Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Proteome Res ; 23(5): 1666-1678, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38644792

RESUMEN

Bordetella pertussis persists inside host cells, and virulence factors are crucial for intracellular adaptation. The regulation of B. pertussis virulence factor transcription primarily occurs through the modulation of the two-component system (TCS) known as BvgAS. However, additional regulatory systems have emerged as potential contributors to virulence regulation. Here, we investigate the impact of BP1092, a putative TCS histidine kinase that shows increased levels after bacterial internalization by macrophages, on B. pertussis proteome adaptation under nonmodulating (Bvg+) and modulating (Bvg-) conditions. Using mass spectrometry, we compare B. pertussis wild-type (wt), a BP1092-deficient mutant (ΔBP1092), and a ΔBP1092 trans-complemented strain under both conditions. We find an altered abundance of 10 proteins, including five virulence factors. Specifically, under nonmodulating conditions, the mutant strain showed decreased levels of FhaB, FhaS, and Cya compared to the wt. Conversely, under modulating conditions, the mutant strain exhibited reduced levels of BvgA and BvgS compared to those of the wt. Functional assays further revealed that the deletion of BP1092 gene impaired B. pertussis ability to survive within human macrophage THP-1 cells. Taken together, our findings allow us to propose BP1092 as a novel player involved in the intricate regulation of B. pertussis virulence factors and thus in adaptation to the intracellular environment. The data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD041940.


Asunto(s)
Proteínas Bacterianas , Bordetella pertussis , Histidina Quinasa , Bordetella pertussis/patogenicidad , Bordetella pertussis/genética , Histidina Quinasa/metabolismo , Histidina Quinasa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia/genética , Regulación Bacteriana de la Expresión Génica , Macrófagos/microbiología , Humanos , Proteoma , Factores de Virulencia de Bordetella/genética , Factores de Virulencia de Bordetella/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Viabilidad Microbiana
2.
Proteomics ; : e2300294, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37772677

RESUMEN

In proteomics, fast, efficient, and highly reproducible sample preparation is of utmost importance, particularly in view of fast scanning mass spectrometers enabling analyses of large sample series. To address this need, we have developed the web application MassSpecPreppy that operates on the open science OT-2 liquid handling robot from Opentrons. This platform can prepare up to 96 samples at once, performing tasks like BCA protein concentration determination, sample digestion with normalization, reduction/alkylation and peptide elution into vials or loading specified peptide amounts onto Evotips in an automated and flexible manner. The performance of the developed workflows using MassSpecPreppy was compared with standard manual sample preparation workflows. The BCA assay experiments revealed an average recovery of 101.3% (SD: ± 7.82%) for the MassSpecPreppy workflow, while the manual workflow had a recovery of 96.3% (SD: ± 9.73%). The species mix used in the evaluation experiments showed that 94.5% of protein groups for OT-2 digestion and 95% for manual digestion passed the significance thresholds with comparable peptide level coefficient of variations. These results demonstrate that MassSpecPreppy is a versatile and scalable platform for automated sample preparation, producing injection-ready samples for proteomics research.

3.
Blood ; 138(22): 2256-2268, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34587242

RESUMEN

SARS-CoV-2 vaccine ChAdOx1 nCoV-19 (AstraZeneca) causes a thromboembolic complication termed vaccine-induced immune thrombotic thrombocytopenia (VITT). Using biophysical techniques, mouse models, and analysis of VITT patient samples, we identified determinants of this vaccine-induced adverse reaction. Super-resolution microscopy visualized vaccine components forming antigenic complexes with platelet factor 4 (PF4) on platelet surfaces to which anti-PF4 antibodies obtained from VITT patients bound. PF4/vaccine complex formation was charge-driven and increased by addition of DNA. Proteomics identified substantial amounts of virus production-derived T-REx HEK293 proteins in the ethylenediaminetetraacetic acid (EDTA)-containing vaccine. Injected vaccine increased vascular leakage in mice, leading to systemic dissemination of vaccine components known to stimulate immune responses. Together, PF4/vaccine complex formation and the vaccine-stimulated proinflammatory milieu trigger a pronounced B-cell response that results in the formation of high-avidity anti-PF4 antibodies in VITT patients. The resulting high-titer anti-PF4 antibodies potently activated platelets in the presence of PF4 or DNA and polyphosphate polyanions. Anti-PF4 VITT patient antibodies also stimulated neutrophils to release neutrophil extracellular traps (NETs) in a platelet PF4-dependent manner. Biomarkers of procoagulant NETs were elevated in VITT patient serum, and NETs were visualized in abundance by immunohistochemistry in cerebral vein thrombi obtained from VITT patients. Together, vaccine-induced PF4/adenovirus aggregates and proinflammatory reactions stimulate pathologic anti-PF4 antibody production that drives thrombosis in VITT. The data support a 2-step mechanism underlying VITT that resembles the pathogenesis of (autoimmune) heparin-induced thrombocytopenia.


Asunto(s)
Complejo Antígeno-Anticuerpo/inmunología , Autoanticuerpos/inmunología , COVID-19/prevención & control , Proteínas de la Cápside/efectos adversos , ChAdOx1 nCoV-19/efectos adversos , Contaminación de Medicamentos , Vectores Genéticos/efectos adversos , Células HEK293/inmunología , Inmunoglobulina G/inmunología , Factor Plaquetario 4/inmunología , Púrpura Trombocitopénica Idiopática/etiología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/efectos adversos , Adenoviridae/inmunología , Animales , Complejo Antígeno-Anticuerpo/ultraestructura , Autoanticuerpos/biosíntesis , Síndrome de Fuga Capilar/etiología , Proteínas de la Cápside/inmunología , Línea Celular Transformada , ChAdOx1 nCoV-19/química , ChAdOx1 nCoV-19/inmunología , ChAdOx1 nCoV-19/toxicidad , Dispersión Dinámica de Luz , Epítopos/química , Epítopos/inmunología , Trampas Extracelulares/inmunología , Extravasación de Materiales Terapéuticos y Diagnósticos/etiología , Vectores Genéticos/inmunología , Células HEK293/química , Humanos , Imagenología Tridimensional , Inmunoglobulina G/biosíntesis , Inflamación , Ratones , Microscopía/métodos , Activación Plaquetaria , Proteómica , Púrpura Trombocitopénica Idiopática/sangre , Púrpura Trombocitopénica Idiopática/inmunología , Trombosis de los Senos Intracraneales/diagnóstico por imagen , Trombosis de los Senos Intracraneales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Cultivo de Virus
4.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37511068

RESUMEN

Tissue sections, which are widely used in research and diagnostic laboratories and have already been examined by immunohistochemistry (IHC), may subsequently provide a resource for proteomic studies, even though only small amount of protein is available. Therefore, we established a workflow for tandem mass spectrometry-based protein profiling of IHC specimens and characterized defined brain area sections. We investigated the CA1 region of the hippocampus dissected from brain slices of adult C57BL/6J mice. The workflow contains detailed information on sample preparation from brain slices, including removal of antibodies and cover matrices, dissection of region(s) of interest, protein extraction and digestion, mass spectrometry measurement, and data analysis. The Gene Ontology (GO) knowledge base was used for further annotation. Literature searches and Gene Ontology annotation of the detected proteins verify the applicability of this method for global protein profiling using formalin-fixed and embedded material and previously used IHC slides.


Asunto(s)
Formaldehído , Proteómica , Ratones , Animales , Inmunohistoquímica , Proteómica/métodos , Ratones Endogámicos C57BL , Formaldehído/química , Proteínas/análisis , Espectrometría de Masas en Tándem , Adhesión en Parafina , Fijación del Tejido/métodos
5.
Haematologica ; 107(4): 947-957, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35045692

RESUMEN

Vector-based SARS-CoV-2 vaccines have been associated with vaccine- induced thrombosis with thrombocytopenia syndrome (VITT/TTS), but the causative factors are still unresolved. We comprehensively analyzed the ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2.S (Johnson and Johnson) vaccines. ChAdOx1 nCoV-19 contains significant amounts of host cell protein impurities, including functionally active proteasomes, and adenoviral proteins. A much smaller amount of impurities was found in Ad26.COV2.S. Platelet factor 4 formed complexes with ChAdOx1 nCoV-19 constituents, but not with purified virions from ChAdOx1 nCoV-19 or with Ad26.COV2.S. Vascular hyperpermeability was induced by ChAdOx nCoV-19 but not by Ad26.COV2.S. These differences in impurities together with EDTAinduced capillary leakage might contribute to the higher incidence rate of VITT associated with ChAdOx1 nCoV-19 compared to Ad26.COV2.S.


Asunto(s)
COVID-19 , Vacunas , Ad26COVS1 , Vacunas contra la COVID-19/efectos adversos , ChAdOx1 nCoV-19 , Humanos , SARS-CoV-2
6.
J Proteome Res ; 19(4): 1435-1446, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32154730

RESUMEN

To understand bacterial reactions to environmental stress or infection-related processes, it is necessary to identify the involved proteins. In mass spectrometry-based proteomics, the method of choice for spectra-to-peptide-match is database search, but in recent times, spectral libraries have come into focus. Here, we built a mass spectral library from Streptococcus pneumoniae D39, reflecting 76% of the theoretical proteome of the organism. Besides the proteins themselves, posttranslational protein modifications especially reveal central hubs of regulation in bacterial pathogenesis. Here, for example, phosphorylation events are involved in the signal transduction and regulation of virulence. Although there have been major advances in phosphoproteomics, identification of this modification is still challenging. To enhance the number of phosphorylated peptides, which can be reproducibly detected, a comprehensive mass spectral library of the S. pneumoniae D39 phosphoproteome has been compiled in addition to the comprehensive total proteome mass spectral library. The phosphopeptide library was manually validated, and the data quality was additionally proven by analyses of synthetic phosphorylated peptides. In total, 128 phosphorylated proteins were revealed, of which many are involved in glycolysis, purine metabolism, protein biosynthesis, and virulence. The publicly available, thoroughly validated spectral libraries are an excellent resource to improve and speed up future investigations on the proteome and phosphoproteome of pneumococci.


Asunto(s)
Fosfoproteínas , Streptococcus pneumoniae , Espectrometría de Masas , Fosforilación , Proteoma , Proteómica
7.
J Bacteriol ; 201(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30642988

RESUMEN

Bacterial alternative sigma factors are mostly regulated by a partner-switching mechanism. Regulation of the virulence-associated alternative sigma factor SigF of Mycobacterium tuberculosis has been an area of intrigue, with SigF having more predicted regulators than other sigma factors in this organism. Rv1364c is one such predicted regulator, the mechanism of which is confounded by the presence of both anti-sigma factor and anti-sigma factor antagonist functions in a single polypeptide. Using protein binding and phosphorylation assays, we demonstrate that the anti-sigma factor domain of Rv1364c mediates autophosphorylation of its antagonist domain and binds efficiently to SigF. Furthermore, we identified a direct role for the osmosensor serine/threonine kinase PknD in regulating the SigF-Rv1364c interaction, adding to the current understanding about the intersection of these discrete signaling networks. Phosphorylation of SigF also showed functional implications in its DNA binding ability, which may help in activation of the regulon. In M. tuberculosis, osmotic stress-dependent induction of espA, a SigF target involved in maintaining cell wall integrity, is curtailed upon overexpression of Rv1364c, showing its role as an anti-SigF factor. Overexpression of Rv1364c led to induction of another target, pks6, involved in lipid metabolism. This induction was, however, curtailed in the presence of osmotic stress conditions, suggesting modulation of SigF target gene expression via Rv1364c. These data provide evidence that Rv1364c acts an independent SigF regulator that is sensitive to the osmosensory signal, mediating the cross talk of PknD with the SigF regulon.IMPORTANCEMycobacterium tuberculosis, capable of latently infecting the host and causing aggressive tissue damage during active tuberculosis, is endowed with a complex regulatory capacity built of several sigma factors, protein kinases, and phosphatases. These proteins regulate expression of genes that allow the bacteria to adapt to various host-derived stresses, like nutrient starvation, acidic pH, and hypoxia. The cross talk between these systems is not well understood. SigF is one such regulator of gene expression that helps M. tuberculosis to adapt to stresses and imparts virulence. This work provides evidence for its inhibition by the multidomain regulator Rv1364c and activation by the kinase PknD. The coexistence of negative and positive regulators of SigF in pathogenic bacteria reveals an underlying requirement for tight control of virulence factor expression.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Factor sigma/metabolismo , Regulación Bacteriana de la Expresión Génica , Fosforilación , Unión Proteica
8.
Proteomics ; 19(23): e1900192, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31532911

RESUMEN

Proteome analyses are often hampered by the low amount of available starting material like a low bacterial cell number obtained from in vivo settings. Here, the single pot solid-phase enhanced sample preparation (SP3) protocol is adapted and combined with effective cell disruption using detergents for the proteome analysis of bacteria available in limited numbers only. Using this optimized protocol, identification of peptides and proteins for different Gram-positive and Gram-negative species can be dramatically increased and, reliable quantification can also be ensured. This adapted method is compared to already established strain-specific sample processing protocols for Staphylococcus aureus, Streptococcus suis, and Legionella pneumophila. The highest species-specific increase in identifications is observed using the adapted method with L. pneumophila samples by increasing protein and peptide identifications up to 300% and 620%, respectively. This increase is accompanied by an improvement in reproducibility of protein quantification and data completeness between replicates. Thus, this protocol is of interest for performing comprehensive proteomics analyses of low bacterial cell numbers from different settings ranging from infection assays to environmental samples.


Asunto(s)
Bacterias/metabolismo , Proteoma/análisis , Proteómica/métodos , Proteínas Bacterianas/metabolismo , Legionella pneumophila/metabolismo , Staphylococcus aureus/metabolismo , Streptococcus suis/metabolismo
9.
Electrophoresis ; 39(2): 334-343, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28944503

RESUMEN

Differential proteomics targeting the protein abundance is commonly used to follow changes in biological systems. Differences in localization and degree of post-translational modifications of proteins including phosphorylations are of tremendous interest due to the anticipated role in molecular regulatory processes. Because of their particular low abundance in prokaryotes, identification and quantification of protein phosphorylation is traditionally performed by either comparison of spot intensities on two-dimensional gels after differential phosphoprotein staining or gel-free by stable isotope labeling, sequential phosphopeptide enrichment and following LC-MS analysis. In the current work, we combined in a proof-of-principle experiment these techniques using 14 N/15 N metabolic labeling with succeeding protein separation on 2D gels. The visualization of phosphorylations on protein level by differential staining was followed by protein identification and determination of phosphorylation sites and quantification by LC-MS/MS. This approach should avoid disadvantages of traditional workflows, in particular the limited capability of peptide-based gel-free methods to quantify isoforms of proteins. Comparing control and stress conditions allowed for relative quantification in protein phosphorylation in Bacillus pumilus exposed to hydrogen peroxide. Altogether, we quantified with this method 19 putatively phosphorylated proteins.


Asunto(s)
Bacillus pumilus/metabolismo , Fosfoproteínas/análisis , Proteoma/efectos de los fármacos , Proteómica/métodos , Bacillus pumilus/química , Cromatografía Liquida , Electroforesis en Gel Bidimensional , Peróxido de Hidrógeno/farmacología , Marcaje Isotópico , Isótopos de Nitrógeno/análisis , Isótopos de Nitrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfoproteínas/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Espectrometría de Masas en Tándem
10.
Mol Cell Proteomics ; 14(4): 989-1008, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25673765

RESUMEN

Long-term catheterization inevitably leads to a catheter-associated bacteriuria caused by multispecies bacterial biofilms growing on and in the catheters. The overall goal of the presented study was (1) to unravel bacterial community structure and function of such a uropathogenic biofilm and (2) to elucidate the interplay between bacterial virulence and the human immune system within the urine. To this end, a metaproteomics approach combined with in vitro proteomics analyses was employed to investigate both, the pro- and eukaryotic protein inventory. Our proteome analyses demonstrated that the biofilm of the investigated catheter is dominated by three bacterial species, that is, Pseudomonas aeruginosa, Morganella morganii, and Bacteroides sp., and identified iron limitation as one of the major challenges in the bladder environment. In vitro proteome analysis of P. aeruginosa and M. morganii isolated from the biofilm revealed that these opportunistic pathogens are able to overcome iron restriction via the production of siderophores and high expression of corresponding receptors. Notably, a comparison of in vivo and in vitro protein profiles of P. aeruginosa and M. morganii also indicated that the bacteria employ different strategies to adapt to the urinary tract. Although P. aeruginosa seems to express secreted and surface-exposed proteases to escape the human innate immune system and metabolizes amino acids, M. morganii is able to take up sugars and to degrade urea. Most interestingly, a comparison of urine protein profiles of three long-term catheterized patients and three healthy control persons demonstrated the elevated level of proteins associated with neutrophils, macrophages, and the complement system in the patient's urine, which might point to a specific activation of the innate immune system in response to biofilm-associated urinary tract infections. We thus hypothesize that the often asymptomatic nature of catheter-associated urinary tract infections might be based on a fine-tuned balance between the expression of bacterial virulence factors and the human immune system.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones Relacionadas con Catéteres/metabolismo , Infecciones Relacionadas con Catéteres/microbiología , Interacciones Huésped-Patógeno , Proteómica/métodos , Infecciones Urinarias/metabolismo , Infecciones Urinarias/microbiología , Adaptación Fisiológica , Biopelículas , Infecciones Relacionadas con Catéteres/orina , Sistema Libre de Células , Humanos , Inmunidad Innata , Morganella morganii/aislamiento & purificación , Morganella morganii/metabolismo , Fenotipo , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/metabolismo , Especificidad de la Especie , Sistema Urinario/microbiología , Sistema Urinario/patología , Infecciones Urinarias/orina , Orina/microbiología
11.
J Biol Chem ; 290(43): 26218-34, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26350458

RESUMEN

Protein lysine acetylation is known to regulate multiple aspects of bacterial metabolism. However, its presence in mycobacterial signal transduction and virulence-associated proteins has not been studied. In this study, analysis of mycobacterial proteins from different cellular fractions indicated dynamic and widespread occurrence of lysine acetylation. Mycobacterium tuberculosis proteins regulating diverse physiological processes were then selected and expressed in the surrogate host Mycobacterium smegmatis. The purified proteins were analyzed for the presence of lysine acetylation, leading to the identification of 24 acetylated proteins. In addition, novel lysine succinylation and propionylation events were found to co-occur with acetylation on several proteins. Protein-tyrosine phosphatase B (PtpB), a secretory phosphatase that regulates phosphorylation of host proteins and plays a critical role in Mycobacterium infection, is modified by acetylation and succinylation at Lys-224. This residue is situated in a lid region that covers the enzyme's active site. Consequently, acetylation and succinylation negatively regulate the activity of PtpB.


Asunto(s)
Mycobacterium tuberculosis/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Acilación , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Mycobacterium tuberculosis/enzimología , Monoéster Fosfórico Hidrolasas/química , Fosforilación , Conformación Proteica , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
12.
Int J Med Microbiol ; 304(2): 121-32, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24457182

RESUMEN

Phosphorylation events on proteins during growth and stress/starvation can represent crucial regulation processes inside the bacterial cell. Therefore, serine, threonine and tyrosine phosphorylation patterns were analyzed by two powerful complementary proteomic methods for the human pathogen Staphylococcus aureus. Using 2D-gel analysis with a phosphosensitive stain (Pro-Q Diamond) and gel-free titanium dioxide based phosphopeptide enrichment, 103 putative phosphorylated proteins with successfully mapped 68 different phosphorylation sites were found in the soluble proteome of S. aureus. Additionally, in a proof of concept study, 8 proteins phosphorylated on arginine residues have been identified. Most important for functional analyses of S. aureus, proteins related to pathogenicity and virulence were found to be phosphorylated: the virulence regulator SarA, the potential antimicrobial target FbaA and the elastin-binding protein EbpS. Besides newly identified phosphorylation sites we compared our dataset with existing data from literature and subsequent experiments revealed additional phosphorylation events on highly conserved localizations in FbaA. Differential analysis of phosphorylation signals on the 2D-gels showed significant changes in phosphorylation under different physiological conditions for 10 proteins. Among these, we were able to detect newly appearing signals for phosphorylated isoforms of FdaB and HchA under nitrosative stress conditions.


Asunto(s)
Proteínas Bacterianas/análisis , Fosfoproteínas/análisis , Proteoma/análisis , Staphylococcus aureus/química , Adaptación Fisiológica , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Humanos , Espectrometría de Masas , Coloración y Etiquetado
13.
Sci Rep ; 12(1): 7569, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534617

RESUMEN

The tegument, as the surface layer of adult male and female Schistosoma spp. represents the protective barrier of the worms to the hostile environment of the host bloodstream. Here we present the first comparative analysis of sex-specific tegument proteins of paired or virgin Schistosoma mansoni. We applied a new and highly sensitive workflow, allowing detection of even low abundance proteins. Therefore, a streptavidin-biotin affinity purification technique in combination with single pot solid-phase enhanced sample preparation was established for subsequent LC-MS/MS analysis. We were able to identify 1519 tegument proteins for male and female virgin and paired worms and categorized them by sex. Bioinformatic analysis revealed an involvement of female-specific tegument proteins in signaling pathways of cellular processes and antioxidant mechanisms. Male-specific proteins were found to be enriched in processes linked to phosphorylation and signal transduction. This suggests a task sharing between the sexes that might be necessary for survival in the host. Our datasets provide a basis for further studies to understand and ultimately decipher the strategies of the two worm sexes to evade the immune system.


Asunto(s)
Proteoma , Schistosoma mansoni , Animales , Cromatografía Liquida , Femenino , Proteínas del Helminto/metabolismo , Masculino , Proteoma/metabolismo , Schistosoma mansoni/metabolismo , Espectrometría de Masas en Tándem
14.
Pathog Dis ; 80(1)2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35927587

RESUMEN

Gram-negative pathogenic bacteria constitutively shed outer membrane vesicles (OMVs) which play a significant role in the host-pathogen interaction, eventually determining the outcome of the infection. We previously found that Bordetella pertussis, the etiological agent of whooping cough, survives the innate interaction with human macrophages remaining alive inside these immune cells. Adenylate cyclase (CyaA), one of the main toxins of this pathogen, was found involved in the modulation of the macrophage defense response, eventually promoting bacterial survival within the cells. We here investigated whether B. pertussis OMVs, loaded with most of the bacterial toxins and CyaA among them, modulate the macrophage response to the bacterial infection. We observed that the pre-incubation of macrophages with OMVs led to a decreased macrophage defense response to the encounter with the bacteria, in a CyaA dependent way. Our results suggest that CyaA delivered by B. pertussis OMVs dampens macrophages protective function by decreasing phagocytosis and the bactericidal capability of these host cells. By increasing the chances of bacterial survival to the innate encounter with the macrophages, B. pertussis OMVs might play a relevant role in the course of infection, promoting bacterial persistence within the host and eventually, shaping the whole infection process.


Asunto(s)
Bordetella pertussis , Tos Ferina , Toxina de Adenilato Ciclasa , Humanos , Macrófagos , Factores de Virulencia
15.
Biology (Basel) ; 11(7)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-36101392

RESUMEN

The role of the tRNA methyltransferase FTSJ1 in the brain is largely unknown. We analyzed whether FTSJ1-deficient mice (KO) displayed altered neuronal plasticity. We explored open field behavior (10 KO mice (aged 22-25 weeks)) and 11 age-matched control littermates (WT) and examined mean layer thickness (7 KO; 6 WT) and dendritic spines (5 KO; 5 WT) in the hippocampal area CA1 and the dentate gyrus. Furthermore, long-term potentiation (LTP) within area CA1 was investigated (5 KO; 5 WT), and mass spectrometry (MS) using CA1 tissue (2 each) was performed. Compared to controls, KO mice showed a significant reduction in the mean thickness of apical CA1 layers. Dendritic spine densities were also altered in KO mice. Stable LTP could be induced in the CA1 area of KO mice and remained stable at for at least 1 h, although at a lower level as compared to WTs, while MS data indicated differential abundance of several proteins, which play a role in neuronal plasticity. FTSJ1 has an impact on neuronal plasticity in the murine hippocampal area CA1 at the morphological and physiological levels, which, in conjunction with comparable changes in other cortical areas, might accumulate in disturbed learning and memory functions.

16.
Oncoimmunology ; 11(1): 2148850, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507091

RESUMEN

BCL11B, an essential transcription factor for thymopoiesis, regulates also vital processes in post-thymic lymphocytes. Increased expression of BCL11B was recently correlated with the maturation of NK cells, whereas reduced BCL11B levels were observed in native and induced T cell subsets displaying NK cell features. We show that BCL11B-depleted CD8+ T cells stimulated with IL-15 acquired remarkable innate characteristics. These induced innate CD8+ (iiT8) cells expressed multiple innate receptors like NKp30, CD161, and CD16 as well as factors regulating migration and tissue homing while maintaining their T cell phenotype. The iiT8 cells effectively killed leukemic cells spontaneously and neuroblastoma spheroids in the presence of a tumor-specific monoclonal antibody mediated by CD16 receptor activation. These iiT8 cells integrate the innate natural killer cell activity with adaptive T cell longevity, promising an interesting therapeutic potential. Our study demonstrates that innate T cells, albeit of limited clinical applicability given their low frequency, can be efficiently generated from peripheral blood and applied for adoptive transfer, CAR therapy, or combined with therapeutic antibodies.


Asunto(s)
Interleucina-15 , Linfocitos T Citotóxicos , Interleucina-15/farmacología , Interleucina-15/metabolismo , Linfocitos T Citotóxicos/metabolismo , Células Asesinas Naturales , Linfocitos T CD8-positivos , Factores de Transcripción/metabolismo
17.
Toxins (Basel) ; 13(3)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668237

RESUMEN

Alpha-toxin is a major virulence factor of Staphylococcus aureus. Monomer binding to host cell membranes results in the formation of heptameric transmembrane pores. Among human model airway epithelial cell lines, A549 cells were most sensitive toward the toxin followed by 16HBE14o- and S9 cells. In this study we investigated the processes of internalization of pore-containing plasma membrane areas as well as potential pathways for heptamer degradation (lysosomal, proteasomal) or disposal (formation of exosomes/micro-vesicles). The abundance of toxin heptamers upon applying an alpha-toxin pulse to the cells declined both in extracts of whole cells and of cellular membranes of S9 cells, but not in those of 16HBE14o- or A549 cells. Comparisons of heptamer degradation rates under inhibition of lysosomal or proteasomal degradation revealed that an important route of heptamer degradation, at least in S9 cells, seems to be the lysosomal pathway, while proteasomal degradation appears to be irrelevant. Exosomes prepared from culture supernatants of toxin-exposed S9 cells contained alpha-toxin as well as low amounts of exosome and micro-vesicle markers. These results indicate that lysosomal degradation of internalized toxin heptamers may be the most important determinant of toxin-resistance of some types of airway epithelial cells.


Asunto(s)
Endocitosis , Enterotoxinas/toxicidad , Células Epiteliales/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Lisosomas/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Células A549 , Enterotoxinas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología
18.
Elife ; 102021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33404502

RESUMEN

The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Poliquetos/microbiología , Simbiosis , Animales , Bacterias/aislamiento & purificación , Respiraderos Hidrotermales/microbiología
19.
ISME J ; 14(2): 649-656, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31680119

RESUMEN

Deep-sea Bathymodiolus mussels and their chemoautotrophic symbionts are well-studied representatives of mutualistic host-microbe associations. However, how host-symbiont interactions vary on the molecular level between related host and symbiont species remains unclear. Therefore, we compared the host and symbiont metaproteomes of Pacific B. thermophilus, hosting a thiotrophic symbiont, and Atlantic B. azoricus, containing two symbionts, a thiotroph and a methanotroph. We identified common strategies of metabolic support between hosts and symbionts, such as the oxidation of sulfide by the host, which provides a thiosulfate reservoir for the thiotrophic symbionts, and a cycling mechanism that could supply the host with symbiont-derived amino acids. However, expression levels of these processes differed substantially between both symbioses. Backed up by genomic comparisons, our results furthermore revealed an exceptionally large repertoire of attachment-related proteins in the B. thermophilus symbiont. These findings imply that host-microbe interactions can be quite variable, even between closely related systems.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Mytilidae/microbiología , Simbiosis/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Anhidrasas Carbónicas/metabolismo , Crecimiento Quimioautotrófico , Genoma Bacteriano/genética , Branquias/metabolismo , Interacciones Microbiota-Huesped , Mytilidae/metabolismo , Proteómica , Simbiosis/fisiología
20.
Virulence ; 11(1): 1310-1328, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33017224

RESUMEN

Nasopharyngeal colonization by Streptococcus pneumoniae is a prerequisite for pneumococcal transmission and disease. Current vaccines protect only against disease and colonization caused by a limited number of serotypes, consequently allowing serotype replacement and transmission. Therefore, the development of a broadly protective vaccine against colonization, transmission and disease is desired but requires a better understanding of pneumococcal adaptation to its natural niche. Hence, we measured the levels of free and protein-bound transition metals in human nasal fluid, to determine the effect of metal concentrations on the growth and proteome of S. pneumoniae. Pneumococci cultured in medium containing metal levels comparable to nasal fluid showed a highly distinct proteomic profile compared to standard culture conditions, including the increased abundance of nine conserved, putative surface-exposed proteins. AliA, an oligopeptide binding protein, was identified as the strongest protective antigen, demonstrated by the significantly reduced bacterial load in a murine colonization and a lethal mouse pneumonia model, highlighting its potential as vaccine antigen.


Asunto(s)
Antígenos Bacterianos/aislamiento & purificación , Proteínas de la Membrana/aislamiento & purificación , Metales/farmacología , Vacunas Neumococicas/inmunología , Streptococcus pneumoniae/efectos de los fármacos , Adulto , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Medios de Cultivo/química , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Proteínas de la Membrana/inmunología , Metales/análisis , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Líquido del Lavado Nasal/química , Nasofaringe/microbiología , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/administración & dosificación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA