Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunol Rev ; 310(1): 47-60, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35689434

RESUMEN

Since its emergence in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has caused substantial morbidity and mortality. Despite the availability of efficacious vaccines, new variants with reduced sensitivity to vaccine-induced protection are a troubling new reality. The Ad26.COV2.S vaccine is a recombinant, replication-incompetent human adenovirus type 26 vector encoding a full-length, membrane-bound severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein in a prefusion-stabilized conformation. This review discusses the immunogenicity and efficacy of Ad26.COV2.S as a single-dose primary vaccination and as a homologous or heterologous booster vaccination. Ad26.COV2.S elicits broad humoral and cellular immune responses, which are associated with protective efficacy/effectiveness against SARS-CoV-2 infection, moderate to severe/critical COVID-19, and COVID-19-related hospitalization and death, including against emerging SARS-CoV-2 variants. The humoral immune responses elicited by Ad26.COV2.S vaccination are durable, continue to increase for at least 2-3 months postvaccination, and involve a range of functional antibodies. Ad26.COV2.S given as a heterologous booster to mRNA vaccine-primed individuals markedly increases humoral and cellular immune responses. The use of Ad26.COV2.S as primary vaccination and as part of booster regimens is supporting the ongoing efforts to control and mitigate the COVID-19 pandemic.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Ad26COVS1 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Pandemias/prevención & control , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
2.
Clin Infect Dis ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657084

RESUMEN

BACKGROUND: Shorter prophylactic vaccine schedules may offer more rapid protection against Ebola in resource-limited settings. METHODS: This randomized, observer-blind, placebo-controlled, phase 2 trial conducted in five sub-Saharan African countries included people without HIV (PWOH, n = 249) and people living with HIV (PLWH, n = 250). Adult participants received one of two accelerated Ebola vaccine regimens (MVA-BN-Filo, Ad26.ZEBOV administered 14 days apart [n = 79] or Ad26.ZEBOV, MVA-BN-Filo administered 28 days apart [n = 322]) or saline/placebo (n = 98). The primary endpoints were safety (adverse events [AEs]) and immunogenicity (Ebola virus [EBOV] glycoprotein-specific binding antibody responses). Binding antibody responders were defined as participants with a > 2.5-fold increase from baseline or the lower limit of quantification if negative at baseline. RESULTS: The mean age was 33.4 years, 52% of participants were female, and among PLWH, the median (interquartile range) CD4+ cell count was 560.0 (418.0-752.0) cells/µL. AEs were generally mild/moderate with no vaccine-related serious AEs or remarkable safety profile differences by HIV status. At 21 days post-dose 2, EBOV glycoprotein-specific binding antibody response rates in vaccine recipients were 99% for the 14-day regimen (geometric mean concentrations [GMCs]: 5168 enzyme-linked immunosorbent assay units (EU)/mL in PWOH; 2509 EU/mL in PLWH), and 98% for the 28-day regimen (GMCs: 6037 EU/mL in PWOH; 2939 EU/mL in PLWH). At 12 months post-dose 2, GMCs in PWOH and PLWH were 635 and 514 EU/mL, respectively, for the 14-day regimen and 331 and 360 EU/mL, respectively, for the 28-day regimen. CONCLUSIONS: Accelerated 14- and 28-day Ebola vaccine regimens were safe and immunogenic in PWOH and PLWH in Africa. TRIAL REGISTRATION: NCT02598388.

3.
N Engl J Med ; 384(19): 1824-1835, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33440088

RESUMEN

BACKGROUND: Efficacious vaccines are urgently needed to contain the ongoing coronavirus disease 2019 (Covid-19) pandemic of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A candidate vaccine, Ad26.COV2.S, is a recombinant, replication-incompetent adenovirus serotype 26 (Ad26) vector encoding a full-length and stabilized SARS-CoV-2 spike protein. METHODS: In this multicenter, placebo-controlled, phase 1-2a trial, we randomly assigned healthy adults between the ages of 18 and 55 years (cohort 1) and those 65 years of age or older (cohort 3) to receive the Ad26.COV2.S vaccine at a dose of 5×1010 viral particles (low dose) or 1×1011 viral particles (high dose) per milliliter or placebo in a single-dose or two-dose schedule. Longer-term data comparing a single-dose regimen with a two-dose regimen are being collected in cohort 2; those results are not reported here. The primary end points were the safety and reactogenicity of each dose schedule. RESULTS: After the administration of the first vaccine dose in 805 participants in cohorts 1 and 3 and after the second dose in cohort 1, the most frequent solicited adverse events were fatigue, headache, myalgia, and injection-site pain. The most frequent systemic adverse event was fever. Systemic adverse events were less common in cohort 3 than in cohort 1 and in those who received the low vaccine dose than in those who received the high dose. Reactogenicity was lower after the second dose. Neutralizing-antibody titers against wild-type virus were detected in 90% or more of all participants on day 29 after the first vaccine dose (geometric mean titer [GMT], 212 to 354), regardless of vaccine dose or age group, and reached 96% by day 57 with a further increase in titers (GMT, 288 to 488) in cohort 1a. Titers remained stable until at least day 71. A second dose provided an increase in the titer by a factor of 2.6 to 2.9 (GMT, 827 to 1266). Spike-binding antibody responses were similar to neutralizing-antibody responses. On day 15, CD4+ T-cell responses were detected in 76 to 83% of the participants in cohort 1 and in 60 to 67% of those in cohort 3, with a clear skewing toward type 1 helper T cells. CD8+ T-cell responses were robust overall but lower in cohort 3. CONCLUSIONS: The safety and immunogenicity profiles of Ad26.COV2.S support further development of this vaccine candidate. (Funded by Johnson & Johnson and the Biomedical Advanced Research and Development Authority of the Department of Health and Human Services; COV1001 ClinicalTrials.gov number, NCT04436276.).


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Ad26COVS1 , Adolescente , Adulto , Anticuerpos Neutralizantes/sangre , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Estudios de Cohortes , Método Doble Ciego , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
4.
J Infect Dis ; 226(6): 979-982, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35429381

RESUMEN

This secondary analysis of the phase 3 ENSEMBLE trial (NCT04505722) assessed the impact of preexisting humoral immunity to adenovirus 26 (Ad26) on the immunogenicity of Ad26.COV2.S-elicited severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody levels in 380 participants in Brazil, South Africa, and the United States. Among those vaccinated in Brazil and South Africa, 31% and 66%, respectively, had prevaccination serum-neutralizing activity against Ad26, with little preexisting immunity detected in the United States. Vaccine recipients in each country had similar postvaccination spike (S) protein-binding antibody levels, indicating that baseline immunity to Ad26 has no clear impact on vaccine-induced immune responses.


Asunto(s)
Infecciones por Adenoviridae , COVID-19 , Ad26COVS1 , Adenoviridae , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Vectores Genéticos , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunogenicidad Vacunal , SARS-CoV-2
5.
Ann Intern Med ; 174(5): 585-594, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33587687

RESUMEN

BACKGROUND: Zika virus (ZIKV) may cause severe congenital disease after maternal-fetal transmission. No vaccine is currently available. OBJECTIVE: To assess the safety and immunogenicity of Ad26.ZIKV.001, a prophylactic ZIKV vaccine candidate. DESIGN: Phase 1 randomized, double-blind, placebo-controlled clinical study. (ClinicalTrials.gov: NCT03356561). SETTING: United States. PARTICIPANTS: 100 healthy adult volunteers. INTERVENTION: Ad26.ZIKV.001, an adenovirus serotype 26 vector encoding ZIKV M-Env, administered in 1- or 2-dose regimens of 5 × 1010 or 1 × 1011 viral particles (vp), or placebo. MEASUREMENTS: Local and systemic adverse events; neutralization titers by microneutralization assay (MN50) and T-cell responses by interferon-γ enzyme-linked immunospot and intracellular cytokine staining; and protectivity of vaccine-induced antibodies in a subset of participants through transfer in an exploratory mouse ZIKV challenge model. RESULTS: All regimens were well tolerated, with no safety concerns identified. In both 2-dose regimens, ZIKV neutralizing titers peaked 14 days after the second vaccination, with geometric mean MN50 titers (GMTs) of 1065.6 (95% CI, 494.9 to 2294.5) for 5 × 1010 vp and 956.6 (595.8 to 1535.8) for 1 × 1011 vp. Titers persisted for at least 1 year at a GMT of 68.7 (CI, 26.4-178.9) for 5 × 1010 vp and 87.0 (CI, 29.3 to 258.6) for 1 × 1011 vp. A 1-dose regimen of 1 × 1011 vp Ad26.ZIKV.001 induced seroconversion in all participants 56 days after the first vaccination (GMT, 103.4 [CI, 52.7 to 202.9]), with titers persisting for at least 1 year (GMT, 90.2 [CI, 38.4 to 212.2]). Env-specific cellular responses were induced. Protection against ZIKV challenge was observed after antibody transfer from participants into mice, and MN50 titers correlated with protection in this model. LIMITATION: The study was conducted in a nonendemic area, so it did not assess safety and immunogenicity in a flavivirus-exposed population. CONCLUSION: The safety and immunogenicity profile makes Ad26.ZIKV.001 a promising candidate for further development if the need reemerges. PRIMARY FUNDING SOURCE: Janssen Vaccines and Infectious Diseases.


Asunto(s)
Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Adenoviridae/inmunología , Adulto , Animales , Método Doble Ciego , Femenino , Humanos , Masculino , Ratones , Estados Unidos , Virus Zika/inmunología , Infección por el Virus Zika/inmunología
6.
J Infect Dis ; 222(6): 979-988, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32320465

RESUMEN

BACKGROUND: Despite the high disease burden of respiratory syncytial virus (RSV) in older adults, there is no approved vaccine. We evaluated the experimental RSV vaccine, Ad26.RSV.preF, a replication-incompetent adenovirus 26 vector encoding the F protein stabilized in prefusion conformation. METHODS: This phase 1 clinical trial was performed in healthy adults aged ≥60 years. Seventy-two participants received 1 or 2 intramuscular injections of low-dose (LD; 5 × 1010 vector particles) or high-dose (HD; 1 × 1011 vector particles) Ad26.RSV.preF vaccine or placebo, with approximately 12 months between doses and 2-year follow-up for safety and immunogenicity outcomes. RESULTS: Solicited adverse events were reported by 44% of vaccine recipients and were transient and mild or moderate in intensity. No serious adverse events were related to vaccination. After the first vaccination, geometric mean titers for RSV-A2 neutralization increased from baseline (432 for LD and 512 for HD vaccine) to day 29 (1031 for LD and 1617 for HD). Pre-F-specific antibody geometric mean titers and median frequencies of F-specific interferon γ-secreting T cells also increased substantially from baseline. These immune responses were still maintained above baseline levels 2 years after immunization and could be boosted with a second immunization at 1 year. CONCLUSIONS: Ad26.RSV.preF (LD and HD) had an acceptable safety profile and elicited sustained humoral and cellular immune responses after a single immunization in older adults.


Asunto(s)
Adenoviridae , Vectores Genéticos , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Proteínas Virales de Fusión/inmunología , Adenoviridae/genética , Factores de Edad , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Femenino , Vectores Genéticos/genética , Humanos , Inmunidad Celular , Inmunogenicidad Vacunal , Masculino , Persona de Mediana Edad , Vacunas contra Virus Sincitial Respiratorio/efectos adversos , Vacunas contra Virus Sincitial Respiratorio/genética , Virus Sincitial Respiratorio Humano/genética , Vacunación , Proteínas Virales de Fusión/genética
7.
Proc Natl Acad Sci U S A ; 114(9): 2425-2430, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28193898

RESUMEN

RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4+ T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Anticuerpos Antiprotozoarios/biosíntesis , Inmunidad Innata/efectos de los fármacos , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/inmunología , Proteínas Protozoarias/administración & dosificación , Vacunas Sintéticas/administración & dosificación , Adenoviridae/genética , Adenoviridae/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/inmunología , Humanos , Inmunización Secundaria/métodos , Inmunogenicidad Vacunal , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Vacunación/métodos
8.
J Infect Dis ; 218(4): 633-644, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29669026

RESUMEN

Background: Mosaic immunogens are bioinformatically engineered human immunodeficiency virus type 1 (HIV-1) sequences designed to elicit clade-independent coverage against globally circulating HIV-1 strains. Methods: This phase 1, double-blinded, randomized, placebo-controlled trial enrolled healthy HIV-uninfected adults who received 2 doses of a modified vaccinia Ankara (MVA)-vectored HIV-1 bivalent mosaic immunogen vaccine or placebo on days 0 and 84. Two groups were enrolled: those who were HIV-1 vaccine naive (n = 15) and those who had received an HIV-1 vaccine (Ad26.ENVA.01) 4-6 years earlier (n = 10). We performed prespecified blinded cellular and humoral immunogenicity analyses at days 0, 14, 28, 84, 98, 112, 168, 270, and 365. Results: All 50 planned vaccinations were administered. Vaccination was safe and generally well tolerated. No vaccine-related serious adverse events occurred. Both cellular and humoral cross-clade immune responses were elicited after 1 or 2 vaccinations in all participants in the HIV-1 vaccine-naive group. Env-specific responses were induced after a single immunization in nearly all subjects who had previously received the prototype Ad26.ENVA.01 vaccine. Conclusions: No safety concerns were identified, and multiclade HIV-1-specific immune responses were elicited. Clinical Trials Registration: NCT02218125.


Asunto(s)
Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Vacunas contra el SIDA/efectos adversos , Vacunas contra el SIDA/genética , Adulto , Método Doble Ciego , Portadores de Fármacos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Vectores Genéticos , Humanos , Inmunidad Celular , Inmunidad Humoral , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Placebos/administración & dosificación , Resultado del Tratamiento , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/efectos adversos , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Virus Vaccinia/genética , Adulto Joven
9.
Hum Vaccin Immunother ; 20(1): 2327747, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38523332

RESUMEN

This phase-3, double-blind, placebo-controlled study (NCT04228783) evaluated lot-to-lot consistency of the Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen. Participants were randomized (6:6:6:1) to receive the two-dose regimen from three consecutively manufactured lots of Ad26.ZEBOV on Day 1 paired with three consecutively manufactured lots of MVA-BN-Filo on Day 57 (Groups 1-3) or two doses of placebo (Group 4). An additional cohort also received an Ad26.ZEBOV booster or placebo 4 months post-dose 2. Equivalence of the immunogenicity at 21 days post-dose 2 between any two groups was demonstrated if the 95% confidence interval (CI) of the Ebola virus glycoprotein (EBOV GP)-binding antibody geometric mean concentration (GMC) ratio was entirely within the prespecified margin of 0.5-2.0. Lot-to-lot consistency (i.e., consecutive lots can be consistently manufactured) was accomplished if equivalence was shown for all three pairwise comparisons. Results showed that the primary objective in the per-protocol immunogenicity subset (n = 549) was established for each pairwise comparison (Group 1 vs 2: GMC ratio = 0.9 [95% CI: 0.8, 1.1], Group 1 vs 3: 0.9 [0.8, 1.1], Group 2 vs 3: 1.0 [0.9, 1.2]). Equivalence of the three groups for the Ad26.ZEBOV component only was also demonstrated at 56 days post-dose 1. EBOV GP-binding antibody responses (post-vaccination concentrations >2.5-fold from baseline) were observed in 419/421 (99.5%) vaccine recipients at 21 days post-dose 2 and 445/460 (96.7%) at 56 days post-dose 1. In the booster cohort (n = 39), GMCs increased 9.0- and 11.8-fold at 7 and 21 days post-booster, respectively, versus pre-booster. Ad26.ZEBOV, MVA-BN-Filo was well tolerated, and no safety issues were identified.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Vacuna contra Viruela , Humanos , Fiebre Hemorrágica Ebola/prevención & control , Vacunación/métodos , Anticuerpos Antivirales , Método Doble Ciego , Inmunogenicidad Vacunal , Vacunas Atenuadas
10.
NPJ Vaccines ; 9(1): 8, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184641

RESUMEN

The quantitation of antibody responses is a critical requirement for the successful development of vaccines and therapeutics that often relies on the use of standardized reference materials to determine relative quantities within biological samples. The validity of comparing responses across assays using arbitrarily defined reference values is therefore limited. We developed a generalizable method known as MASCALE (Mass Spectrometry Enabled Conversion to Absolute Levels of ELISA Antibodies) for absolute quantitation of antibodies by calibrating ELISA reference sera using mass spectrometry. Levels of proteotypic peptides served as a proxy for human IgG, allowing the conversion of responses from arbitrary values to absolute amounts. Applications include comparison of binding assays at two separate laboratories and evaluation of cross-clade magnitude-breadth responses induced by an investigational HIV-1 vaccine regimen. MASCALE addresses current challenges in the interpretation of immune responses in clinical trials and expands current options available to make suitable comparisons across different settings.

11.
Vaccines (Basel) ; 12(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38793810

RESUMEN

Ad26.COV2.S vaccination can lead to vaccine-induced immune thrombotic thrombocytopenia (VITT), a rare but severe adverse effect, characterized by thrombocytopenia and thrombosis. The mechanism of VITT induction is unclear and likely multifactorial, potentially including the activation of platelets and endothelial cells mediated by the vaccine-encoded spike protein (S protein). Here, we investigated the biodistribution of the S protein after Ad26.COV2.S dosing in three animal models and in human serum samples. The S protein was transiently present in draining lymph nodes of rabbits after Ad26.COV2.S dosing. The S protein was detected in the serum in all species from 1 day to 21 days after vaccination with Ad26.COV2.S, but it was not detected in platelets, the endothelium lining the blood vessels, or other organs. The S protein S1 and S2 subunits were detected at different ratios and magnitudes after Ad26.COV2.S or COVID-19 mRNA vaccine immunization. However, the S1/S2 ratio did not depend on the Ad26 platform, but on mutation of the furin cleavage site, suggesting that the S1/S2 ratio is not VITT related. Overall, our data suggest that the S-protein biodistribution and kinetics after Ad26.COV2.S dosing are likely not main contributors to the development of VITT, but other S-protein-specific parameters require further investigation.

12.
Front Immunol ; 14: 1215302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727795

RESUMEN

Introduction: In the absence of clinical efficacy data, vaccine protective effect can be extrapolated from animals to humans, using an immunological biomarker in humans that correlates with protection in animals, in a statistical approach called immunobridging. Such an immunobridging approach was previously used to infer the likely protective effect of the heterologous two-dose Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen. However, this immunobridging model does not provide information on how the persistence of the vaccine-induced immune response relates to durability of protection in humans. Methods and results: In both humans and non-human primates, vaccine-induced circulating antibody levels appear to be very stable after an initial phase of contraction and are maintained for at least 3.8 years in humans (and at least 1.3 years in non-human primates). Immunological memory was also maintained over this period, as shown by the kinetics and magnitude of the anamnestic response following re-exposure to the Ebola virus glycoprotein antigen via booster vaccination with Ad26.ZEBOV in humans. In non-human primates, immunological memory was also formed as shown by an anamnestic response after high-dose, intramuscular injection with Ebola virus, but was not sufficient for protection against Ebola virus disease at later timepoints due to a decline in circulating antibodies and the fast kinetics of disease in the non-human primates model. Booster vaccination within three days of subsequent Ebola virus challenge in non-human primates resulted in protection from Ebola virus disease, i.e. before the anamnestic response was fully developed. Discussion: Humans infected with Ebola virus may benefit from the anamnestic response to prevent disease progression, as the incubation time is longer and progression of Ebola virus disease is slower as compared to non-human primates. Therefore, the persistence of vaccine-induced immune memory could be considered as a potential correlate of long-term protection against Ebola virus disease in humans, without the need for a booster.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Humanos , Fiebre Hemorrágica Ebola/prevención & control , Memoria Inmunológica , Anticuerpos , Antígenos Virales
13.
EBioMedicine ; 91: 104562, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37099841

RESUMEN

BACKGROUND: This analysis evaluated the immune response to the two-dose, heterologous Ad26.ZEBOV, MVA-BN-Filo Ebola virus vaccine regimen, administered 56-days apart, from multiple African sites based on results from one analytic laboratory. METHODS: Immunogenicity across three trials (EBL2002, EBL2004/PREVAC, EBL3001) conducted in East and West Africa is summarised. Vaccine-induced Ebola glycoprotein-binding antibody concentrations were analysed by Q2 Solutions laboratory at baseline, 21 days (EBL2002 and EBL3001) or 28 days (EBL2004) post-dose 2 (regimen completion), and 12 months post-dose 1 using the validated Filovirus Animal Nonclinical Group Ebola glycoprotein enzyme-linked immunosorbent assay (ELISA). Responders were defined as those with a >2.5-fold increase from baseline or the lower limit of quantification (LLOQ) if 

Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática , Glicoproteínas , Inmunidad Humoral
14.
J Virol ; 85(9): 4222-33, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21325402

RESUMEN

The use of adenoviruses (Ad) as vaccine vectors against a variety of pathogens has demonstrated their capacity to elicit strong antibody and cell-mediated immune responses. Adenovirus serotype C vectors, such as Ad serotype 5 (Ad5), expressing Ebolavirus (EBOV) glycoprotein (GP), protect completely after a single inoculation at a dose of 10(10) viral particles. However, the clinical application of a vaccine based on Ad5 vectors may be hampered, since impairment of Ad5 vaccine efficacy has been demonstrated for humans and nonhuman primates with high levels of preexisting immunity to the vector. Ad26 and Ad35 segregate genetically from Ad5 and exhibit lower seroprevalence in humans, making them attractive vaccine vector alternatives. In the series of studies presented, we show that Ad26 and Ad35 vectors generate robust antigen-specific cell-mediated and humoral immune responses against EBOV GP and that Ad5 immune status does not affect the generation of GP-specific immune responses by these vaccines. We demonstrate partial protection against EBOV by a single-shot Ad26 vaccine and complete protection when this vaccine is boosted by Ad35 1 month later. Increases in efficacy are paralleled by substantial increases in T- and B-cell responses to EBOV GP. These results suggest that Ad26 and Ad35 vectors warrant further development as candidate vaccines for EBOV.


Asunto(s)
Adenovirus Humanos/inmunología , Portadores de Fármacos , Vacunas contra el Virus del Ébola/inmunología , Vectores Genéticos/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Proteínas del Envoltorio Viral/inmunología , Adenovirus Humanos/genética , Animales , Anticuerpos Antivirales/sangre , Vacunas contra el Virus del Ébola/administración & dosificación , Fiebre Hemorrágica Ebola/inmunología , Linfocitos/inmunología , Macaca fascicularis , Vacunación/métodos , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Proteínas del Envoltorio Viral/genética
15.
Vaccine ; 40(32): 4403-4411, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35667914

RESUMEN

BACKGROUND: Ad26.COV2.S is a well-tolerated and effective vaccine against COVID-19. We evaluated durability of anti-SARS-CoV-2 antibodies elicited by single-dose Ad26.COV2.S and the impact of boosting. METHODS: In randomized, double-blind, placebo-controlled, phase 1/2a and phase 2 trials, participants received single-dose Ad26.COV2.S (5 × 1010 viral particles [vp]) followed by booster doses of 5 × 1010 vp or 1.25 × 1010 vp. Neutralizing antibody levels were determined by a virus neutralization assay (VNA) approximately 8-9 months after dose 1. Binding and neutralizing antibody levels were evaluated by an enzyme-linked immunosorbent assay and pseudotyped VNA 6 months after dose 1 and 7 and 28 days after boosting. RESULTS: Data were analyzed from phase 1/2a participants enrolled from 22 July-18 December 2020 (Cohort 1a, 18-55 years [y], N = 25; Cohort 2a, 18-55y, N = 17; Cohort 3, ≥65y, N = 22), and phase 2 participants from 14 to 22 September 2020 (18-55y and ≥ 65y, N = 73). Single-dose Ad26.COV2.S elicited stable neutralizing antibodies for at least 8-9 months and stable binding antibodies for at least 6 months, irrespective of age. A 5 × 1010 vp 2-month booster dose increased binding antibodies by 4.9- to 6.2-fold 14 days post-boost versus 28 days after initial immunization. A 6-month booster elicited a steep and robust 9-fold increase in binding antibody levels 7 days post-boost. A 5.0-fold increase in neutralizing antibodies was observed by 28 days post-boost for the Beta variant. A 1.25 × 1010 vp 6-month booster elicited a 3.6-fold increase in binding antibody levels at 7 days post-boost versus pre-boost, with a similar magnitude of post-boost responses in both age groups. CONCLUSIONS: Single-dose Ad26.COV2.S elicited durable antibody responses for at least 8 months and elicited immune memory. Booster-elicited binding and neutralizing antibody responses were rapid and robust, even with a quarter vaccine dose, and stronger with a longer interval since primary vaccination. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04436276, NCT04535453.


Asunto(s)
Ad26COVS1 , COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2
16.
PLoS One ; 17(10): e0274906, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36197845

RESUMEN

BACKGROUND: Though clinically similar, Ebola virus disease and Marburg virus disease are caused by different viruses. Of the 30 documented outbreaks of these diseases in sub-Saharan Africa, eight were major outbreaks (≥200 cases; five caused by Zaire ebolavirus [EBOV], two by Sudan ebolavirus [SUDV], and one by Marburg virus [MARV]). Our purpose is to develop a multivalent vaccine regimen protecting against each of these filoviruses. This first-in-human study assessed the safety and immunogenicity of several multivalent two-dose vaccine regimens that contain Ad26.Filo and MVA-BN-Filo. METHODS: Ad26.Filo combines three vaccines encoding the glycoprotein (GP) of EBOV, SUDV, and MARV. MVA-BN-Filo is a multivalent vector encoding EBOV, SUDV, and MARV GPs, and Taï Forest nucleoprotein. This Phase 1, randomized, double-blind, placebo-controlled study enrolled healthy adults (18-50 years) into four groups, randomized 5:1 (active:placebo), to assess different Ad26.Filo and MVA-BN-Filo vaccine directionality and administration intervals. The primary endpoint was safety; immune responses against EBOV, SUDV, and MARV GPs were also assessed. RESULTS: Seventy-two participants were randomized, and 60 (83.3%) completed the study. All regimens were well tolerated with no deaths or vaccine-related serious adverse events (AEs). The most frequently reported solicited local AE was injection site pain/tenderness. Solicited systemic AEs most frequently reported were headache, fatigue, chills, and myalgia; most solicited AEs were Grade 1-2. Solicited/unsolicited AE profiles were similar between regimens. Twenty-one days post-dose 2, 100% of participants on active regimen responded to vaccination and exhibited binding antibodies against EBOV, SUDV, and MARV GPs; neutralizing antibody responses were robust against EBOV (85.7-100%), but lower against SUDV (35.7-100%) and MARV (0-57.1%) GPs. An Ad26.Filo booster induced a rapid further increase in humoral responses. CONCLUSION: This study demonstrates that heterologous two-dose vaccine regimens with Ad26.Filo and MVA-BN-Filo are well tolerated and immunogenic in healthy adults. CLINICALTRIALS.GOV: NCT02860650.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Marburgvirus , Adolescente , Adulto , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteínas , Humanos , Persona de Mediana Edad , Nucleoproteínas , Vacunas Combinadas , Virus Vaccinia , Adulto Joven
17.
NPJ Vaccines ; 7(1): 156, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450746

RESUMEN

Without clinical efficacy data, vaccine protective effect may be extrapolated from animals to humans using an immunologic marker that correlates with protection in animals. This immunobridging approach was used for the two-dose Ebola vaccine regimen Ad26.ZEBOV, MVA-BN-Filo. Ebola virus (EBOV) glycoprotein binding antibody data obtained from 764 vaccinated healthy adults in five clinical studies (NCT02416453, NCT02564523, NCT02509494, NCT02543567, NCT02543268) were used to calculate mean predicted survival probability (with preplanned 95% confidence interval [CI]). We used a logistic regression model based on EBOV glycoprotein binding antibody responses in vaccinated non-human primates (NHPs) and NHP survival after EBOV challenge. While the protective effect of the vaccine regimen in humans can be inferred in this fashion, the extrapolated survival probability cannot be directly translated into vaccine efficacy. The primary immunobridging analysis evaluated the lower limit of the CI against predefined success criterion of 20% and passed with mean predicted survival probability of 53.4% (95% CI: 36.7-67.4).

18.
medRxiv ; 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35441174

RESUMEN

Anti-spike IgG binding antibody, anti-receptor binding domain IgG antibody, and pseudovirus neutralizing antibody measurements four weeks post-vaccination were assessed as correlates of risk of moderate to severe-critical COVID-19 outcomes through 83 days post-vaccination and as correlates of protection following a single dose of Ad26.COV2.S COVID-19 vaccine in the placebo-controlled phase of ENSEMBLE, an international, randomized efficacy trial. Each marker had evidence as a correlate of risk and of protection, with strongest evidence for 50% inhibitory dilution (ID50) neutralizing antibody titer. The outcome hazard ratio was 0.49 (95% confidence interval 0.29, 0.81; p=0.006) per 10-fold increase in ID50; vaccine efficacy was 60% (43, 72%) at nonquantifiable ID50 (< 2.7 IU50/ml) and rose to 89% (78, 96%) at ID50 = 96.3 IU50/ml. Comparison of the vaccine efficacy by ID50 titer curves for ENSEMBLE-US, the COVE trial of the mRNA-1273 vaccine, and the COV002-UK trial of the AZD1222 vaccine supported consistency of the ID50 titer correlate of protection across trials and vaccine types.

19.
Nat Microbiol ; 7(12): 1996-2010, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36357712

RESUMEN

Measuring immune correlates of disease acquisition and protection in the context of a clinical trial is a prerequisite for improved vaccine design. We analysed binding and neutralizing antibody measurements 4 weeks post vaccination as correlates of risk of moderate to severe-critical COVID-19 through 83 d post vaccination in the phase 3, double-blind placebo-controlled phase of ENSEMBLE, an international randomized efficacy trial of a single dose of Ad26.COV2.S. We also evaluated correlates of protection in the trial cohort. Of the three antibody immune markers we measured, we found most support for 50% inhibitory dilution (ID50) neutralizing antibody titre as a correlate of risk and of protection. The outcome hazard ratio was 0.49 (95% confidence interval 0.29, 0.81; P = 0.006) per 10-fold increase in ID50; vaccine efficacy was 60% (43%, 72%) at non-quantifiable ID50 (<2.7 IU50 ml-1) and increased to 89% (78%, 96%) at ID50 = 96.3 IU50 ml-1. Comparison of the vaccine efficacy by ID50 titre curves for ENSEMBLE-US, the COVE trial of the mRNA-1273 vaccine and the COV002-UK trial of the AZD1222 vaccine supported the ID50 titre as a correlate of protection across trials and vaccine types.


Asunto(s)
Ad26COVS1 , COVID-19 , Humanos , COVID-19/prevención & control , ChAdOx1 nCoV-19 , Vacuna nCoV-2019 mRNA-1273 , Eficacia de las Vacunas , Anticuerpos Neutralizantes
20.
Am J Respir Crit Care Med ; 181(12): 1407-17, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20167847

RESUMEN

RATIONALE: AERAS-402 is a novel tuberculosis vaccine designed to boost immunity primed by bacillus Calmette-Guérin (BCG), the only licensed vaccine. OBJECTIVES: We investigated the safety and immunogenicity of AERAS-402 in healthy Mycobacterium tuberculosis-uninfected BCG-vaccinated adults from a tuberculosis-endemic region of South Africa. METHODS: Escalating doses of AERAS-402 vaccine were administered intramuscularly to each of three groups of healthy South African BCG-vaccinated adults, and a fourth group received two injections of the maximal dose. Participants were monitored for 6 months, with all adverse effects documented. Vaccine-induced CD4(+) and CD8(+) T-cell immunity was characterized by an intracellular cytokine staining assay of whole blood and peripheral blood mononuclear cells. MEASUREMENTS AND MAIN RESULTS: AERAS-402 was well tolerated, and no vaccine-related serious adverse events were recorded. The vaccine induced a robust CD4(+) T-cell response dominated by cells coexpressing IFN-gamma, tumor necrosis factor-alpha, and IL-2 ("polyfunctional" cells). AERAS-402 also induced a potent CD8(+) T-cell response, characterized by cells expressing IFN-gamma and/or tumor necrosis factor-alpha, which persisted for the duration of the study. CONCLUSIONS: Vaccination with AERAS-402 is safe and immunogenic in healthy adults. The immunity induced by the vaccine appears promising: polyfunctional T cells are thought to be important for protection against intracellular pathogens such as Mycobacterium tuberculosis, and evidence is accumulating that CD8(+) T cells are also important. AERAS-402 induced a robust and durable CD8(+) T-cell response, which appears extremely promising. Clinical trial registered with www.sanctr.gov.za (NHREC no. 1381).


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Vacunas contra la Tuberculosis/uso terapéutico , Adulto , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Estudios de Seguimiento , Humanos , Activación de Linfocitos/inmunología , Masculino , Sudáfrica , Vacunas contra la Tuberculosis/inmunología , Vacunas de ADN , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA