Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 59(7): 4320-4327, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32167299

RESUMEN

A new type of ammonium vanadium bronze, (NH4)2V7O16, was synthesized by the hydrothermal method. The triclinic crystal structure (P1̅) is successfully identified by the single-crystal X-ray diffraction method. The layered structure is similar to that of other vanadium bronzes but with an unprecedented stoichiometry and crystal structure. The structure is composed of a stack of V7O16 layers along the c axis, and two NH4+ ions occupy the interlayer space per formula unit. Each ammonium ion is hydrogen-bonded to four lattice oxygen atoms, resulting in a stable structure with a large interlayer space, thus enabling the intercalation of various guest ions. Lithium ions are electrochemically intercalated into (NH4)2V7O16, with an initial discharge capacity of 232 mAh g-1 and an average discharge voltage of 2 V (vs Li/Li+). Upon the first discharge, lithium ions are inserted, whereas ammonium ions are extracted. Upon charging, a reverse reaction takes place. However, only a fraction of the extracted ammonium ions are reaccommodated. Despite the small quantity, the reinsertion of ammonium ions contributes crucially to the structural stability, improving the electrochemical performance. These results could provide a general understanding of the intercalation mechanism of host materials containing ammonium ions. In addition, (NH4)2V7O16 intercalates Na+ ions reversibly, implying a potential capability as a host material for other guest ions.

2.
Inorg Chem ; 58(5): 3065-3072, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30767512

RESUMEN

Rhombohedral potassium-zinc hexacyanoferrate K1.88Zn2.88[Fe(CN)6]2(H2O)5 (KZnHCF) synthesized using a precipitation method is demonstrated as a high-voltage cathode material for potassium-ion batteries (PIBs), exhibiting an initial discharge capacity of 55.6 mAh g-1 with a discharge voltage of 3.9 V versus K/K+ and a capacity retention of ∼95% after 100 cycles in a nonaqueous electrolyte. All K ions are extracted from the structure upon the initial charge process. However, only 1.61 out of 1.88 K ions per formula unit are inserted back into the structure upon discharge, and it becomes the reversible ion of the second cycle onward. Despite the large ionic size of K, the material exhibits a lattice-volume change (∼3%) during a cycle, which is exceptionally small among the cathode materials for PIBs. The distinct feature of the material seems to come from the unique porous framework structure built by ZnN4 and FeC6 polyhedra linked via the C≡N bond and a Zn/Fe atomic ratio of 3/2, resulting in high structural stability and cycle performance.

3.
Inorg Chem ; 57(19): 11901-11908, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30207713

RESUMEN

Monoclinic Fe2(MoO4)3 (FMO) shows distinct structural and electrochemical differences in the intercalation mechanism, depending on the guest ion. (1,2) FMO undergoes a single-phase reaction in a Na-ion cell, but a two-phase reaction in a Li-ion cell. Attempts to understand the difference in the mechanisms have been hindered by a lack of structural information on the fully sodiated phase Na2Fe2(MoO4)3 due to its structural complexity and the unavailability of a single crystal. In this work, we have solved and refined the crystal structure of Na2Fe2(MoO4)3 for the first time, using the technique of ab initio structure determination from powder diffraction data. Along with electrochemical and structural characterization, 3D bond valence sum difference map calculations enabled us to ascertain the decisive factors that determine such differences, in terms of the interatomic distance and coordination environment of a guest ion. In the case of Na insertion, only a slight expansion of the structure makes the cavity sites of FMO suitable for Na ions, with adequate distances and coordination with surrounding oxygen atoms, resulting in a solid-solution-type single-phase reaction. In the case of Li insertion, the cavity sites are so large for a Li ion that a significant structural change involving tilting of the FeO6 and MoO4 polyhedra is required to accommodate the Li ion in a suitable local environment, which does not allow a continuous structural change but results in a two-phase reaction.

4.
Inorg Chem ; 56(14): 7668-7678, 2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28648064

RESUMEN

Magnesium batteries have received attention as a type of post-lithium-ion battery because of their potential advantages in cost and capacity. Among the host candidates for magnesium batteries, orthorhombic α-V2O5 is one of the most studied materials, and it shows a reversible magnesium intercalation with a high capacity especially in a wet organic electrolyte. Studies by several groups during the last two decades have demonstrated that water plays some important roles in getting higher capacity. Very recently, proton intercalation was evidenced mainly using nuclear resonance spectroscopy. Nonetheless, the chemical species inserted into the host structure during the reduction reaction are still unclear (i.e., Mg(H2O)n2+, Mg(solvent, H2O)n2+, H+, H3O+, H2O, or any combination of these). To characterize the intercalated phase, the crystal structure of the magnesium-inserted phase of α-V2O5, electrochemically reduced in 0.5 M Mg(ClO4)2 + 2.0 M H2O in acetonitrile, was solved for the first time by the ab initio method using powder synchrotron X-ray diffraction data. The structure was tripled along the b-axis from that of the pristine V2O5 structure. No appreciable densities of elements were observed other than vanadium and oxygen atoms in the electron density maps, suggesting that the inserted species have very low occupancies in the three large cavity sites of the structure. Examination of the interatomic distances around the cavity sites suggested that H2O, H3O+, or solvated magnesium ions are too big for the cavities, leading us to confirm that the intercalated species are single Mg2+ ions or protons. The general formula of magnesium-inserted V2O5 is Mg0.17HxV2O5, (0.66 ≤ x ≤ 1.16). Finally, density functional theory calculations were carried out to locate the most plausible atomic sites of the magnesium and protons, enabling us to complete the structure modeling. This work provides an explicit answer to the question about Mg intercalation into α-V2O5.

5.
Inorg Chem ; 55(7): 3294-301, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26967205

RESUMEN

The crystal structures and electrochemical properties of ZnxMo6S8 Chevrel phases (x = 1, 2) prepared via electrochemical Zn(2+)-ion intercalation into the Mo6S8 host material, in an aqueous electrolyte, were characterized. Mo6S8 [trigonal, R3̅, a = 9.1910(6) Å, c = 10.8785(10) Å, Z = 3] was first prepared via the chemical extraction of Cu ions from Cu2Mo6S8, which was synthesized via a solid-state reaction for 24 h at 1000 °C. The electrochemical zinc-ion insertion into Mo6S8 occurred stepwise, and two separate potential regions were depicted in the cyclic voltammogram (CV) and galvanostatic profile. ZnMo6S8 first formed from Mo6S8 in the higher-voltage region around 0.45-0.50 V in the CV, through a pseudo two-phase reaction. The inserted zinc ions occupied the interstitial sites in cavities surrounded by sulfur atoms (Zn1 sites). A significant number of the inserted zinc ions were trapped in these Zn1 sites, giving rise to the first-cycle irreversible capacity of ∼46 mAh g(-1) out of the discharge capacity of 134 mAh g(-1) at a rate of 0.05 C. In the lower-voltage region, further insertion occurred to form Zn2Mo6S8 at around 0.35 V in the CV, also involving a two-phase reaction. The electrochemical insertion and extraction into the Zn2 sites appeared to be relatively reversible and fast. The crystal structures of Mo6S8, ZnMo6S8, and Zn2Mo6S8 were refined using X-ray Rietveld refinement techniques, while the new structure of Zn2Mo6S8 was determined for the first time in this study using the technique of structure determination from powder X-ray diffraction data. With the zinc ions inserted into Mo6S8 forming Zn2Mo6S8, the cell volume and a parameter increased by 5.3% and 5.9%, respectively, but the c parameter decreased by 6.0%. The average Mo-Mo distance in the Mo6 cluster decreased from 2.81 to 2.62 Å.

6.
Angew Chem Int Ed Engl ; 55(33): 9634-8, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27378653

RESUMEN

All-solid-state sodium-ion batteries that operate at room temperature are attractive candidates for use in large-scale energy storage systems. However, materials innovation in solid electrolytes is imperative to fulfill multiple requirements, including high conductivity, functional synthesis protocols for achieving intimate ionic contact with active materials, and air stability. A new, highly conductive (1.1 mS cm(-1) at 25 °C, Ea =0.20 eV) and dry air stable sodium superionic conductor, tetragonal Na3 SbS4 , is described. Importantly, Na3 SbS4 can be prepared by scalable solution processes using methanol or water, and it exhibits high conductivities of 0.1-0.3 mS cm(-1) . The solution-processed, highly conductive solidified Na3 SbS4 electrolyte coated on an active material (NaCrO2 ) demonstrates dramatically improved electrochemical performance in all-solid-state batteries.

7.
ChemSusChem ; 12(5): 1069-1075, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30577084

RESUMEN

VOPO4 ⋅2 H2 O is demonstrated as a cathode material for potassium-ion batteries in 0.6 m KPF6 in ethylene carbonate/diethyl carbonate, and its distinct exchange reaction mechanism between potassium and crystal water is reported. In an anhydrous electrolyte, the cathode shows an initial capacity of approximately 90 mAh g-1 , with poor capacity retention (32 % after 50 cycles). In contrast, the capacity retention dramatically improved (86 % after 100 cycles) in a wet electrolyte containing 0.1 m of additive water. VOPO4 ⋅2 H2 O contains two types of water (structural and crystal). Upon discharge, potassium ions are intercalated whereas the crystal water is simultaneously de-intercalated from the structure. Upon charging, a completely reverse reaction takes place in the wet electrolyte, resulting in high stability of the host structure and excellent cyclability. However, in the anhydrous electrolyte, some portion of the extracted crystal water molecules cannot be reinserted into the host structure because they are distributed over the anhydrous electrolyte. Keeping some concentration of water in the electrolyte turns out to be was the key to achieving such high reversibility. The potassium ions (90 %) and proton or hydronium ions (10 %) seem to be co-intercalated in the wet electrolyte. This work provides a general insight into the intercalation mechanism of crystal-water-containing host materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA