Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 620(7975): 807-812, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612395

RESUMEN

The United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines1. However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear2-5. Unregulated hunting can empty PAs of large animals6, illegal tree felling can degrade habitat quality7, and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape8 (a phenomenon called leakage). Alternatively, well-functioning PAs could enhance animal diversity within reserves as well as in nearby unprotected sites9 (an effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia contribute to vertebrate conservation inside and outside their boundaries. Reserves increased all facets of bird diversity. Large reserves were also associated with substantially enhanced mammal diversity in the adjacent unprotected landscape. Rather than PAs generating leakage that deteriorated ecological conditions elsewhere, our results are consistent with PAs inducing spillover that benefits biodiversity in surrounding areas. These findings support the United Nations goal of achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with higher vertebrate diversity both inside their boundaries and in the broader landscape.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Objetivos , Clima Tropical , Naciones Unidas , Animales , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Mamíferos , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/métodos , Agricultura Forestal/tendencias
4.
Am Nat ; 201(4): 574-585, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36957999

RESUMEN

AbstractCommunity trait assembly, the formation of distributions of phenotypic characteristics across coexisting species, can occur via two main processes: filtering of trait distributions from the regional pool and in situ phenotypic evolution in local communities. But the relative importance of these processes remains unclear, largely because of the difficulty in determining the timing of evolutionary trait changes and biogeographic dispersal events in phylogenies. We assessed evolutionary and biogeographic transitions in woody plant species across the Indo-Malay archipelago, a series of island groups where the same plant lineages interact with different seed disperser and seed predator assemblages. Fruit size in 2,650 taxa spanning the angiosperm tree of life tended to be smaller in the Sulawesi and Maluku island groups, where frugivores are less diverse and smaller bodied, than in the regional source pool. While numerous plant lineages (not just small-fruited ones) reached the isolated islands, colonists tended to be the smaller-fruited members of each clade. Nearly all of the evolutionary transitions to smaller fruit size predated, often substantially, organismal dispersal to the islands. Our results suggest that filtering rather than within-island evolution largely determined the distribution of fruit sizes in these regions.


Asunto(s)
Magnoliopsida , Dispersión de Semillas , Frutas , Semillas , Plantas , Filogenia , Magnoliopsida/genética
5.
Proc Biol Sci ; 284(1847)2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28100818

RESUMEN

The responses of lowland tropical communities to climate change will critically influence global biodiversity but remain poorly understood. If species in these systems are unable to tolerate warming, the communities-currently the most diverse on Earth-may become depauperate ('biotic attrition'). In response to temperature changes, animals can adjust their distribution in space or their activity in time, but these two components of the niche are seldom considered together. We assessed the spatio-temporal niches of rainforest mammal species in Borneo across gradients in elevation and temperature. Most species are not predicted to experience changes in spatio-temporal niche availability, even under pessimistic warming scenarios. Responses to temperature are not predictable by phylogeny but do appear to be trait-based, being much more variable in smaller-bodied taxa. General circulation models and weather station data suggest unprecedentedly high midday temperatures later in the century; predicted responses to this warming among small-bodied species range from 9% losses to 6% gains in spatio-temporal niche availability, while larger species have close to 0% predicted change. Body mass may therefore be a key ecological trait influencing the identity of climate change winners and losers. Mammal species composition will probably change in some areas as temperatures rise, but full-scale biotic attrition this century appears unlikely.


Asunto(s)
Tamaño Corporal , Cambio Climático , Mamíferos , Animales , Biodiversidad , Borneo , Bosque Lluvioso , Temperatura
6.
Ecology ; 90(3): 688-98, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19341139

RESUMEN

Many plants interact with groups of mutualist pollinators and seed dispersers. A key issue for both basic ecology and conservation is whether the different species within these guilds of mutualist animals are functionally equivalent. Comparing the relative effects of sympatric mutualists is important for understanding the evolution of multispecies mutualisms and for predicting mutualism stability in the face of anthropogenic change. However, empirical comparisons of the population-level impacts of mutualist animals on their host plant are rare, particularly for seed dispersal mutualisms in species-rich ecosystems. We compared the influence of three seed-dispersing tropical mammals, lar gibbons (Hylobates lar), sambar deer (Rusa unicolor), and red muntjac deer (Muntiacus muntjak), on the demography of a shared host tree in Thailand, Choerospondias axillaris (Anacardiaceae). Sambar and muntjac dispersed far more C. axillaris seeds than did gibbons. While sambar deposited many seeds under female tree canopies, muntjac were the only disperser to move seeds to open microhabitats, where C. axillaris seed germination, seedling survival, and initial growth are enhanced. Using stage-based population models, we assessed how disperser-specific seed dispersal, variation in the frequency of canopy gap formation, and their interaction influenced the potential population growth of C. axillaris. Large differences in dispersal quantity and small differences in dispersal quality among sambar and gibbons resulted in similar and negligible impacts on the tree's population dynamics. Muntjac, by taking some of the seeds to open microhabitats, are projected to have a greater positive impact on C. axillaris demography than either sambar or gibbons. Model comparisons of population-level species impacts may allow us to predict which ecological interactions are at risk from loss of critical species.


Asunto(s)
Anacardiaceae/crecimiento & desarrollo , Ciervos/fisiología , Ecosistema , Conducta Alimentaria/fisiología , Hylobates/fisiología , Anacardiaceae/fisiología , Animales , Conservación de los Recursos Naturales , Demografía , Femenino , Masculino , Dinámica Poblacional
7.
Ecol Appl ; 19(4): 854-63, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19544729

RESUMEN

Myriad tropical vertebrates are threatened by overharvest. Whether this harvest has indirect effects on nonhunted organisms that interact with the game species is a critical question. Many tropical birds and mammals disperse seeds. Their overhunting in forests can cause zoochorous trees to suffer from reduced seed dispersal. Yet how these reductions in seed dispersal influence tree abundance and population dynamics remains unclear. Reproductive parameters in long-lived organisms often have very low elasticities; indeed the demographic importance of seed dispersal is an open question. We asked how variation in hunting pressure across four national parks with seasonal forest in northern Thailand influenced the relative abundance of gibbons, muntjac deer, and sambar deer, the sole dispersers of seeds of the canopy tree Choerospondias axillaris. We quantified how variation in disperser numbers affected C. axillaris seed dispersal and seedling abundance across the four parks. We then used these data in a structured population model based on vital rates measured in Khao Yai National Park (where poaching pressure is minimal) to explore how variation in illegal hunting pressure might influence C. axillaris population growth and persistence. Densities of the mammals varied strongly across the parks, from relatively high in Khao Yai to essentially zero in Doi Suthep-Pui. Levels of C. axillaris seed dispersal and seedling abundance positively tracked mammal density. If hunting in Khao Yai were to increase to the levels seen in the other parks, C. axillaris population growth rate would decline, but only slightly. Extinction of C. axillaris is a real possibility, but may take many decades. Recent and ongoing extirpations of vertebrates in many tropical forests could be creating an extinction debt for zoochorous trees whose vulnerability is belied by their current abundance.


Asunto(s)
Anacardiaceae , Ecosistema , Hylobates , Ciervo Muntjac , Semillas , Animales , Conducta Alimentaria , Hylobates/fisiología , Modelos Biológicos , Ciervo Muntjac/fisiología , Densidad de Población , Crecimiento Demográfico , Tailandia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA