Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Biol Chem ; 295(20): 6849-6860, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32209653

RESUMEN

There are a number of riboswitches that utilize the same ligand-binding domain to regulate transcription or translation. S-box (SAM-I) riboswitches, including the riboswitch present in the Bacillus subtilis metI gene, which encodes cystathionine γ-synthase, regulate the expression of genes involved in methionine metabolism in response to SAM, primarily at the level of transcriptional attenuation. A rarer class of S-box riboswitches is predicted to regulate translation initiation. Here we identified and characterized a translational S-box riboswitch in the metI gene from Desulfurispirillum indicum The regulatory mechanisms of riboswitches are influenced by the kinetics of ligand interaction. The half-life of the translational D. indicum metI RNA-SAM complex is significantly shorter than that of the transcriptional B. subtilis metI RNA. This finding suggests that, unlike the transcriptional RNA, the translational metI riboswitch can make multiple reversible regulatory decisions. Comparison of both RNAs revealed that the second internal loop of helix P3 in the transcriptional RNA usually contains an A residue, whereas the translational RNA contains a C residue that is conserved in other S-box RNAs that are predicted to regulate translation. Mutational analysis indicated that the presence of an A or C residue correlates with RNA-SAM complex stability. Biochemical analyses indicate that the internal loop sequence critically determines the stability of the RNA-SAM complex by influencing the flexibility of residues involved in SAM binding and thereby affects the molecular mechanism of riboswitch function.


Asunto(s)
Bacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , Biosíntesis de Proteínas , ARN Bacteriano/metabolismo , Transcripción Genética , Bacterias/genética , Clostridium/genética , Clostridium/metabolismo , Ligandos , ARN Bacteriano/genética , Riboswitch
2.
Annu Rev Microbiol ; 70: 361-74, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27607554

RESUMEN

Riboswitches are RNA elements that act on the mRNA with which they are cotranscribed to modulate expression of that mRNA. These elements are widely found in bacteria, where they have a broad impact on gene expression. The defining feature of riboswitches is that they directly recognize a physiological signal, and the resulting shift in RNA structure affects gene regulation. The majority of riboswitches respond to cellular metabolites, often in a feedback loop to repress synthesis of the enzymes used to produce the metabolite. Related elements respond to the aminoacylation status of a specific tRNA or to a physical parameter, such as temperature or pH. Recent studies have identified new classes of riboswitches and have revealed new insights into the molecular mechanisms of signal recognition and gene regulation. Application of structural and biophysical approaches has complemented previous genetic and biochemical studies, yielding new information about how different riboswitches operate.


Asunto(s)
Bacterias/genética , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Riboswitch , Bacterias/química , Bacterias/clasificación , Bacterias/metabolismo , Conformación de Ácido Nucleico , ARN Bacteriano/genética
3.
Proc Natl Acad Sci U S A ; 115(15): 3894-3899, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581302

RESUMEN

T box riboswitches are RNA regulatory elements widely used by organisms in the phyla Firmicutes and Actinobacteria to regulate expression of amino acid-related genes. Expression of T box family genes is down-regulated by transcription attenuation or inhibition of translation initiation in response to increased charging of the cognate tRNA. Three direct contacts with tRNA have been described; however, one of these contacts is absent in a subclass of T box RNAs and the roles of several structural domains conserved in most T box RNAs are unknown. In this study, structural elements of a Mycobacterium smegmatis ileS T box riboswitch variant with an Ultrashort (US) Stem I were sequentially deleted, which resulted in a progressive decrease in binding affinity for the tRNAIle ligand. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) revealed structural changes in conserved riboswitch domains upon interaction with the tRNA ligand. Cross-linking and mutational analyses identified two interaction sites, one between the S-turn element in Stem II and the T arm of tRNAIle and the other between the Stem IIA/B pseudoknot and the D loop of tRNAIle These newly identified RNA contacts add information about tRNA recognition by the T box riboswitch and demonstrate a role for the S-turn and pseudoknot elements, which resemble structural elements that are common in many cellular RNAs.


Asunto(s)
Isoleucina-ARNt Ligasa/genética , Mycobacterium smegmatis/genética , ARN Bacteriano/química , ARN de Transferencia/química , Elementos Reguladores de la Transcripción , Riboswitch , Regulación Bacteriana de la Expresión Génica , Isoleucina-ARNt Ligasa/química , Isoleucina-ARNt Ligasa/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/química , Mycobacterium smegmatis/metabolismo , Conformación de Ácido Nucleico , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
4.
Mol Microbiol ; 112(4): 1199-1218, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31340077

RESUMEN

Small RNA (sRNA) regulators promote efficient responses to stress, but the mechanisms for prioritizing target mRNA regulation remain poorly understood. This study examines mechanisms underlying hierarchical regulation by the sRNA SgrS, found in enteric bacteria and produced under conditions of metabolic stress. SgrS posttranscriptionally coordinates a nine-gene regulon to restore growth and homeostasis. An in vivo reporter system quantified SgrS-dependent regulation of target genes and established that SgrS exhibits a clear target preference. Regulation of some targets is efficient even at low SgrS levels, whereas higher SgrS concentrations are required to regulate other targets. In vivo and in vitro analyses revealed that RNA structure and the number and position of base pairing sites relative to the start of translation impact the efficiency of regulation of SgrS targets. The RNA chaperone Hfq uses distinct modes of binding to different SgrS mRNA targets, which differentially influences positive and negative regulation. The RNA degradosome plays a larger role in regulation of some SgrS targets compared to others. Collectively, our results suggest that sRNA selection of target mRNAs and regulatory hierarchy are influenced by several molecular features and that the combination of these features precisely tunes the efficiency of regulation of multi-target sRNA regulons.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Emparejamiento Base , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Biosíntesis de Proteínas , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , Regulón
5.
Proc Natl Acad Sci U S A ; 112(4): 1113-8, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25583497

RESUMEN

The T box riboswitch regulates many amino acid-related genes in Gram-positive bacteria. T box riboswitch-mediated gene regulation was shown previously to occur at the level of transcription attenuation via structural rearrangements in the 5' untranslated (leader) region of the mRNA in response to binding of a specific uncharged tRNA. In this study, a novel group of isoleucyl-tRNA synthetase gene (ileS) T box leader sequences found in organisms of the phylum Actinobacteria was investigated. The Stem I domains of these RNAs lack several highly conserved elements that are essential for interaction with the tRNA ligand in other T box RNAs. Many of these RNAs were predicted to regulate gene expression at the level of translation initiation through tRNA-dependent stabilization of a helix that sequesters a sequence complementary to the Shine-Dalgarno (SD) sequence, thus freeing the SD sequence for ribosome binding and translation initiation. We demonstrated specific binding to the cognate tRNA(Ile) and tRNA(Ile)-dependent structural rearrangements consistent with regulation at the level of translation initiation, providing the first biochemical demonstration, to our knowledge, of translational regulation in a T box riboswitch.


Asunto(s)
Actinobacteria , Proteínas Bacterianas , Isoleucina-ARNt Ligasa , Iniciación de la Cadena Peptídica Traduccional/fisiología , ARN Bacteriano , ARN de Transferencia , Riboswitch/fisiología , Actinobacteria/genética , Actinobacteria/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Isoleucina-ARNt Ligasa/biosíntesis , Isoleucina-ARNt Ligasa/genética , Conformación de Ácido Nucleico , Estabilidad del ARN/fisiología , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
6.
J Bacteriol ; 204(1): e0052421, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35040684
7.
J Biol Chem ; 290(38): 23336-47, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26229106

RESUMEN

Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the "Specifier Sequence," in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNA(Gly) anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3' of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system.


Asunto(s)
Anticodón/química , Bacillus subtilis/química , Codón/química , ARN Bacteriano/química , ARN de Transferencia de Glicerina/química , Riboswitch/fisiología , Anticodón/genética , Anticodón/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/biosíntesis , Codón/genética , Codón/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia de Glicerina/genética , ARN de Transferencia de Glicerina/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(18): 7240-5, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23589841

RESUMEN

The T box leader sequence is an RNA element that controls gene expression by binding directly to a specific tRNA and sensing its aminoacylation state. This interaction controls expression of amino acid-related genes in a negative feedback loop. The T box RNA structure is highly conserved, but its tRNA binding mechanism is only partially understood. Known sequence elements are the specifier sequence, which recognizes the tRNA anticodon, and the antiterminator bulge, which base pairs with the tRNA acceptor end. Here, we reveal the crucial function of the highly conserved stem I distal region in tRNA recognition and report its 2.65-Å crystal structure. The apex of this region contains an intricately woven loop-loop interaction between two conserved motifs, the Adenine-guanine (AG) bulge and the distal loop. This loop-loop structure presents a base triple on its surface that is optimally positioned for base-stacking interactions. Mutagenesis, cross-linking, and small-angle X-ray scattering data demonstrate that the apical base triple serves as a binding platform to dock the tRNA D- and T-loops. Strikingly, the binding platform strongly resembles the D- and T-loop binding elements from RNase P and the ribosome exit site, suggesting that this loop-loop structure may represent a widespread tRNA recognition platform. We propose a two-checkpoint molecular ruler model for tRNA decoding in which the information content of tRNA is first examined through specifier sequence-anticodon interaction, and the length of the tRNA anticodon arm is then measured by the distal loop-loop platform. When both conditions are met, tRNA is secured, and its aminoacylation state is sensed.


Asunto(s)
Regulación de la Expresión Génica , ARN de Transferencia/química , ARN de Transferencia/genética , Secuencias Reguladoras de Ácido Ribonucleico/genética , Secuencia de Bases , Cromatografía en Gel , Biología Computacional , Reactivos de Enlaces Cruzados , Cristalografía por Rayos X , Cartilla de ADN/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Hidroxilación/efectos de la radiación , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis/genética , Mutagénesis/efectos de la radiación , Conformación de Ácido Nucleico , Ribonucleasa P/metabolismo , Dispersión del Ángulo Pequeño , Rayos Ultravioleta
9.
J Bacteriol ; 197(9): 1624-31, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25733610

RESUMEN

UNLABELLED: Misincorporation of D-tyrosine (D-Tyr) into cellular proteins due to mischarging of tRNA(Tyr) with D-Tyr by tyrosyl-tRNA synthetase inhibits growth and biofilm formation of Bacillus subtilis. Furthermore, many B. subtilis strains lack a functional gene encoding D-aminoacyl-tRNA deacylase, which prevents misincorporation of D-Tyr in most organisms. B. subtilis has two genes that encode tyrosyl-tRNA synthetase: tyrS is expressed under normal growth conditions, and tyrZ is known to be expressed only when tyrS is inactivated by mutation. We hypothesized that tyrZ encodes an alternate tyrosyl-tRNA synthetase, expression of which allows the cell to grow when D-Tyr is present. We show that TyrZ is more selective for L-Tyr over D-Tyr than is TyrS; however, TyrZ is less efficient overall. We also show that expression of tyrZ is required for growth and biofilm formation in the presence of D-Tyr. Both tyrS and tyrZ are preceded by a T box riboswitch, but tyrZ is found in an operon with ywaE, which is predicted to encode a MarR family transcriptional regulator. Expression of tyrZ is repressed by YwaE and also is regulated at the level of transcription attenuation by the T box riboswitch. We conclude that expression of tyrZ may allow growth when excess D-Tyr is present. IMPORTANCE: Accurate protein synthesis requires correct aminoacylation of each tRNA with the cognate amino acid and discrimination against related compounds. Bacillus subtilis produces D-Tyr, an analog of L-Tyr that is toxic when incorporated into protein, during stationary phase. Most organisms utilize a D-aminoacyl-tRNA deacylase to prevent misincorporation of D-Tyr. This work demonstrates that the increased selectivity of the TyrZ form of tyrosyl-tRNA synthetase may provide a mechanism by which B. subtilis prevents misincorporation of D-Tyr in the absence of a functional D-aminoacyl-tRNA deacylase gene.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Regulación Bacteriana de la Expresión Génica , Riboswitch , Factores de Transcripción/metabolismo , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Perfilación de la Expresión Génica , Especificidad por Sustrato , Tirosina/metabolismo
10.
Biochim Biophys Acta ; 1839(10): 959-963, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24816551

RESUMEN

The T box riboswitch is a cis-acting regulatory RNA that controls expression of amino acid-related genes in response to the aminoacylation state of a specific tRNA. Multiple genes in the same organism can utilize this mechanism, with each gene responding independently to its cognate tRNA. The uncharged tRNA interacts directly with the regulatory RNA element, and this interaction promotes readthrough of an intrinsic transcriptional termination site upstream of the regulated coding sequence. A second class of T box elements uses a similar tRNA-dependent response to regulate translation initiation. This review will describe the current state of our knowledge about this regulatory system. This article is part of a Special Issue entitled: Riboswitches.

11.
Nucleic Acids Res ; 40(12): 5706-17, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22416067

RESUMEN

The ever-changing environment of a bacterial cell requires sophisticated mechanisms to adjust gene expression in response to changes in nutrient availability. L box riboswitch RNAs regulate gene expression in response to cellular lysine (lys) concentrations in the absence of additional regulatory factors. In Bacillus subtilis, binding of lysine (lys) to the L box RNA causes premature transcription termination in the leader region upstream of the lysC coding sequence. To date, little is known about the specific RNA-lys interactions required for transcription termination. In this study, we characterize features of the B. subtilis lysC leader RNA responsible for lys specificity, and structural elements of the lys molecule required for recognition. The wild-type lysC leader RNA can recognize and discriminate between lys and lys analogs. We identified leader RNA variants with mutations in the lys-binding pocket that exhibit changes in the specificity of ligand recognition. These data demonstrate that lysC leader RNA specificity is the result of recognition of ligand features through a series of distinct interactions between lys and nucleotides that comprise the lys-binding pocket, and provide insight into the molecular mechanisms employed by L box riboswitch RNAs to bind and recognize lys.


Asunto(s)
Bacillus subtilis/genética , Lisina/farmacología , ARN Bacteriano/química , Riboswitch , Regiones no Traducidas 5' , Aspartato Quinasa/biosíntesis , Aspartato Quinasa/genética , Bacillus subtilis/enzimología , Secuencia de Bases , Sitios de Unión , Regulación Bacteriana de la Expresión Génica , Ligandos , Lisina/análogos & derivados , Lisina/química , Datos de Secuencia Molecular , Mutación , Potasio/química , Transcripción Genética
12.
bioRxiv ; 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36909519

RESUMEN

Riboswitches are non-coding RNA elements that play vital roles in regulating gene expression. Their specific ligand-dependent structural reorganization facilitates their use as templates for design of engineered RNA switches for therapeutics, nanotechnology and synthetic biology. T-box riboswitches bind tRNAs to sense aminoacylation and control gene expression via transcription attenuation or translation inhibition. Here we determine the cryo-EM structure of the wild-type Mycobacterium smegmatis ileS T-box in complex with its cognate tRNA Ile . This structure shows a very flexible antisequestrator region that tolerates both 3'-OH and 2',3'-cyclic phosphate modification at the 3' end of tRNA Ile . Elongation of one helical turn (11-base pair) in both the tRNA acceptor arm and T-box Stem III maintains T-box-tRNA complex formation and increases the selectivity for tRNA 3' end modification. Moreover, elongation of Stem III results in ∼6-fold tighter binding to tRNA, which leads to increased sensitivity of downstream translational regulation indicated by precedent translation. Our results demonstrate that cryo-EM can guide RNA engineering to design improved riboswitch modules for translational regulation, and potentially a variety of additional functions.

13.
J Bacteriol ; 194(13): 3386-94, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22544272

RESUMEN

Expression of conjugative transfer and virulence functions of the Enterococcus faecalis antibiotic resistance plasmid pCF10 is regulated by the interaction of the pheromone receptor protein PrgX with two DNA binding operator sites (XBS1 and XBS2) upstream from the transcription start site of the prgQ operon (encoding the pCF10 transfer machinery) and by posttranscriptional mechanisms. Occupancy of both binding sites by PrgX dimers results in repression of the prgQ promoter. Structural and genetic studies suggest that the peptide pheromone cCF10 functions by binding to PrgX and altering its oligomerization state, resulting in reduced occupancy of XBSs and increased prgQ transcription. The DNA binding activity of PrgX has additional indirect regulatory effects on prgQ transcript levels related to the position of the convergently transcribed prgX operon. This has complicated interpretation of previous analyses of the control of prgQ expression by PrgX. We report here the results of in vivo and in vitro experiments examining the direct effects of PrgX on transcription from the prgQ promoter, as well as quantitative correlation between the concentrations of XBSs, PrgX protein, and prgQ promoter activity in vivo. The results of electrophoretic mobility shift assays and quantitative analysis of prgQ transcription in vitro and in vivo support the predicted roles of the PrgX DNA binding sites in prgQ transcription regulation. The results also suggest the existence of other factors that impede PrgX repression or enhance its antagonism by cCF10 in vivo.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterococcus faecalis/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica , Feromonas/farmacología , Regiones Promotoras Genéticas/fisiología , Receptores de Feromonas/metabolismo , Proteínas Bacterianas/genética , Conjugación Genética , Ensayo de Cambio de Movilidad Electroforética , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Feromonas/fisiología , Regiones Promotoras Genéticas/genética , Señales de Clasificación de Proteína/genética , Receptores de Feromonas/genética , Transcripción Genética/efectos de los fármacos
15.
Nucleic Acids Res ; 38(10): 3388-98, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20110252

RESUMEN

Gram-positive bacteria utilize a tRNA-responsive transcription antitermination mechanism, designated the T box system, to regulate expression of many amino acid biosynthetic and aminoacyl-tRNA synthetase genes. The RNA transcripts of genes controlled by this mechanism contain 5' untranslated regions, or leader RNAs, that specifically bind cognate tRNA molecules through pairing of nucleotides in the tRNA anticodon loop with nucleotides in the Specifier Loop domain of the leader RNA. We have determined the solution structure of the Specifier Loop domain of the tyrS leader RNA from Bacillus subtilis. Fifty percent of the nucleotides in the Specifier Loop domain adopt a loop E motif. The Specifier Sequence nucleotides, which pair with the tRNA anticodon, stack with their Watson-Crick edges rotated toward the minor groove and exhibit only modest flexibility. We also show that a Specifier Loop domain mutation that impairs the function of the B. subtilis glyQS T box RNA disrupts the tyrS loop E motif. Our results suggest a mechanism for tRNA-Specifier Loop binding in which the phosphate backbone kink created by the loop E motif causes the Specifier Sequence bases to rotate toward the minor groove, which increases accessibility for pairing with bases in the anticodon loop of tRNA.


Asunto(s)
Regiones no Traducidas 5' , Bacillus subtilis/genética , Tirosina-ARNt Ligasa/genética , Secuencia de Bases , Sitios de Unión , Metales/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico
19.
Mol Microbiol ; 78(6): 1393-402, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21143313

RESUMEN

The S(MK) (SAM-III) box is an S-adenosylmethionine (SAM)-responsive riboswitch found in the 5' untranslated region of metK genes, encoding SAM synthetase, in many members of the Lactobacillales. SAM binding causes a structural rearrangement in the RNA that sequesters the Shine-Dalgarno (SD) sequence by pairing with a complementary anti-SD (ASD) sequence; sequestration of the SD sequence inhibits binding of the 30S ribosomal subunit and prevents translation initiation. We observed a slight increase in the half-life of the metK transcript in vivo when Enterococcus faecalis cells were depleted for SAM, but no significant change in overall transcript abundance, consistent with the model that this riboswitch regulates at the level of translation initiation. The half-life of the SAM-S(MK) box RNA complex in vitro is shorter than that of the metK transcript in vivo, raising the possibility of reversible binding of SAM. We used a fluorescence assay to directly visualize reversible switching between the SAM-free and SAM-bound conformations. We propose that the S(MK) box riboswitch can make multiple SAM-dependent regulatory decisions during the lifetime of the transcript in vivo, acting as a reversible switch that allows the cell to respond rapidly to fluctuations in SAM pools by modulating expression of the SAM synthetase gene.


Asunto(s)
Proteínas Bacterianas/genética , Enterococcus faecalis/enzimología , Regulación Enzimológica de la Expresión Génica , Metionina Adenosiltransferasa/genética , Elementos de Respuesta , Riboswitch , Regiones no Traducidas 5' , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Enterococcus faecalis/química , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Regulación Bacteriana de la Expresión Génica , Metionina Adenosiltransferasa/química , Metionina Adenosiltransferasa/metabolismo , Conformación de Ácido Nucleico , Estabilidad del ARN , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , S-Adenosilmetionina/metabolismo
20.
Nat Struct Mol Biol ; 13(3): 226-33, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16491091

RESUMEN

We have identified the S(MK) box as a conserved RNA motif in the 5' untranslated leader region of metK (SAM synthetase) genes in lactic acid bacteria, including Enterococcus, Streptococcus and Lactococcus species. This RNA element bound SAM in vitro, and binding of SAM caused an RNA structural rearrangement that resulted in sequestration of the Shine-Dalgarno (SD) sequence. Mutations that disrupted pairing between the SD region and a sequence complementary to the SD blocked SAM binding, whereas compensatory mutations that restored pairing restored SAM binding. The Enterococcus faecalis S(MK) box conferred translational repression of a lacZ reporter when cells were grown under conditions where SAM pools are elevated, and mutations that blocked SAM binding resulted in loss of repression, demonstrating that the S(MK) box is functional in vivo. The S(MK) box therefore represents a new SAM-binding riboswitch distinct from the previously identified S box RNAs.


Asunto(s)
Regiones no Traducidas 5'/genética , Regiones no Traducidas 5'/metabolismo , Regulación Bacteriana de la Expresión Génica , Metionina Adenosiltransferasa/biosíntesis , Metionina Adenosiltransferasa/genética , Biosíntesis de Proteínas/genética , S-Adenosilmetionina/metabolismo , Bacillus subtilis/genética , Secuencia de Bases , Análisis Mutacional de ADN , Enterococcus faecalis/genética , Genes Reporteros/genética , Metionina Adenosiltransferasa/química , Modelos Genéticos , Datos de Secuencia Molecular , Mutación/genética , Ribonucleasa H/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA