Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(19): 4085-4099.e15, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37714134

RESUMEN

Many sequence variants have additive effects on blood lipid levels and, through that, on the risk of coronary artery disease (CAD). We show that variants also have non-additive effects and interact to affect lipid levels as well as affecting variance and correlations. Variance and correlation effects are often signatures of epistasis or gene-environmental interactions. These complex effects can translate into CAD risk. For example, Trp154Ter in FUT2 protects against CAD among subjects with the A1 blood group, whereas it associates with greater risk of CAD in others. His48Arg in ADH1B interacts with alcohol consumption to affect lipid levels and CAD. The effect of variants in TM6SF2 on blood lipids is greatest among those who never eat oily fish but absent from those who often do. This work demonstrates that variants that affect variance of quantitative traits can allow for the discovery of epistasis and interactions of variants with the environment.


Asunto(s)
Enfermedad de la Arteria Coronaria , Animales , Humanos , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/genética , Epistasis Genética , Fenotipo , Lípidos/sangre , Sistema del Grupo Sanguíneo ABO
2.
Nature ; 600(7890): 675-679, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34887591

RESUMEN

Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.


Asunto(s)
Enfermedades Cardiovasculares , Estudio de Asociación del Genoma Completo , Enfermedades Cardiovasculares/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Desequilibrio de Ligamiento , Herencia Multifactorial , Polimorfismo de Nucleótido Simple/genética , Grupos de Población
3.
N Engl J Med ; 389(19): 1741-1752, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37937776

RESUMEN

BACKGROUND: In 2021, the American College of Medical Genetics and Genomics (ACMG) recommended reporting actionable genotypes in 73 genes associated with diseases for which preventive or therapeutic measures are available. Evaluations of the association of actionable genotypes in these genes with life span are currently lacking. METHODS: We assessed the prevalence of coding and splice variants in genes on the ACMG Secondary Findings, version 3.0 (ACMG SF v3.0), list in the genomes of 57,933 Icelanders. We assigned pathogenicity to all reviewed variants using reported evidence in the ClinVar database, the frequency of variants, and their associations with disease to create a manually curated set of actionable genotypes (variants). We assessed the relationship between these genotypes and life span and further examined the specific causes of death among carriers. RESULTS: Through manual curation of 4405 sequence variants in the ACMG SF v3.0 genes, we identified 235 actionable genotypes in 53 genes. Of the 57,933 participants, 2306 (4.0%) carried at least one actionable genotype. We found shorter median survival among persons carrying actionable genotypes than among noncarriers. Specifically, we found that carrying an actionable genotype in a cancer gene was associated with survival that was 3 years shorter than that among noncarriers, with causes of death among carriers attributed primarily to cancer-related conditions. Furthermore, we found evidence of association between carrying an actionable genotype in certain genes in the cardiovascular disease group and a reduced life span. CONCLUSIONS: On the basis of the ACMG SF v3.0 guidelines, we found that approximately 1 in 25 Icelanders carried an actionable genotype and that carrying such a genotype was associated with a reduced life span. (Funded by deCODE Genetics-Amgen.).


Asunto(s)
Enfermedad , Genómica , Longevidad , Humanos , Alelos , Pruebas Genéticas , Variación Genética , Genotipo , Islandia/epidemiología , Longevidad/genética , Enfermedad/genética , Enfermedades Cardiovasculares/genética , Neoplasias/genética
4.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931049

RESUMEN

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Cromatina/genética , Genómica , Humanos , Lípidos/genética , Polimorfismo de Nucleótido Simple/genética
6.
Eur Heart J ; 44(12): 1070-1080, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36747475

RESUMEN

AIMS: Syncope is a common and clinically challenging condition. In this study, the genetics of syncope were investigated to seek knowledge about its pathophysiology and prognostic implications. METHODS AND RESULTS: This genome-wide association meta-analysis included 56 071 syncope cases and 890 790 controls from deCODE genetics (Iceland), UK Biobank (United Kingdom), and Copenhagen Hospital Biobank Cardiovascular Study/Danish Blood Donor Study (Denmark), with a follow-up assessment of variants in 22 412 cases and 286 003 controls from Intermountain (Utah, USA) and FinnGen (Finland). The study yielded 18 independent syncope variants, 17 of which were novel. One of the variants, p.Ser140Thr in PTPRN2, affected syncope only when maternally inherited. Another variant associated with a vasovagal reaction during blood donation and five others with heart rate and/or blood pressure regulation, with variable directions of effects. None of the 18 associations could be attributed to cardiovascular or other disorders. Annotation with regard to regulatory elements indicated that the syncope variants were preferentially located in neural-specific regulatory regions. Mendelian randomization analysis supported a causal effect of coronary artery disease on syncope. A polygenic score (PGS) for syncope captured genetic correlation with cardiovascular disorders, diabetes, depression, and shortened lifespan. However, a score based solely on the 18 syncope variants performed similarly to the PGS in detecting syncope risk but did not associate with other disorders. CONCLUSION: The results demonstrate that syncope has a distinct genetic architecture that implicates neural regulatory processes and a complex relationship with heart rate and blood pressure regulation. A shared genetic background with poor cardiovascular health was observed, supporting the importance of a thorough assessment of individuals presenting with syncope.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Humanos , Estudio de Asociación del Genoma Completo/métodos , Síncope/genética , Enfermedades Cardiovasculares/genética , Sistema Nervioso Autónomo , Análisis de la Aleatorización Mendeliana
7.
Eur Heart J ; 44(21): 1927-1939, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37038246

RESUMEN

AIMS: Although highly heritable, the genetic etiology of calcific aortic stenosis (AS) remains incompletely understood. The aim of this study was to discover novel genetic contributors to AS and to integrate functional, expression, and cross-phenotype data to identify mechanisms of AS. METHODS AND RESULTS: A genome-wide meta-analysis of 11.6 million variants in 10 cohorts involving 653 867 European ancestry participants (13 765 cases) was performed. Seventeen loci were associated with AS at P ≤ 5 × 10-8, of which 15 replicated in an independent cohort of 90 828 participants (7111 cases), including CELSR2-SORT1, NLRP6, and SMC2. A genetic risk score comprised of the index variants was associated with AS [odds ratio (OR) per standard deviation, 1.31; 95% confidence interval (CI), 1.26-1.35; P = 2.7 × 10-51] and aortic valve calcium (OR per standard deviation, 1.22; 95% CI, 1.08-1.37; P = 1.4 × 10-3), after adjustment for known risk factors. A phenome-wide association study indicated multiple associations with coronary artery disease, apolipoprotein B, and triglycerides. Mendelian randomization supported a causal role for apolipoprotein B-containing lipoprotein particles in AS (OR per g/L of apolipoprotein B, 3.85; 95% CI, 2.90-5.12; P = 2.1 × 10-20) and replicated previous findings of causality for lipoprotein(a) (OR per natural logarithm, 1.20; 95% CI, 1.17-1.23; P = 4.8 × 10-73) and body mass index (OR per kg/m2, 1.07; 95% CI, 1.05-1.9; P = 1.9 × 10-12). Colocalization analyses using the GTEx database identified a role for differential expression of the genes LPA, SORT1, ACTR2, NOTCH4, IL6R, and FADS. CONCLUSION: Dyslipidemia, inflammation, calcification, and adiposity play important roles in the etiology of AS, implicating novel treatments and prevention strategies.


Asunto(s)
Estenosis de la Válvula Aórtica , Dislipidemias , Humanos , Estudio de Asociación del Genoma Completo/métodos , Adiposidad/genética , Predisposición Genética a la Enfermedad , Estenosis de la Válvula Aórtica/genética , Obesidad , Factores de Riesgo , Inflamación , Dislipidemias/complicaciones , Dislipidemias/genética , Apolipoproteínas/genética , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple/genética
8.
JAMA ; 330(8): 725-735, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37606673

RESUMEN

Importance: Whether protein risk scores derived from a single plasma sample could be useful for risk assessment for atherosclerotic cardiovascular disease (ASCVD), in conjunction with clinical risk factors and polygenic risk scores, is uncertain. Objective: To develop protein risk scores for ASCVD risk prediction and compare them to clinical risk factors and polygenic risk scores in primary and secondary event populations. Design, Setting, and Participants: The primary analysis was a retrospective study of primary events among 13 540 individuals in Iceland (aged 40-75 years) with proteomics data and no history of major ASCVD events at recruitment (study duration, August 23, 2000 until October 26, 2006; follow-up through 2018). We also analyzed a secondary event population from a randomized, double-blind lipid-lowering clinical trial (2013-2016), consisting of individuals with stable ASCVD receiving statin therapy and for whom proteomic data were available for 6791 individuals. Exposures: Protein risk scores (based on 4963 plasma protein levels and developed in a training set in the primary event population); polygenic risk scores for coronary artery disease and stroke; and clinical risk factors that included age, sex, statin use, hypertension treatment, type 2 diabetes, body mass index, and smoking status at the time of plasma sampling. Main Outcomes and Measures: Outcomes were composites of myocardial infarction, stroke, and coronary heart disease death or cardiovascular death. Performance was evaluated using Cox survival models and measures of discrimination and reclassification that accounted for the competing risk of non-ASCVD death. Results: In the primary event population test set (4018 individuals [59.0% women]; 465 events; median follow-up, 15.8 years), the protein risk score had a hazard ratio (HR) of 1.93 per SD (95% CI, 1.75 to 2.13). Addition of protein risk score and polygenic risk scores significantly increased the C index when added to a clinical risk factor model (C index change, 0.022 [95% CI, 0.007 to 0.038]). Addition of the protein risk score alone to a clinical risk factor model also led to a significantly increased C index (difference, 0.014 [95% CI, 0.002 to 0.028]). Among White individuals in the secondary event population (6307 participants; 432 events; median follow-up, 2.2 years), the protein risk score had an HR of 1.62 per SD (95% CI, 1.48 to 1.79) and significantly increased C index when added to a clinical risk factor model (C index change, 0.026 [95% CI, 0.011 to 0.042]). The protein risk score was significantly associated with major adverse cardiovascular events among individuals of African and Asian ancestries in the secondary event population. Conclusions and Relevance: A protein risk score was significantly associated with ASCVD events in primary and secondary event populations. When added to clinical risk factors, the protein risk score and polygenic risk score both provided statistically significant but modest improvement in discrimination.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Proteómica , Femenino , Humanos , Masculino , Aterosclerosis/epidemiología , Aterosclerosis/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Estudios Retrospectivos , Accidente Cerebrovascular , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/terapia , Medición de Riesgo , Adulto , Persona de Mediana Edad , Anciano , Islandia/epidemiología , Ensayos Clínicos Controlados Aleatorios como Asunto
9.
Arterioscler Thromb Vasc Biol ; 41(10): 2616-2628, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34407635

RESUMEN

Objective: Familial hypercholesterolemia (FH) is traditionally defined as a monogenic disease characterized by severely elevated LDL-C (low-density lipoprotein cholesterol) levels. In practice, FH is commonly a clinical diagnosis without confirmation of a causative mutation. In this study, we sought to characterize and compare monogenic and clinically defined FH in a large sample of Icelanders. Approach and Results: We whole-genome sequenced 49 962 Icelanders and imputed the identified variants into an overall sample of 166 281 chip-genotyped Icelanders. We identified 20 FH mutations in LDLR, APOB, and PCSK9 with combined prevalence of 1 in 836. Monogenic FH was associated with severely elevated LDL-C levels and increased risk of premature coronary disease, aortic valve stenosis, and high burden of coronary atherosclerosis. We used a modified version of the Dutch Lipid Clinic Network criteria to screen for the clinical FH phenotype among living adult participants (N=79 058). Clinical FH was found in 2.2% of participants, of whom only 5.2% had monogenic FH. Mutation-negative clinical FH has a strong polygenic basis. Both individuals with monogenic FH and individuals with mutation-negative clinical FH were markedly undertreated with cholesterol-lowering medications and only a minority attained an LDL-C target of <2.6 mmol/L (<100 mg/dL; 11.0% and 24.9%, respectively) or <1.8 mmol/L (<70 mg/dL; 0.0% and 5.2%, respectively), as recommended for primary prevention by European Society of Cardiology/European Atherosclerosis Society cholesterol guidelines. Conclusions: Clinically defined FH is a relatively common phenotype that is explained by monogenic FH in only a minority of cases. Both monogenic and clinical FH confer high cardiovascular risk but are markedly undertreated.


Asunto(s)
Apolipoproteína B-100/genética , Enfermedades Cardiovasculares/genética , Hiperlipoproteinemia Tipo II/genética , Lípidos/sangre , Mutación , Proproteína Convertasa 9/genética , Receptores de LDL/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/etnología , Enfermedades Cardiovasculares/terapia , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Hiperlipoproteinemia Tipo II/etnología , Islandia/epidemiología , Masculino , Persona de Mediana Edad , Fenotipo , Prevalencia , Pronóstico , Medición de Riesgo , Factores de Riesgo , Adulto Joven
10.
Eur Heart J ; 42(20): 1959-1971, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-36282123

RESUMEN

AIMS: The aim of this study was to use human genetics to investigate the pathogenesis of sick sinus syndrome (SSS) and the role of risk factors in its development. METHODS AND RESULTS: We performed a genome-wide association study of 6469 SSS cases and 1 000 187 controls from deCODE genetics, the Copenhagen Hospital Biobank, UK Biobank, and the HUNT study. Variants at six loci associated with SSS, a reported missense variant in MYH6, known atrial fibrillation (AF)/electrocardiogram variants at PITX2, ZFHX3, TTN/CCDC141, and SCN10A and a low-frequency (MAF = 1.1-1.8%) missense variant, p.Gly62Cys in KRT8 encoding the intermediate filament protein keratin 8. A full genotypic model best described the p.Gly62Cys association (P = 1.6 × 10-20), with an odds ratio (OR) of 1.44 for heterozygotes and a disproportionally large OR of 13.99 for homozygotes. All the SSS variants increased the risk of pacemaker implantation. Their association with AF varied and p.Gly62Cys was the only variant not associating with any other arrhythmia or cardiovascular disease. We tested 17 exposure phenotypes in polygenic score (PGS) and Mendelian randomization analyses. Only two associated with the risk of SSS in Mendelian randomization, AF, and lower heart rate, suggesting causality. Powerful PGS analyses provided convincing evidence against causal associations for body mass index, cholesterol, triglycerides, and type 2 diabetes (P > 0.05). CONCLUSION: We report the associations of variants at six loci with SSS, including a missense variant in KRT8 that confers high risk in homozygotes and points to a mechanism specific to SSS development. Mendelian randomization supports a causal role for AF in the development of SSS.


Asunto(s)
Fibrilación Atrial , Diabetes Mellitus Tipo 2 , Humanos , Síndrome del Seno Enfermo/genética , Queratina-8/genética , Estudio de Asociación del Genoma Completo , Diabetes Mellitus Tipo 2/complicaciones , Fibrilación Atrial/complicaciones , Triglicéridos , Análisis de la Aleatorización Mendeliana
11.
Eur Heart J ; 42(20): 1959-1971, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33580673

RESUMEN

AIMS: The aim of this study was to use human genetics to investigate the pathogenesis of sick sinus syndrome (SSS) and the role of risk factors in its development. METHODS AND RESULTS: We performed a genome-wide association study of 6469 SSS cases and 1 000 187 controls from deCODE genetics, the Copenhagen Hospital Biobank, UK Biobank, and the HUNT study. Variants at six loci associated with SSS, a reported missense variant in MYH6, known atrial fibrillation (AF)/electrocardiogram variants at PITX2, ZFHX3, TTN/CCDC141, and SCN10A and a low-frequency (MAF = 1.1-1.8%) missense variant, p.Gly62Cys in KRT8 encoding the intermediate filament protein keratin 8. A full genotypic model best described the p.Gly62Cys association (P = 1.6 × 10-20), with an odds ratio (OR) of 1.44 for heterozygotes and a disproportionally large OR of 13.99 for homozygotes. All the SSS variants increased the risk of pacemaker implantation. Their association with AF varied and p.Gly62Cys was the only variant not associating with any other arrhythmia or cardiovascular disease. We tested 17 exposure phenotypes in polygenic score (PGS) and Mendelian randomization analyses. Only two associated with the risk of SSS in Mendelian randomization, AF, and lower heart rate, suggesting causality. Powerful PGS analyses provided convincing evidence against causal associations for body mass index, cholesterol, triglycerides, and type 2 diabetes (P > 0.05). CONCLUSION: We report the associations of variants at six loci with SSS, including a missense variant in KRT8 that confers high risk in homozygotes and points to a mechanism specific to SSS development. Mendelian randomization supports a causal role for AF in the development of SSS.


Asunto(s)
Fibrilación Atrial , Diabetes Mellitus Tipo 2 , Marcapaso Artificial , Fibrilación Atrial/genética , Estudio de Asociación del Genoma Completo , Humanos , Canal de Sodio Activado por Voltaje NAV1.8 , Síndrome del Seno Enfermo/genética
12.
Hum Mol Genet ; 28(7): 1199-1211, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30476138

RESUMEN

Urine dipstick tests are widely used in routine medical care to diagnose kidney and urinary tract and metabolic diseases. Several environmental factors are known to affect the test results, whereas the effects of genetic diversity are largely unknown. We tested 32.5 million sequence variants for association with urinary biomarkers in a set of 150 274 Icelanders with urine dipstick measurements. We detected 20 association signals, of which 14 are novel, associating with at least one of five clinical entities defined by the urine dipstick: glucosuria, ketonuria, proteinuria, hematuria and urine pH. These include three independent glucosuria variants at SLC5A2, the gene encoding the sodium-dependent glucose transporter (SGLT2), a protein targeted pharmacologically to increase urinary glucose excretion in the treatment of diabetes. Two variants associating with proteinuria are in LRP2 and CUBN, encoding the co-transporters megalin and cubilin, respectively, that mediate proximal tubule protein uptake. One of the hematuria-associated variants is a rare, previously unreported 2.5 kb exonic deletion in COL4A3. Of the four signals associated with urine pH, we note that the pH-increasing alleles of two variants (POU2AF1, WDR72) associate significantly with increased risk of kidney stones. Our results reveal that genetic factors affect variability in urinary biomarkers, in both a disease dependent and independent context.


Asunto(s)
Biomarcadores/análisis , Biomarcadores/orina , Variación Genética/genética , Adulto , Anciano , Alelos , Femenino , Hematuria/genética , Hematuria/orina , Humanos , Concentración de Iones de Hidrógeno , Islandia , Cetosis/genética , Cetosis/orina , Riñón/metabolismo , Masculino , Persona de Mediana Edad , Proteinuria/genética , Proteinuria/orina , Transportador 2 de Sodio-Glucosa/genética , Secuenciación Completa del Genoma/métodos
13.
Eur Heart J ; 41(28): 2618-2628, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32702746

RESUMEN

AIMS: To explore whether variability in dietary cholesterol and phytosterol absorption impacts the risk of coronary artery disease (CAD) using as instruments sequence variants in the ABCG5/8 genes, key regulators of intestinal absorption of dietary sterols. METHODS AND RESULTS: We examined the effects of ABCG5/8 variants on non-high-density lipoprotein (non-HDL) cholesterol (N up to 610 532) and phytosterol levels (N = 3039) and the risk of CAD in Iceland, Denmark, and the UK Biobank (105 490 cases and 844 025 controls). We used genetic scores for non-HDL cholesterol to determine whether ABCG5/8 variants confer greater risk of CAD than predicted by their effect on non-HDL cholesterol. We identified nine rare ABCG5/8 coding variants with substantial impact on non-HDL cholesterol. Carriers have elevated phytosterol levels and are at increased risk of CAD. Consistent with impact on ABCG5/8 transporter function in hepatocytes, eight rare ABCG5/8 variants associate with gallstones. A genetic score of ABCG5/8 variants predicting 1 mmol/L increase in non-HDL cholesterol associates with two-fold increase in CAD risk [odds ratio (OR) = 2.01, 95% confidence interval (CI) 1.75-2.31, P = 9.8 × 10-23] compared with a 54% increase in CAD risk (OR = 1.54, 95% CI 1.49-1.59, P = 1.1 × 10-154) associated with a score of other non-HDL cholesterol variants predicting the same increase in non-HDL cholesterol (P for difference in effects = 2.4 × 10-4). CONCLUSIONS: Genetic variation in cholesterol absorption affects levels of circulating non-HDL cholesterol and risk of CAD. Our results indicate that both dietary cholesterol and phytosterols contribute directly to atherogenesis.


Asunto(s)
Enfermedad de la Arteria Coronaria , Fitosteroles , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/genética , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/genética , Humanos , Islandia , Esteroles
14.
Hum Mol Genet ; 26(12): 2364-2376, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28398513

RESUMEN

Common sequence variants at the haptoglobin gene (HP) have been associated with blood lipid levels. Through whole-genome sequencing of 8,453 Icelanders, we discovered a splice donor founder mutation in HP (NM_001126102.1:c.190 + 1G > C, minor allele frequency = 0.56%). This mutation occurs on the HP1 allele of the common copy number variant in HP and leads to a loss of function of HP1. It associates with lower levels of haptoglobin (P = 2.1 × 10-54), higher levels of non-high density lipoprotein cholesterol (ß = 0.26 mmol/l, P = 2.6 × 10-9) and greater risk of coronary artery disease (odds ratio = 1.30, 95% confidence interval: 1.10-1.54, P = 0.0024). Through haplotype analysis and with RNA sequencing, we provide evidence of a causal relationship between one of the two haptoglobin isoforms, namely Hp1, and lower levels of non-HDL cholesterol. Furthermore, we show that the HP1 allele associates with various other quantitative biological traits.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Haptoglobinas/genética , Adulto , Alelos , Secuencia de Bases , Enfermedad de la Arteria Coronaria/metabolismo , Variaciones en el Número de Copia de ADN/genética , Femenino , Frecuencia de los Genes/genética , Estudios de Asociación Genética/métodos , Variación Genética , Haptoglobinas/metabolismo , Humanos , Islandia , Lípidos/sangre , Lípidos/genética , Lipoproteínas/genética , Masculino , Mutación , Oportunidad Relativa , Sitios de Empalme de ARN/genética , Factores de Riesgo
15.
N Engl J Med ; 374(22): 2131-41, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27192541

RESUMEN

BACKGROUND: Several sequence variants are known to have effects on serum levels of non-high-density lipoprotein (HDL) cholesterol that alter the risk of coronary artery disease. METHODS: We sequenced the genomes of 2636 Icelanders and found variants that we then imputed into the genomes of approximately 398,000 Icelanders. We tested for association between these imputed variants and non-HDL cholesterol levels in 119,146 samples. We then performed replication testing in two populations of European descent. We assessed the effects of an implicated loss-of-function variant on the risk of coronary artery disease in 42,524 case patients and 249,414 controls from five European ancestry populations. An augmented set of genomes was screened for additional loss-of-function variants in a target gene. We evaluated the effect of an implicated variant on protein stability. RESULTS: We found a rare noncoding 12-base-pair (bp) deletion (del12) in intron 4 of ASGR1, which encodes a subunit of the asialoglycoprotein receptor, a lectin that plays a role in the homeostasis of circulating glycoproteins. The del12 mutation activates a cryptic splice site, leading to a frameshift mutation and a premature stop codon that renders a truncated protein prone to degradation. Heterozygous carriers of the mutation (1 in 120 persons in our study population) had a lower level of non-HDL cholesterol than noncarriers, a difference of 15.3 mg per deciliter (0.40 mmol per liter) (P=1.0×10(-16)), and a lower risk of coronary artery disease (by 34%; 95% confidence interval, 21 to 45; P=4.0×10(-6)). In a larger set of sequenced samples from Icelanders, we found another loss-of-function ASGR1 variant (p.W158X, carried by 1 in 1850 persons) that was also associated with lower levels of non-HDL cholesterol (P=1.8×10(-3)). CONCLUSIONS: ASGR1 haploinsufficiency was associated with reduced levels of non-HDL cholesterol and a reduced risk of coronary artery disease. (Funded by the National Institutes of Health and others.).


Asunto(s)
Receptor de Asialoglicoproteína/genética , Colesterol/sangre , Enfermedad de la Arteria Coronaria/genética , Haploinsuficiencia , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Bases , Femenino , Predisposición Genética a la Enfermedad , Humanos , Islandia , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Infarto del Miocardio/genética , Riesgo , Análisis de Secuencia de ADN , Población Blanca/genética
16.
Eur Heart J ; 39(34): 3243-3249, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-29590334

RESUMEN

Aims: Coarctation of the aorta (CoA) accounts for 4-8% of congenital heart defects (CHDs) and confers substantial morbidity despite treatment. It is increasingly recognized as a highly heritable condition. The aim of the study was to search for sequence variants that affect the risk of CoA. Methods and results: We performed a genome-wide association study of CoA among Icelanders (120 cases and 355 166 controls) based on imputed variants identified through whole-genome sequencing. We found association with a rare (frequency = 0.34%) missense mutation p.Arg721Trp in MYH6 (odds ratio = 44.2, P = 5.0 × 10-22), encoding the alpha-heavy chain subunit of cardiac myosin, an essential sarcomere protein. Approximately 20% of individuals with CoA in Iceland carry this mutation. We show that p.Arg721Trp also associates with other CHDs, in particular bicuspid aortic valve. We have previously reported broad effects of p.Arg721Trp on cardiac electrical function and strong association with sick sinus syndrome and atrial fibrillation. Conclusion: Through a population approach, we found that a rare missense mutation p.Arg721Trp in the sarcomere gene MYH6 has a strong effect on the risk of CoA and explains a substantial fraction of the Icelanders with CoA. This is the first mutation associated with non-familial or sporadic form of CoA at a population level. The p.Arg721Trp in MYH6 causes a cardiac syndrome with highly variable expressivity and emphasizes the importance of sarcomere integrity for cardiac development and function.


Asunto(s)
Coartación Aórtica/genética , Miosinas Cardíacas/genética , ADN/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Mutación Missense , Cadenas Pesadas de Miosina/genética , Adolescente , Adulto , Coartación Aórtica/metabolismo , Enfermedades Asintomáticas , Miosinas Cardíacas/metabolismo , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Cadenas Pesadas de Miosina/metabolismo , Linaje , Estudios Retrospectivos , Adulto Joven
17.
Eur Heart J ; 39(23): 2172-2178, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29596577

RESUMEN

Aims: Scavenger receptor Class B Type 1 (SR-BI) is a major receptor for high-density lipoprotein (HDL) that promotes hepatic uptake of cholesterol from HDL. A rare mutation p.P376L, in the gene encoding SR-BI, SCARB1, was recently reported to associate with elevated HDL cholesterol (HDL-C) and increased risk of coronary artery disease (CAD), suggesting that increased HDL-C caused by SR-BI impairment might be an independent marker of cardiovascular risk. We tested the hypothesis that alleles in or close to SCARB1 that associate with elevated levels of HDL-C also associate with increased risk of CAD in the relatively homogeneous population of Iceland. Methods and results: Using a large resource of whole-genome sequenced Icelanders, we identified thirteen SCARB1 coding mutations that we examined for association with HDL-C (n = 136 672). Three rare SCARB1 mutations, encoding p.G319V, p.V111M, and p.V32M (combined allelic frequency = 0.2%) associate with elevated levels of HDL-C (p.G319V: ß = 11.1 mg/dL, P = 8.0 × 10-7; p.V111M: ß = 8.3 mg/dL, P = 1.1 × 10-6; p.V32M: ß = 10.2 mg/dL, P = 8.1 × 10-4). These mutations do not associate with CAD (36 886 cases/306 268 controls) (odds ratio = 0.90, 95% confidence interval 0.67-1.22, P = 0.49), despite effects on HDL-C comparable to that reported for p.P376L, both in terms of direction and magnitude. Furthermore, HDL-C raising alleles of three common SCARB1 non-coding variants, including one previously unreported (rs61941676-C: ß = 1.25 mg/dL, P = 1.7 × 10-18), and of one low frequency coding variant (p.V135I) that independently associate with higher HDL-C, do not confer increased risk of CAD. Conclusion: Elevated HDL-C due to genetically compromised SR-BI function is not a marker of CAD risk.


Asunto(s)
HDL-Colesterol/metabolismo , Enfermedad de la Arteria Coronaria/genética , Receptores Depuradores de Clase B/genética , Humanos , Islandia , Hígado/metabolismo , Mutación
20.
PLoS Genet ; 11(9): e1005379, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26327206

RESUMEN

Through high coverage whole-genome sequencing and imputation of the identified variants into a large fraction of the Icelandic population, we found four independent signals in the low density lipoprotein receptor gene (LDLR) that associate with levels of non-high density lipoprotein cholesterol (non-HDL-C) and coronary artery disease (CAD). Two signals are novel with respect to association with non-HDL-C and are represented by non-coding low frequency variants (between 2-4% frequency), the splice region variant rs72658867-A in intron 14 and rs17248748-T in intron one. These two novel associations were replicated in three additional populations. Both variants lower non-HDL-C levels (rs72658867-A, non-HDL-C effect = -0.44 mmol/l, Padj = 1.1 × 10⁻8° and rs17248748-T, non-HDL-C effect = -0.13 mmol/l, Padj = 1.3 × 10⁻¹²) and confer protection against CAD (rs72658867-A, OR = 0.76 and Padj = 2.7 × 10⁻8 and rs17248748-T, OR = 0.92 and Padj = 0.022). The LDLR splice region variant, rs72658867-A, located at position +5 in intron 14 (NM_000527:c.2140+5G>A), causes retention of intron 14 during transcription and is expected to produce a truncated LDL receptor lacking domains essential for function of the receptor. About half of the transcripts generated from chromosomes carrying rs72658867-A are characterized by this retention of the intron. The same variant also increases LDLR mRNA expression, however, the wild type transcripts do not exceed levels in non-carriers. This demonstrates that sequence variants that disrupt the LDL receptor can lower non-HDL-C and protect against CAD.


Asunto(s)
Colesterol/sangre , Enfermedad de la Arteria Coronaria/prevención & control , Empalme del ARN , Receptores de LDL/genética , Humanos , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA