Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Kidney Int ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39084259

RESUMEN

Understanding normal aging of kidney function is pivotal to help distinguish individuals at particular risk for chronic kidney disease. Glomerular filtration rate (GFR) is typically estimated via serum creatinine (eGFRcrea) or cystatin C (eGFRcys). Since population-based age-group-specific reference values for eGFR and eGFR-decline are scarce, we aimed to provide such reference values from population-based data of a wide age range. In four German population-based cohorts (KORA-3, KORA-4, AugUR, DIACORE), participants underwent medical exams, interview, and blood draw up to five times within up to 25 years. We analyzed eGFRcrea and eGFRcys cross-sectionally and longitudinally (12,000 individuals, age 25-95 years). Cross-sectionally, we found age-group-specific eGFRcrea to decrease approximately linearly across the full age range, for eGFRcys up to the age of 60 years. Within age-groups, there was little difference by sex or diabetes status. Longitudinally, linear mixed models estimated an annual eGFRcrea decline of -0.80 [95% confidence interval -0.82, -0.77], -0.79 [-0.83, -0.76], and -1.20 mL/min/1.73m2 [-1.33, -1.08] for the general population, "healthy" individuals, or individuals with diabetes, respectively. Reference values for eGFR using cross-sectional data were shown as percentile curves for "healthy" individuals and for individuals with diabetes. Reference values for eGFR-decline using longitudinal data were presented as 95% prediction intervals for "healthy" individuals and for individuals with diabetes, obesity, and/or albuminuria. Thus, our results can help clinicians to judge eGFR values in individuals seen in clinical practice according to their age and to understand the expected range of annual eGFR-decline based on their risk profile.

2.
Cardiovasc Diabetol ; 23(1): 195, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844945

RESUMEN

BACKGROUND: Micro- and macrovascular diseases are common in patients with type 2 diabetes mellitus (T2D) and may be partly caused by nocturnal hypoxemia. The study aimed to characterize the composition of nocturnal hypoxemic burden and to assess its association with micro- and macrovascular disease in patients with T2D. METHODS: This cross-sectional analysis includes overnight oximetry from 1247 patients with T2D enrolled in the DIACORE (DIAbetes COhoRtE) study. Night-time spent below a peripheral oxygen saturation of 90% (T90) as well as T90 associated with non-specific drifts in oxygen saturation (T90non - specific), T90 associated with acute oxygen desaturation (T90desaturation) and desaturation depths were assessed. Binary logistic regression analyses adjusted for known risk factors (age, sex, smoking status, waist-hip ratio, duration of T2D, HbA1c, pulse pressure, low-density lipoprotein, use of statins, and use of renin-angiotensin-aldosterone system inhibitors) were used to assess the associations of such parameters of hypoxemic burden with chronic kidney disease (CKD) as a manifestation of microvascular disease and a composite of cardiovascular diseases (CVD) reflecting macrovascular disease. RESULTS: Patients with long T90 were significantly more often affected by CKD and CVD than patients with a lower hypoxemic burden (CKD 38% vs. 28%, p < 0.001; CVD 30% vs. 21%, p < 0.001). Continuous T90desaturation and desaturation depth were associated with CKD (adjusted OR 1.01 per unit, 95% CI [1.00; 1.01], p = 0.008 and OR 1.30, 95% CI [1.06; 1.61], p = 0.013, respectively) independently of other known risk factors for CKD. For CVD there was a thresholdeffect, and only severly and very severly increased T90non-specific was associated with CVD ([Q3;Q4] versus [Q1;Q2], adjusted OR 1.51, 95% CI [1.12; 2.05], p = 0.008) independently of other known risk factors for CVD. CONCLUSION: While hypoxemic burden due to oxygen desaturations and the magnitude of desaturation depth were significantly associated with CKD, only severe hypoxemic burden due to non-specific drifts was associated with CVD. Specific types of hypoxemic burden may be related to micro- and macrovascular disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoxia , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Masculino , Femenino , Persona de Mediana Edad , Estudios Transversales , Anciano , Hipoxia/diagnóstico , Hipoxia/sangre , Hipoxia/epidemiología , Hipoxia/fisiopatología , Factores de Riesgo , Oximetría , Ritmo Circadiano , Saturación de Oxígeno , Angiopatías Diabéticas/diagnóstico , Angiopatías Diabéticas/epidemiología , Angiopatías Diabéticas/fisiopatología , Angiopatías Diabéticas/sangre , Factores de Tiempo , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/sangre
3.
Sci Rep ; 14(1): 13034, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844476

RESUMEN

The risk of developing age-related macular degeneration (AMD) is influenced by genetic background. In 2016, the International AMD Genomics Consortium (IAMDGC) identified 52 risk variants in 34 loci, and a polygenic risk score (PRS) from these variants was associated with AMD. The Israeli population has a unique genetic composition: Ashkenazi Jewish (AJ), Jewish non-Ashkenazi, and Arab sub-populations. We aimed to perform a genome-wide association study (GWAS) for AMD in Israel, and to evaluate PRSs for AMD. Our discovery set recruited 403 AMD patients and 256 controls at Hadassah Medical Center. We genotyped individuals via custom exome chip. We imputed non-typed variants using cosmopolitan and AJ reference panels. We recruited additional 155 cases and 69 controls for validation. To evaluate predictive power of PRSs for AMD, we used IAMDGC summary-statistics excluding our study and developed PRSs via clumping/thresholding or LDpred2. In our discovery set, 31/34 loci reported by IAMDGC were AMD-associated (P < 0.05). Of those, all effects were directionally consistent with IAMDGC and 11 loci had a P-value under Bonferroni-corrected threshold (0.05/34 = 0.0015). At a 5 × 10-5 threshold, we discovered four suggestive associations in FAM189A1, IGDCC4, C7orf50, and CNTNAP4. Only the FAM189A1 variant was AMD-associated in the replication cohort after Bonferroni-correction. A prediction model including LDpred2-based PRS + covariates had an AUC of 0.82 (95% CI 0.79-0.85) and performed better than covariates-only model (P = 5.1 × 10-9). Therefore, previously reported AMD-associated loci were nominally associated with AMD in Israel. A PRS developed based on a large international study is predictive in Israeli populations.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Degeneración Macular , Polimorfismo de Nucleótido Simple , Humanos , Degeneración Macular/genética , Degeneración Macular/epidemiología , Israel/epidemiología , Femenino , Masculino , Anciano , Factores de Riesgo , Persona de Mediana Edad , Estudios de Casos y Controles , Anciano de 80 o más Años , Herencia Multifactorial/genética , Judíos/genética , Genotipo
4.
Dtsch Arztebl Int ; 121(9): 284-290, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38530931

RESUMEN

BACKGROUND: Population-wide research on potential new imaging biomarkers of the kidney depends on accurate automated segmentation of the kidney and its compartments (cortex, medulla, and sinus). METHODS: We developed a robust deep-learning framework for kidney (sub-)segmentation based on a hierarchical, three-dimensional convolutional neural network (CNN) that was optimized for multiscale problems of combined localization and segmentation. We applied the CNN to abdominal magnetic resonance images from the population-based German National Cohort (NAKO) study. RESULTS: There was good to excellent agreement between the model predictions and manual segmentations. The median values for the body-surface normalized total kidney, cortex, medulla, and sinus volumes of 9934 persons were 158, 115, 43, and 24 mL/m2. Distributions of these markers are provided both for the overall study population and for a subgroup of persons without kidney disease or any associated conditions. Multivariable adjusted regression analyses revealed that diabetes, male sex, and a higher estimated glomerular filtration rate (eGFR) are important predictors of higher total and cortical volumes. Each increase of eGFR by one unit (i.e., 1 mL/min per 1.73 m2 body surface area) was associated with a 0.98 mL/m2 increase in total kidney volume, and this association was significant. Volumes were lower in persons with eGFR-defined chronic kidney disease. CONCLUSION: The extraction of image-based biomarkers through CNN-based renal sub-segmentation using data from a population-based study yields reliable results, forming a solid foundation for future investigations.


Asunto(s)
Riñón , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/estadística & datos numéricos , Riñón/diagnóstico por imagen , Persona de Mediana Edad , Anciano , Adulto , Alemania , Tasa de Filtración Glomerular/fisiología , Biomarcadores/análisis , Redes Neurales de la Computación , Aprendizaje Profundo , Estudios de Cohortes
5.
Sci Rep ; 14(1): 2083, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267512

RESUMEN

Mitochondrial DNA copy number (mtDNA-CN) is a biomarker for mitochondrial dysfunction associated with several diseases. Previous genome-wide association studies (GWAS) have been performed to unravel underlying mechanisms of mtDNA-CN regulation. However, the identified gene regions explain only a small fraction of mtDNA-CN variability. Most of this data has been estimated from microarrays based on various pipelines. In the present study we aimed to (1) identify genetic loci for qPCR-measured mtDNA-CN from three studies (16,130 participants) using GWAS, (2) identify potential systematic differences between our qPCR derived mtDNA-CN measurements compared to the published microarray intensity-based estimates, and (3) disentangle the nuclear from mitochondrial regulation of the mtDNA-CN phenotype. We identified two genome-wide significant autosomal loci associated with qPCR-measured mtDNA-CN: at HBS1L (rs4895440, p = 3.39 × 10-13) and GSDMA (rs56030650, p = 4.85 × 10-08) genes. Moreover, 113/115 of the previously published SNPs identified by microarray-based analyses were significantly equivalent with our findings. In our study, the mitochondrial genome itself contributed only marginally to mtDNA-CN regulation as we only detected a single rare mitochondrial variant associated with mtDNA-CN. Furthermore, we incorporated mitochondrial haplogroups into our analyses to explore their potential impact on mtDNA-CN. However, our findings indicate that they do not exert any significant influence on our results.


Asunto(s)
Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Humanos , ADN Mitocondrial/genética , Variaciones en el Número de Copia de ADN/genética , Estudio de Asociación del Genoma Completo , Mitocondrias/genética , Sitios Genéticos , Gasderminas
6.
Sci Transl Med ; 16(750): eadi4125, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838135

RESUMEN

Chronic inflammation is a constitutive component of many age-related diseases, including age-related macular degeneration (AMD). Here, we identified interleukin-1 receptor-associated kinase M (IRAK-M) as a key immunoregulator in retinal pigment epithelium (RPE) that declines during the aging process. Rare genetic variants of IRAK3, which encodes IRAK-M, were associated with an increased likelihood of developing AMD. In human samples and mouse models, IRAK-M abundance in the RPE declined with advancing age or exposure to oxidative stress and was further reduced in AMD. Irak3-knockout mice exhibited an increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M led to a disruption in RPE cell homeostasis, characterized by compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of adeno-associated virus (AAV)-expressing human IRAK3 rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in Irak3-knockout mice. Our data show that replenishment of IRAK-M in the RPE may redress dysregulated pro-inflammatory processes in AMD, suggesting a potential treatment for retinal degeneration.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1 , Ratones Noqueados , Estrés Oxidativo , Degeneración Retiniana , Epitelio Pigmentado de la Retina , Animales , Humanos , Masculino , Ratones , Senescencia Celular , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/genética , Degeneración Macular/metabolismo , Degeneración Macular/patología , Degeneración Macular/genética , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/genética , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología
7.
Nat Commun ; 15(1): 586, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38233393

RESUMEN

X-chromosomal genetic variants are understudied but can yield valuable insights into sexually dimorphic human traits and diseases. We performed a sex-stratified cross-ancestry X-chromosome-wide association meta-analysis of seven kidney-related traits (n = 908,697), identifying 23 loci genome-wide significantly associated with two of the traits: 7 for uric acid and 16 for estimated glomerular filtration rate (eGFR), including four novel eGFR loci containing the functionally plausible prioritized genes ACSL4, CLDN2, TSPAN6 and the female-specific DRP2. Further, we identified five novel sex-interactions, comprising male-specific effects at FAM9B and AR/EDA2R, and three sex-differential findings with larger genetic effect sizes in males at DCAF12L1 and MST4 and larger effect sizes in females at HPRT1. All prioritized genes in loci showing significant sex-interactions were located next to androgen response elements (ARE). Five ARE genes showed sex-differential expressions. This study contributes new insights into sex-dimorphisms of kidney traits along with new prioritized gene targets for further molecular research.


Asunto(s)
Andrógenos , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Femenino , Andrógenos/genética , Riñón , Cromosomas Humanos X/genética , Elementos de Respuesta , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Tetraspaninas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA