demonstrate the safety of this therapeutic approach in sarcoma. ClinicalTrials.gov registration: NCT00902044 .


Asunto(s)
Inmunoterapia Adoptiva , Receptor ErbB-2 , Receptores Quiméricos de Antígenos , Sarcoma , Humanos , Sarcoma/terapia , Sarcoma/inmunología , Persona de Mediana Edad , Femenino , Masculino , Adulto , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Anciano , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Depleción Linfocítica/métodos , Estudios Prospectivos , Vidarabina/análogos & derivados , Vidarabina/administración & dosificación , Vidarabina/uso terapéutico , Ciclofosfamida/uso terapéutico , Ciclofosfamida/administración & dosificación , Resultado del Tratamiento
15.
Blood Adv ; 7(9): 1823-1830, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36453638

RESUMEN

There is no consensus on the best donor for children with nonmalignant disorders and immune deficiencies in the absence of a matched related donor (MRD). We evaluated the 2-year overall survival (OS) after umbilical cord blood transplantation (UCBT) in patients with nonmalignant disorders from 2009 to 2020 enrolled in a prospective clinical trial using either 5/6 or 6/6 UCB as the cell source. Patients receive a fully ablative busulfan, cyclophosphamide, and fludarabine without serotherapy. Fifty-five children were enrolled, median age 5 months (range, 1-111 months); primary immune deficiency (45), metabolic (5), hemophagocytic lymphohistiocytosis (1), and hematologic disorders (4). Twenty-six patients had persistent infections before transplant. Nineteen of them (34%) were 6/6 matched, and 36 (66%) were 5/6 human leukocyte antigen-matched. The OS at 2 years was 91% (95% cumulative incidence, 79-96), with a median follow-up of 4.3 years. The median time to neutrophil and platelet recovery were 17 days (range, 5-39 days) and 37 days (range, 20-92 days), respectively. All but one evaluable patient achieved full donor chimerism. The cumulative incidence of acute GVHD grades 2-4 on day 100 was 16% (n = 9). All patients with viral infections at the time of transplant cleared the infection at a median time of 54 days (range, 44-91 days). All evaluable patients underwent correction of their immune or metabolic defects. We conclude that in the absence of MRD, UCBT following myeloablative conditioning without serotherapy is an excellent curative option in young children with nonmalignant disorders. This trial has been registered at www.clinicaltrials.gov as NCT00950846.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical , Trasplante de Células Madre Hematopoyéticas , Niño , Preescolar , Humanos , Lactante , Busulfano , Ciclofosfamida/uso terapéutico , Estudios Prospectivos
16.
Nat Rev Clin Oncol ; 18(6): 379-393, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33633361

RESUMEN

Patient-derived T cells genetically reprogrammed to express CD19-specific chimeric antigen receptors (CARs) have shown remarkable clinical responses and are commercially available for the treatment of patients with certain advanced-stage B cell malignancies. Nonetheless, several trials have revealed pre-existing and/or treatment-induced immune responses to the mouse-derived single-chain variable fragments included in these constructs. These responses might have contributed to both treatment failure and the limited success of redosing strategies observed in some patients. Data from early phase clinical trials suggest that CAR T cells are also associated with immunogenicity-related events in patients with solid tumours. Generally, the clinical implications of anti-CAR immune responses are poorly understood and highly variable between different CAR constructs and malignancies. These observations highlight an urgent need to uncover the mechanisms of immunogenicity in patients receiving CAR T cells and develop validated assays to enable clinical detection. In this Review, we describe the current clinical evidence of anti-CAR immune responses and discuss how new CAR T cell technologies might impact the risk of immunogenicity. We then suggest ways to reduce the risks of anti-CAR immune responses to CAR T cell products that are advancing towards the clinic. Finally, we summarize measures that investigators could consider in order to systematically monitor and better comprehend the possible effects of immunogenicity during trials involving CAR T cells as well as in routine clinical practice.


Asunto(s)
Inmunoterapia Adoptiva/efectos adversos , Neoplasias/inmunología , Neoplasias/terapia , Receptores Quiméricos de Antígenos/inmunología , Antígenos CD19/inmunología , Ensayos Clínicos como Asunto , Edición Génica/métodos , Humanos , Inmunidad Celular , Mutación , Receptores Quiméricos de Antígenos/genética , Insuficiencia del Tratamiento
17.
Head Neck ; 43(7): 1983-1994, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33660372

RESUMEN

BACKGROUND: The purpose of this study is to describe human epidermal growth factor 2 (HER2) overexpression in head and neck squamous cell carcinoma (HNSCC) and re-evaluate its potential as a target for HER2-directed immunotherapies. METHODS: A retrospective cohort of patients with HNSCC receiving curative treatment was identified, and HER2 expression evaluated in archival tissue by immunohistochemistry and correlated with clinicopathological characteristics. HER2 expression data were also determined for HNSCC patients in The Cancer Genome Atlas. RESULTS: Nineteen percent of HNSCC and 39% of oropharyngeal HNSCC (OPSCC) were HER2 positive. HER2 expression positively correlated with nodal metastasis (p = 0.035). Patients with HER2-positive tumors had decreased overall survival (p = 0.012), including within the human papilloma virus-positive OPSCC subgroup (p = 0.007). CONCLUSIONS: A substantial fraction of HNSCC overexpresses HER2 protein, suggesting it may be a suitable target for antigen-directed immunotherapy. HER2 expression and its correlation with survival vary across HNSCC subsites, making it unsuitable as a prognostic marker.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas/terapia , Neoplasias de Cabeza y Cuello/terapia , Humanos , Inmunoterapia , Receptor ErbB-2 , Estudios Retrospectivos , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia
18.
Sci Transl Med ; 13(592)2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952672

RESUMEN

In humans, the natural killer (NK) cell marker CD161 identifies several subsets of T cells, including a polyclonal CD8 αß T cell receptor-expressing subset with characteristic specificity for tissue-localized viruses. This subset also displays enhanced cytotoxic and memory phenotypes. Here, we characterized this unique T cell subset and determined its potential suitability for use in chimeric antigen receptor (CAR) T cell therapy. In mice, gene expression profiling among the CD161-equivalent CD8+ T cell populations (CD8+NK1.1+) revealed substantial up-regulation of granzymes, perforin, killer lectin-like receptors, and innate signaling molecules in comparison to CD8+NK1.1- T cells. Adoptive transfer of CD8+NK1.1+ cells from previously exposed animals offered substantially enhanced protection and improved survival against melanoma tumors and influenza infection compared to CD8+NK1.1- cells. Freshly isolated human CD8+CD61+ T cells exhibited heightened allogeneic killing activity in comparison to CD8+CD61- T cells or total peripheral blood mononuclear cells (PBMCs). To determine whether this subset might improve the antitumor efficacy of CAR T cell therapy against solid tumors, we compared bulk PBMCs, CD8+CD161-, and CD8+CD161+ T cells transduced with a human epidermal growth factor receptor-2 (HER2)-specific CAR construct. In vitro, CD8+CD161+ CAR-transduced T cells killed HER2+ targets faster and with greater efficiency. Similarly, these cells mediated enhanced in vivo antitumor efficacy in xenograft models of HER2+ pancreatic ductal adenocarcinoma, exhibiting elevated expression of granzymes and reduced expression of exhaustion markers. These data suggest that this T cell subset presents an opportunity to improve CAR T cell therapy for the treatment of solid tumors.


Asunto(s)
Adenocarcinoma , Memoria Inmunológica , Animales , Linfocitos T CD8-positivos , Leucocitos Mononucleares , Ratones , Subgrupos de Linfocitos T
19.
Leukemia ; 35(1): 75-89, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32205861

RESUMEN

Chimeric antigen receptor (CAR) T-cells targeting CD19 demonstrate remarkable efficacy in treating B-lineage acute lymphoblastic leukemia (BL-ALL), yet up to 39% of treated patients relapse with CD19(-) disease. We report that CD19(-) escape is associated with downregulation, but preservation, of targetable expression of CD20 and CD22. Accordingly, we reasoned that broadening the spectrum of CD19CAR T-cells to include both CD20 and CD22 would enable them to target CD19(-) escape BL-ALL while preserving their upfront efficacy. We created a CD19/20/22-targeting CAR T-cell by coexpressing individual CAR molecules on a single T-cell using one tricistronic transgene. CD19/20/22CAR T-cells killed CD19(-) blasts from patients who relapsed after CD19CAR T-cell therapy and CRISPR/Cas9 CD19 knockout primary BL-ALL both in vitro and in an animal model, while CD19CAR T-cells were ineffective. At the subcellular level, CD19/20/22CAR T-cells formed dense immune synapses with target cells that mediated effective cytolytic complex formation, were efficient serial killers in single-cell tracking studies, and were as efficacious as CD19CAR T-cells against primary CD19(+) disease. In conclusion, independent of CD19 expression, CD19/20/22CAR T-cells could be used as salvage or front-line CAR therapy for patients with recalcitrant disease.


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva , Leucemia de Células B/inmunología , Leucemia de Células B/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Antígenos CD19/química , Antígenos de Neoplasias , Biomarcadores , Línea Celular Tumoral , Citocinas/metabolismo , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Inmunoterapia Adoptiva/métodos , Leucemia de Células B/genética , Leucemia de Células B/terapia , Ratones Transgénicos , Unión Proteica , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Relación Estructura-Actividad , Transducción Genética , Transgenes , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Nat Commun ; 11(1): 3549, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669548

RESUMEN

Refractory metastatic rhabdomyosarcoma is largely incurable. Here we analyze the response of a child with refractory bone marrow metastatic rhabdomyosarcoma to autologous HER2 CAR T cells. Three cycles of HER2 CAR T cells given after lymphodepleting chemotherapy induces remission which is consolidated with four more CAR T-cell infusions without lymphodepletion. Longitudinal immune-monitoring reveals remodeling of the T-cell receptor repertoire with immunodominant clones and serum autoantibodies reactive to oncogenic signaling pathway proteins. The disease relapses in the bone marrow at six months off-therapy. A second remission is achieved after one cycle of lymphodepletion and HER2 CAR T cells. Response consolidation with additional CAR T-cell infusions includes pembrolizumab to improve their efficacy. The patient described here is a participant in an ongoing phase I trial (NCT00902044; active, not recruiting), and is 20 months off T-cell infusions with no detectable disease at the time of this report.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Neoplasias de los Músculos/terapia , Recurrencia Local de Neoplasia/terapia , Receptor ErbB-2/inmunología , Rabdomiosarcoma/terapia , Linfocitos T/trasplante , Biopsia , Médula Ósea/patología , Niño , Ensayos Clínicos Fase I como Asunto , Humanos , Masculino , Neoplasias de los Músculos/inmunología , Neoplasias de los Músculos/patología , Recurrencia Local de Neoplasia/inmunología , Receptores Quiméricos de Antígenos/inmunología , Inducción de Remisión/métodos , Rabdomiosarcoma/inmunología , Rabdomiosarcoma/secundario , Linfocitos T/inmunología , Linfocitos T/metabolismo , Trasplante Autólogo/métodos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA