Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 77(4): 1287-1302, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35735979

RESUMEN

BACKGROUND: NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS: To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION: These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Lipoproteínas/metabolismo , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacología , Triglicéridos/metabolismo , Hígado/metabolismo , Lipoproteínas VLDL/metabolismo
2.
Bioorg Med Chem Lett ; 106: 129770, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677560

RESUMEN

We have previously reported the total synthesis and structure-activity relationships (SAR) of 2-prenylated benzopyrans with PPAR agonist activity. Herein, we have described the synthesis and PPAR activity of 2-prenylated benzopyrans and 2-prenylated quinolines. The benzopyran nucleus was generated via enamine-catalyzed Kabbe condensation, and the quinoline nucleus via Friedländer condensation. Results demonstrated that both benzopyran (5a) and quinoline (4b) derivatives bearing a γ,δ-unsaturated ester displayed a pan-PPAR agonism. They were full PPARα agonists, but showed different preferences for PPARγ and PPARß/δ activation. It was noteworthy that quinoline 4b displayed full hPPARα activation (2-fold than WY-14,643), weak PPARß/δ and partial PPARγ activation. In addition, quinoline 4b showed anti-inflammatory effects on macrophages by reducing LPS-induced expression of both MCP-1 and IL-6. Therefore, 4b emerges as a first-in-class promising hit compound for the development of potential therapeutics aimed at treating metabolic syndrome, metabolic dysfunction-associated fatty liver disease (MAFLD), and its associated cardiovascular comorbidities.


Asunto(s)
Síndrome Metabólico , Quinolinas , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/metabolismo , Quinolinas/química , Quinolinas/farmacología , Quinolinas/síntesis química , Relación Estructura-Actividad , Humanos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Activados del Proliferador del Peroxisoma/agonistas , Estructura Molecular , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Antiinflamatorios/síntesis química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Relación Dosis-Respuesta a Droga , Benzopiranos/farmacología , Benzopiranos/síntesis química , Benzopiranos/química , Animales , Ratones
3.
Pharmacol Res ; 187: 106638, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586645

RESUMEN

BACKGROUND AND PURPOSE: Selective peroxisome proliferator-activated receptors (PPARs) are widely used to treat metabolic complications; however, the limited effect of PPARα agonists on glucose metabolism and the adverse effects associated with selective PPARγ activators have stimulated the development of novel pan-PPAR agonists to treat metabolic disorders. Here, we synthesized a new prenylated benzopyran (BP-2) and evaluated its PPAR-activating properties, anti-inflammatory effects and impact on metabolic derangements. EXPERIMENTAL APPROACH: BP-2 was used in transactivation assays to evaluate its agonism to PPARα, PPARß/δ and PPARγ. A parallel-plate flow chamber was employed to investigate its effect on TNFα-induced leukocyte-endothelium interactions. Flow cytometry and immunofluorescence were used to determine its effects on the expression of endothelial cell adhesion molecules (CAMs) and chemokines and p38-MAPK/NF-κB activation. PPARs/RXRα interactions were determined using a gene silencing approach. Analysis of its impact on metabolic abnormalities and inflammation was performed in ob/ob mice. KEY RESULTS: BP-2 displayed strong PPARα activity, with moderate and weak activity against PPARß/δ and PPARγ, respectively. In vitro, BP-2 reduced TNFα-induced endothelial ICAM-1, VCAM-1 and fractalkine/CX3CL1 expression, suppressed mononuclear cell arrest via PPARß/δ-RXRα interactions and decreased p38-MAPK/NF-κB activation. In vivo, BP-2 improved the circulating levels of glucose and triglycerides in ob/ob mice, suppressed T-lymphocyte/macrophage infiltration and proinflammatory markers in the liver and white adipose tissue, but increased the expression of the M2-like macrophage marker CD206. CONCLUSION AND IMPLICATIONS: BP-2 emerges as a novel pan-PPAR lead candidate to normalize glycemia/triglyceridemia and minimize inflammation in metabolic disorders, likely preventing the development of further cardiovascular complications.


Asunto(s)
Enfermedades Metabólicas , PPAR delta , PPAR-beta , Ratones , Animales , PPAR gamma/metabolismo , PPAR alfa/metabolismo , PPAR-beta/metabolismo , Factor de Necrosis Tumoral alfa , Benzopiranos , FN-kappa B , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico
4.
Gut ; 71(4): 807-821, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33903148

RESUMEN

OBJECTIVE: We evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans. DESIGN: Different models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice. We performed metabolic phenotyping, including plasma biochemistry and liver histology, untargeted large-scale approaches (liver metabolome, lipidome and transcriptome), gene expression profiling and network analysis to identify sex-specific pathways in the mouse liver. RESULTS: The different diets induced sex-specific responses that illustrated an increased susceptibility to NAFLD in male mice. The most severe lipid accumulation and inflammation/fibrosis occurred in males receiving the high-fat diet and Western diet, respectively. Sex-biased hepatic gene signatures were identified for these different dietary challenges. The peroxisome proliferator-activated receptor α (PPARα) co-expression network was identified as sexually dimorphic, and in vivo experiments in mice demonstrated that hepatocyte PPARα determines a sex-specific response to fasting and treatment with pemafibrate, a selective PPARα agonist. Liver molecular signatures in humans also provided evidence of sexually dimorphic gene expression profiles and the sex-specific co-expression network for PPARα. CONCLUSIONS: These findings underscore the sex specificity of NAFLD pathophysiology in preclinical studies and identify PPARα as a pivotal, sexually dimorphic, pharmacological target. TRIAL REGISTRATION NUMBER: NCT02390232.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/metabolismo
5.
Bioorg Med Chem ; 53: 116532, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863066

RESUMEN

2-Prenylated benzopyrans represent a class of natural and synthetic compounds showing a wide range of significant activities. Polycerasoidol is a natural prenylated benzopyran isolated from the stem bark of Polyalthia cerasoides (Annonaceae) that exhibits dual PPARα/γ agonism and an anti-inflammatory effect by inhibiting mononuclear leukocyte adhesion to the dysfunctional endothelium. Herein, we report the synthesis of three new series of prenylated benzopyrans containing one (series 1), two (series 2, "polycerasoidol" analogs) and three (series 3, "trans-δ-tocotrienolic acid" analogs) isoprenoid units in the hydrocarbon side chain at the 2-position of the chroman-6-ol (6-hydroxy-dihydrobenzopyran) scaffold. Isoprenoid moieties were introduced through a Grignard reaction sequence, followed by Johnson-Claisen rearrangement and subsequent Wittig olefination. hPPAR transactivation activity and the structure activity relationships (SAR) of eleven novel synthesized 2-prenylated benzopyrans were explored. PPAR transactivation activity demonstrated that the seven-carbon side chain analogs (series 1) displayed selectivity for hPPARα, while the nine-carbon side chain analogs (polycerasoidol analogs, series 2) did so for hPPARγ. The side chain elongation to 11 or 13 carbons (series 3) resulted in weak dual PPARα/γ activation. Therefore, 2-prenylated benzopyrans of seven- and nine-carbon side chain (polycerasoidol analogs) are good lead compounds for developing useful candidates to prevent cardiovascular diseases associated with metabolic disorders.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Benzopiranos/farmacología , PPAR alfa/agonistas , PPAR gamma/agonistas , Vitamina E/análogos & derivados , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Benzopiranos/síntesis química , Benzopiranos/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad , Vitamina E/síntesis química , Vitamina E/química , Vitamina E/farmacología
6.
J Biol Chem ; 295(50): 17310-17322, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33037071

RESUMEN

In addition to their well-known role in the control of cellular proliferation and cancer, cell cycle regulators are increasingly identified as important metabolic modulators. Several GWAS have identified SNPs near CDKN2A, the locus encoding for p16INK4a (p16), associated with elevated risk for cardiovascular diseases and type-2 diabetes development, two pathologies associated with impaired hepatic lipid metabolism. Although p16 was recently shown to control hepatic glucose homeostasis, it is unknown whether p16 also controls hepatic lipid metabolism. Using a combination of in vivo and in vitro approaches, we found that p16 modulates fasting-induced hepatic fatty acid oxidation (FAO) and lipid droplet accumulation. In primary hepatocytes, p16-deficiency was associated with elevated expression of genes involved in fatty acid catabolism. These transcriptional changes led to increased FAO and were associated with enhanced activation of PPARα through a mechanism requiring the catalytic AMPKα2 subunit and SIRT1, two known activators of PPARα. By contrast, p16 overexpression was associated with triglyceride accumulation and increased lipid droplet numbers in vitro, and decreased ketogenesis and hepatic mitochondrial activity in vivo Finally, gene expression analysis of liver samples from obese patients revealed a negative correlation between CDKN2A expression and PPARA and its target genes. Our findings demonstrate that p16 represses hepatic lipid catabolism during fasting and may thus participate in the preservation of metabolic flexibility.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , PPAR alfa/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Ácidos Grasos/genética , Estudio de Asociación del Genoma Completo , Humanos , Gotas Lipídicas/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/genética , Obesidad/genética , Obesidad/metabolismo , Oxidación-Reducción , PPAR alfa/genética , Sirtuina 1/genética
7.
Genome Res ; 27(6): 985-996, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28400425

RESUMEN

Control of gene transcription relies on concomitant regulation by multiple transcriptional regulators (TRs). However, how recruitment of a myriad of TRs is orchestrated at cis-regulatory modules (CRMs) to account for coregulation of specific biological pathways is only partially understood. Here, we have used mouse liver CRMs involved in regulatory activities of the hepatic TR, NR1H4 (FXR; farnesoid X receptor), as our model system to tackle this question. Using integrative cistromic, epigenomic, transcriptomic, and interactomic analyses, we reveal a logical organization where trans-regulatory modules (TRMs), which consist of subsets of preferentially and coordinately corecruited TRs, assemble into hierarchical combinations at hepatic CRMs. Different combinations of TRMs add to a core TRM, broadly found across the whole landscape of CRMs, to discriminate promoters from enhancers. These combinations also specify distinct sets of CRM differentially organized along the genome and involved in regulation of either housekeeping/cellular maintenance genes or liver-specific functions. In addition to these TRMs which we define as obligatory, we show that facultative TRMs, such as one comprising core circadian TRs, are further recruited to selective subsets of CRMs to modulate their activities. TRMs transcend TR classification into ubiquitous versus liver-identity factors, as well as TR grouping into functional families. Hence, hierarchical superimpositions of obligatory and facultative TRMs bring about independent transcriptional regulatory inputs defining different sets of CRMs with logical connection to regulation of specific gene sets and biological pathways. Altogether, our study reveals novel principles of concerted transcriptional regulation by multiple TRs at CRMs.


Asunto(s)
Genoma , Hígado/metabolismo , Elementos Reguladores de la Transcripción , Transcripción Genética , Algoritmos , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genómica/métodos , Ratones , Ratones Noqueados , PPAR alfa/deficiencia , PPAR alfa/genética , Receptores Citoplasmáticos y Nucleares/deficiencia , Receptores Citoplasmáticos y Nucleares/genética
8.
J Enzyme Inhib Med Chem ; 35(1): 524-538, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31939313

RESUMEN

A series of nitrogen heterocycles containing α-ethoxyphenylpropionic acid derivatives were designed as dual PPARα/γ agonist ligands for the treatment of type 2 diabetes (T2D) and its complications. 6-Benzoyl-benzothiazol-2-one was the most tolerant of the tested heterocycles in which incorporation of O-methyl oxime ether and trifluoroethoxy group followed by enantiomeric resolution led to the (S)-stereoisomer 44 b displaying the best in vitro pharmacological profile. Compound 44 b acted as a very potent full PPARγ agonist and a weak partial agonist on the PPARα receptor subtype. Compound 44 b showed high efficacy in an ob/ob mice model with significant decreases in serum triglyceride, glucose and insulin levels but mostly with limited body-weight gain and could be considered as a selective PPARγ modulator (SPPARγM).


Asunto(s)
Benzotiazoles/farmacología , Hipoglucemiantes/farmacología , PPAR alfa/agonistas , PPAR gamma/agonistas , Fenilpropionatos/farmacología , Animales , Benzotiazoles/síntesis química , Benzotiazoles/química , Células COS , Chlorocebus aethiops , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Relación Dosis-Respuesta a Droga , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Ligandos , Masculino , Ratones , Ratones Obesos , Simulación del Acoplamiento Molecular , Estructura Molecular , PPAR alfa/genética , PPAR gamma/genética , Fenilpropionatos/síntesis química , Fenilpropionatos/química , Relación Estructura-Actividad
9.
J Hepatol ; 70(5): 963-973, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30677458

RESUMEN

BACKGROUND & AIMS: Although the role of inflammation to combat infection is known, the contribution of metabolic changes in response to sepsis is poorly understood. Sepsis induces the release of lipid mediators, many of which activate nuclear receptors such as the peroxisome proliferator-activated receptor (PPAR)α, which controls both lipid metabolism and inflammation. We aimed to elucidate the previously unknown role of hepatic PPARα in the response to sepsis. METHODS: Sepsis was induced by intraperitoneal injection of Escherichia coli in different models of cell-specific Ppara-deficiency and their controls. The systemic and hepatic metabolic response was analyzed using biochemical, transcriptomic and functional assays. PPARα expression was analyzed in livers from elective surgery and critically ill patients and correlated with hepatic gene expression and blood parameters. RESULTS: Both whole body and non-hematopoietic Ppara-deficiency in mice decreased survival upon bacterial infection. Livers of septic Ppara-deficient mice displayed an impaired metabolic shift from glucose to lipid utilization resulting in more severe hypoglycemia, impaired induction of hyperketonemia and increased steatosis due to lower expression of genes involved in fatty acid catabolism and ketogenesis. Hepatocyte-specific deletion of PPARα impaired the metabolic response to sepsis and was sufficient to decrease survival upon bacterial infection. Hepatic PPARA expression was lower in critically ill patients and correlated positively with expression of lipid metabolism genes, but not with systemic inflammatory markers. CONCLUSION: During sepsis, Ppara-deficiency in hepatocytes is deleterious as it impairs the adaptive metabolic shift from glucose to FA utilization. Metabolic control by PPARα in hepatocytes plays a key role in the host defense against infection. LAY SUMMARY: As the main cause of death in critically ill patients, sepsis remains a major health issue lacking efficacious therapies. While current clinical literature suggests an important role for inflammation, metabolic aspects of sepsis have mostly been overlooked. Here, we show that mice with an impaired metabolic response, due to deficiency of the nuclear receptor PPARα in the liver, exhibit enhanced mortality upon bacterial infection despite a similar inflammatory response, suggesting that metabolic interventions may be a viable strategy for improving sepsis outcomes.


Asunto(s)
Adaptación Fisiológica , Hígado/metabolismo , PPAR alfa/fisiología , Sepsis/metabolismo , Animales , Infecciones Bacterianas/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Humanos , Inflamación/etiología , Ratones , Ratones Endogámicos C57BL
10.
Bioorg Med Chem ; 27(24): 115162, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31703893

RESUMEN

We describe the synthesis of 26 compounds, small polycerasoidol analogs, that are Lipinski's rule-of-five compliant. In order to confirm key structural features to activate PPARα and/or PPARγ, we have adopted structural modifications in the following parts: (i) the benzopyran core (hydrophobic nucleus) by benzopyran-4-one, dihydrobenzopyran or benzopyran-4-ol; (ii) the side chain at 2-position by shortening to C3, C4 and C5-carbons versus C-9-carbons of polycerasoidol; (iii) the carboxylic group (polar head) by oxygenated groups (hydroxyl, acetoxy, epoxide, ester, aldehyde) or non-oxygenated motifs (allyl and alkyl). Benzopyran-4-ones 6, 12, 13 and 17 as well as dihydrobenzopyrans 22, 24 and 25 were able to activate hPPARα, whereas benzopyran-4-one (7) with C5-carbons in the side chain exhibited hPPARγ agonism. According to our previous docking studies, SAR confirm that the hydrophobic nucleus (benzopyran-4-one or dihydrobenzopyran) is essential to activate PPARα and/or PPARγ, and the flexible linker (side alkyl chain) should containg at least C5-carbon atoms to activate PPARγ. By contrast, the polar head ("carboxylic group") tolerated several oxygenated groups but also non-oxygenated motifs. Taking into account these key structural features, small polycerasoidol analogs might provide potential active molecules useful in the treatment of dyslipidemia and/or type 2 diabetes.


Asunto(s)
Benzopiranos/síntesis química , Benzopiranos/farmacología , PPAR alfa/agonistas , PPAR gamma/agonistas , Benzopiranos/química , Descubrimiento de Drogas , Estructura Molecular , Relación Estructura-Actividad
11.
Nucleic Acids Res ; 44(22): 10539-10553, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27576532

RESUMEN

Adaptation to fasting involves both Glucocorticoid Receptor (GRα) and Peroxisome Proliferator-Activated Receptor α (PPARα) activation. Given both receptors can physically interact we investigated the possibility of a genome-wide cross-talk between activated GR and PPARα, using ChIP- and RNA-seq in primary hepatocytes. Our data reveal extensive chromatin co-localization of both factors with cooperative induction of genes controlling lipid/glucose metabolism. Key GR/PPAR co-controlled genes switched from transcriptional antagonism to cooperativity when moving from short to prolonged hepatocyte fasting, a phenomenon coinciding with gene promoter recruitment of phosphorylated AMP-activated protein kinase (AMPK) and blocked by its pharmacological inhibition. In vitro interaction studies support trimeric complex formation between GR, PPARα and phospho-AMPK. Long-term fasting in mice showed enhanced phosphorylation of liver AMPK and GRα Ser211. Phospho-AMPK chromatin recruitment at liver target genes, observed upon prolonged fasting in mice, is dampened by refeeding. Taken together, our results identify phospho-AMPK as a molecular switch able to cooperate with nuclear receptors at the chromatin level and reveal a novel adaptation mechanism to prolonged fasting.


Asunto(s)
Adenilato Quinasa/metabolismo , Cromatina/metabolismo , PPAR alfa/fisiología , Receptores de Glucocorticoides/fisiología , Animales , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Elementos de Facilitación Genéticos , Ayuno , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Ratones Noqueados , Transporte de Proteínas , Análisis de Secuencia de ADN , Activación Transcripcional , Transcriptoma
12.
Eur J Med Chem ; 265: 116125, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38185055

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) play a major role in regulating inflammatory processes, and dual or pan-PPAR agonists with PPARγ partial activation have been recognised to be useful to manage both metabolic syndrome and metabolic dysfunction-associated fatty liver disease (MAFLD). Previous works have demonstrated the capacity of 2-prenylated benzopyrans as PPAR ligands. Herein, we have replaced the isoprenoid bond by hydrazone, a highly attractive functional group in medicinal chemistry. In an attempt to discover novel and safety PPAR activators, we efficiently prepared benzopyran hydrazone/hydrazine derivatives containing benzothiazole (series 1) or 5-chloro-3-(trifluoromethyl)-2-pyridine moiety (series 2) with a 3- or 7-carbon side chain at the 2-position of the benzopyran nucleus. Benzopyran hydrazones 4 and 5 showed dual hPPARα/γ agonism, while hydrazone 14 exerted dual hPPARα/δ agonism. These three hydrazones greatly attenuated inflammatory markers such as IL-6 and MCP-1 on the THP-1 macrophages via NF-κB activation. Therefore, we have discovered novel hits (4, 5 and 14), containing a hydrazone framework with dual PPARα/γ or PPARα/δ partial agonism, depending on the length of the side chain. Benzopyran hydrazones emerge as potential lead compounds which could be useful for treating metabolic diseases.


Asunto(s)
Benzopiranos , PPAR alfa , Humanos , PPAR alfa/agonistas , Benzopiranos/química , Hidrazonas/farmacología , Hipoglucemiantes , PPAR gamma/agonistas , Antiinflamatorios
13.
Br J Pharmacol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812293

RESUMEN

BACKGROUND AND PURPOSE: Nonalcoholic fatty liver disease refers to liver pathologies, ranging from steatosis to steatohepatitis, with fibrosis ultimately leading to cirrhosis and hepatocellular carcinoma. Although several mechanisms have been suggested, including insulin resistance, oxidative stress, and inflammation, its pathophysiology remains imperfectly understood. Over the last decade, a dysfunctional unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress emerged as one of the multiple driving factors. In parallel, growing evidence suggests that insulin-degrading enzyme (IDE), a highly conserved and ubiquitously expressed metallo-endopeptidase originally discovered for its role in insulin decay, may regulate ER stress and UPR. EXPERIMENTAL APPROACH: We investigated, by genetic and pharmacological approaches, in vitro and in vivo, whether IDE modulates ER stress-induced UPR and lipid accumulation in the liver. KEY RESULTS: We found that IDE-deficient mice display higher hepatic triglyceride content along with higher inositol-requiring enzyme 1 (IRE1) pathway activation. Upon induction of ER stress by tunicamycin or palmitate in vitro or in vivo, pharmacological inhibition of IDE, using its inhibitor BDM44768, mainly exacerbated ER stress-induced IRE1 activation and promoted lipid accumulation in hepatocytes, effects that were abolished by the IRE1 inhibitors 4µ8c and KIRA6. Finally, we identified that IDE knockout promotes lipolysis in adipose tissue and increases hepatic CD36 expression, which may contribute to steatosis. CONCLUSION AND IMPLICATIONS: These results unravel a novel role for IDE in the regulation of ER stress and development of hepatic steatosis. These findings pave the way to innovative strategies modulating IDE to treat metabolic diseases.

14.
Metabolism ; 151: 155720, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37926201

RESUMEN

BACKGROUND AND AIMS: Peroxisome Proliferator-Activated Receptor α (PPARα) is a key regulator of hepatic lipid metabolism and therefore a promising therapeutic target against Metabolic-dysfunction Associated Steatotic Liver Diseases (MASLD). However, its expression and activity decrease during disease progression and several of its agonists did not achieve sufficient efficiency in clinical trials with, surprisingly, a lack of steatosis improvement. Here, we identified the Human leukocyte antigen-F Adjacent Transcript 10 (FAT10) as an inhibitor of PPARα lipid metabolic activity during MASLD progression. APPROACH AND RESULTS: In vivo, the expression of FAT10 is upregulated in human and murine MASLD livers upon disease progression and correlates negatively with PPARα expression. The increase of FAT10 occurs in hepatocytes in which both proteins interact. FAT10 silencing in vitro in hepatocytes increases PPARα target gene expression, promotes fatty acid oxidation and decreases intra-cellular lipid droplet content. In line, FAT10 overexpression in hepatocytes in vivo inhibits the lipid regulatory activity of PPARα in response to fasting and agonist treatment in conditions of physiological and pathological hepatic lipid overload. CONCLUSIONS: FAT10 is induced during MASLD development and interacts with PPARα resulting in a decreased lipid metabolic response of PPARα to fasting or agonist treatment. Inhibition of the FAT10-PPARα interaction may provide a means to design potential therapeutic strategies against MASLD.


Asunto(s)
Hígado Graso , Enfermedades Metabólicas , Animales , Humanos , Ratones , Progresión de la Enfermedad , Ácidos Grasos/metabolismo , Hígado Graso/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Enfermedades Metabólicas/metabolismo , PPAR alfa/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
15.
J Med Chem ; 66(17): 11732-11760, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37639383

RESUMEN

A novel series of potent agonists of the bile acid receptor TGR5 bearing a dihydropyridone scaffold was developed from a high-throughput screen. Starting from a micromolar hit compound, we implemented an extensive structure-activity-relationship (SAR) study with the synthesis and biological evaluation of 83 analogues. The project culminated with the identification of the potent nanomolar TGR5 agonist 77A. We report the GLP-1 secretagogue effect of our lead compound ex vivo in mouse colonoids and in vivo. In addition, to identify specific features favorable for TGR5 activation, we generated and optimized a three-dimensional quantitative SAR model that contributed to our understanding of our activity profile and could guide further development of this dihydropyridone series.


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Factores de Transcripción , Animales , Ratones , Péptido 1 Similar al Glucagón , Ácidos y Sales Biliares
16.
Gastroenterology ; 140(5): 1564-74, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21300064

RESUMEN

BACKGROUND & AIMS: Glucagon-like peptide (GLP)-1, an intestinal incretin produced by L cells through proglucagon processing, is secreted after nutrient ingestion and acts on endocrine pancreas beta cells to enhance insulin secretion. Peroxisome proliferator-activated receptor (PPAR) ß/δ is a nuclear receptor that improves glucose homeostasis and pancreas islet function in diabetic animal models. Here, we investigated whether PPARß/δ activation regulates L cell GLP-1 production. METHODS: Proglucagon regulation and GLP-1 release were evaluated in murine GLUTag and human NCI-H716 L cells and in vivo using wild-type, PPARß/δ-null, and ob/ob C57Bl/6 mice treated with the PPARß/δ synthetic agonists GW501516 or GW0742. RESULTS: PPARß/δ activation increased proglucagon expression and enhanced glucose- and bile acid-induced GLP-1 release by intestinal L cells in vitro and ex vivo in human jejunum. In vivo treatment with GW0742 increased proglucagon messenger RNA levels in the small intestine in wild-type but not in PPARß/δ-deficient mice. Treatment of wild-type and ob/ob mice with GW501516 enhanced the increase in plasma GLP-1 level after an oral glucose load and improved glucose tolerance. Concomitantly, proglucagon and GLP-1 receptor messenger RNA levels increased in the small intestine and pancreas, respectively. Finally, PPARß/δ agonists activate the proglucagon gene transcription by interfering with the ß-catenin/TCF-4 pathway. CONCLUSIONS: Our data show that PPARß/δ activation potentiates GLP-1 production by the small intestine. Pharmacologic targeting of PPARß/δ is a promising approach in the treatment of patients with type 2 diabetes mellitus, especially in combination with dipeptidyl peptidase IV inhibitors.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Células Enteroendocrinas/metabolismo , Regulación de la Expresión Génica , Péptido 1 Similar al Glucagón/biosíntesis , PPAR-beta/metabolismo , ARN Mensajero/genética , Animales , Glucemia/metabolismo , Western Blotting , Células Cultivadas , Diabetes Mellitus Experimental/patología , Modelos Animales de Enfermedad , Células Enteroendocrinas/patología , Péptido 1 Similar al Glucagón/genética , Humanos , Masculino , Ratones , Reacción en Cadena de la Polimerasa , ARN Mensajero/biosíntesis , Ratas
17.
Org Biomol Chem ; 10(30): 6169-85, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22641289

RESUMEN

In order to identify new leads for the treatment of type 2 diabetes, polyenic molecules A and B derived from nipecotic acid and dienol derivatives C have been prepared and their effect on PPARs transcriptional activity evaluated and compared to that of rosiglitazone, WY14,643 and GW501516. Among the synthesized compounds, dienol 39 is the most active, increasing WY14,643 PPARα response and demonstrating partial agonist properties on rosiglitazone PPARγ.


Asunto(s)
Alquenos/síntesis química , Alquenos/farmacología , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/antagonistas & inhibidores , Alquenos/química , Técnicas de Química Sintética , Humanos , Receptores Activados del Proliferador del Peroxisoma/genética , Activación Transcripcional/efectos de los fármacos
18.
Proc Natl Acad Sci U S A ; 106(18): 7397-402, 2009 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-19376972

RESUMEN

Glucocorticoid receptor alpha (GRalpha) and peroxisome proliferator-activated receptor alpha (PPARalpha) are transcription factors with clinically important immune-modulating properties. Either receptor can inhibit cytokine gene expression, mainly through interference with nuclear factor kappaB (NF-kappaB)-driven gene expression. The present work aimed to investigate a functional cross-talk between PPARalpha- and GRalpha-mediated signaling pathways. Simultaneous activation of PPARalpha and GRalpha dose-dependently enhances transrepression of NF-kappaB-driven gene expression and additively represses cytokine production. In sharp contrast and quite unexpectedly, PPARalpha agonists inhibit the expression of classical glucocorticoid response element (GRE)-driven genes in a PPARalpha-dependent manner, as demonstrated by experiments using PPARalpha wild-type and knockout mice. The underlying mechanism for this transcriptional antagonism relies on a PPARalpha-mediated interference with the recruitment of GRalpha, and concomitantly of RNA polymerase II, to GRE-driven gene promoters. Finally, the biological relevance of this phenomenon is underscored by the observation that treatment with the PPARalpha agonist fenofibrate prevents glucocorticoid-induced hyperinsulinemia of mice fed a high-fat diet. Taken together, PPARalpha negatively interferes with GRE-mediated GRalpha activity while potentiating its antiinflammatory effects, thus providing a rationale for combination therapy in chronic inflammatory disorders.


Asunto(s)
Glucocorticoides/farmacología , FN-kappa B/metabolismo , PPAR alfa/metabolismo , Receptores de Glucocorticoides/metabolismo , Activación Transcripcional , Animales , Línea Celular Tumoral , Grasas de la Dieta/administración & dosificación , Fenofibrato/farmacología , Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hiperinsulinismo/inducido químicamente , Hiperinsulinismo/prevención & control , Ratones , Ratones Noqueados , PPAR alfa/agonistas , PPAR alfa/antagonistas & inhibidores , PPAR alfa/genética , Regiones Promotoras Genéticas , Receptores de Glucocorticoides/agonistas
19.
Nanoscale Horiz ; 7(2): 174-184, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35039816

RESUMEN

Painless and controlled on-demand drug delivery is the ultimate goal for the management of various chronic diseases, including diabetes. To achieve this purpose, microneedle patches are gaining increased attention. While degradable microneedle (MN) arrays are widely employed, the use of non-dissolving MN patches remains a challenge to overcome. In this study, we demonstrate that crosslinking gelatin methacrylate with polyethylene glycol diacrylate (PEGDA) is potent for engineering non-dissolving MN arrays. Incorporation of MoS2 nanosheets as a photothermal component into MN hydrogels results in MNs featuring on-demand release properties. An optimized MoS2-MN array patch formed using a hydrogel solution containing 500 µg mL-1 of MoS2 and photochemically crosslinked for 5 min shows required mechanical behavior under a normal compressive load to penetrate the stratum corneum of mice or pig skin and allows the delivery of macromolecular therapeutics such as insulin upon swelling. Using ex vivo and in vivo models, we show that the MoS2-MN patches can be used for loading and releasing insulin for therapeutic purposes. Indeed, transdermal administration of insulin loaded into MoS2-MN patches reduces blood glucose levels in C57BL/6 mice and mini-pigs comparably to subcutaneously injected insulin. We believe that this on-demand delivery system might alter the current insulin therapies and might be a potential approach for delivery of other proteins.


Asunto(s)
Gelatina , Insulina , Administración Cutánea , Animales , Insulina/uso terapéutico , Metacrilatos , Ratones , Ratones Endogámicos C57BL , Agujas , Porcinos , Porcinos Enanos
20.
Eur J Med Chem ; 228: 113982, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34815130

RESUMEN

Insulin degrading enzyme (IDE) is a zinc metalloprotease that cleaves numerous substrates among which amyloid-ß and insulin. It has been linked through genetic studies to the risk of type-2 diabetes (T2D) or Alzheimer's disease (AD). Pharmacological activation of IDE is an attractive therapeutic strategy in AD. While IDE inhibition gave paradoxal activity in glucose homeostasis, recent studies, in particular in the liver suggest that IDE activators could be also of interest in diabetes. Here we describe the discovery of an original series of IDE activators by screening and structure-activity relationships. Early cellular studies show that hit 1 decreases glucose-stimulating insulin secretion. Docking studies revealed it has an unprecedented extended binding to the polyanion-binding site of IDE. These indole-based pharmacological tools are activators of both Aß and insulin hydrolysis by IDE and could be helpful to explore the multiple roles of IDE.


Asunto(s)
Indoles/farmacología , Insulisina/metabolismo , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Indoles/química , Ratones , Modelos Moleculares , Estructura Molecular , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA