Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Neuroendocrinol ; 57: 100837, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32240664

RESUMEN

The gonadal steroids estradiol and progesterone exert critical suppressive and stimulatory actions upon the brain to control gonadotropin-releasing hormone (GnRH) release that drives the estrous/menstrual cycle. A simple model for understanding these interactions is proposed in which the activity of the "GnRH pulse generator" is restrained by post-ovulation progesterone secretion to bring about the estrus/luteal phase slowing of pulsatile gonadotropin release, while the activity of the "GnRH surge generator" is primed by the rising follicular phase levels of estradiol to generate the pre-ovulatory surge. The physiological fluctuations in estradiol levels across the cycle are considered to clamp the GnRH pulse generator output at a constant level. Independent pulse and surge generator circuitries regulate the excitability of different compartments of the GnRH neuron. As such, GnRH secretion through the cycle is determined simply by the summed influence of the estradiol-clamped, progesterone-regulated pulse and estradiol-regulated surge generators on the GnRH neuron.


Asunto(s)
Ciclo Estral/fisiología , Retroalimentación Fisiológica/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Ciclo Menstrual/fisiología , Modelos Biológicos , Animales , Estradiol/farmacología , Estradiol/fisiología , Retroalimentación Fisiológica/efectos de los fármacos , Femenino , Humanos , Periodicidad , Progesterona/farmacología , Progesterona/fisiología
2.
Neuroendocrinology ; 110(7-8): 671-687, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31630145

RESUMEN

INTRODUCTION: The central regulation of fertility is carefully coordinated with energy homeostasis, and infertility is frequently the outcome of energy imbalance. Neurons in the hypothalamus expressing neuropeptide Y and agouti-related peptide (NPY/AgRP neurons) are strongly implicated in linking metabolic cues with fertility regulation. OBJECTIVE: We aimed here to determine the impact of selectively activating NPY/AgRP neurons, critical regulators of metabolism, on the activity of luteinizing hormone (LH) pulse generation. METHODS: We employed a suite of in vivo optogenetic and chemogenetic approaches with serial measurements of LH to determine the impact of selectively activating NPY/AgRP neurons on dynamic LH secretion. In addition, electrophysiological studies in ex vivo brain slices were employed to ascertain the functional impact of activating NPY/AgRP neurons on gonadotropin-releasing hormone (GnRH) neurons. RESULTS: Selective activation of NPY/AgRP neurons significantly decreased post-castration LH secretion. This was observed in males and females, as well as in prenatally androgenized females that recapitulate the persistently elevated LH pulse frequency characteristic of polycystic ovary syndrome (PCOS). Reduced LH pulse frequency was also observed when optogenetic stimulation was restricted to NPY/AgRP fiber projections surrounding GnRH neuron cell bodies in the rostral preoptic area. However, electrophysiological studies in ex vivo brain slices indicated these effects were likely to be indirect. CONCLUSIONS: These data demonstrate the ability of NPY/AgRP neuronal signaling to modulate and, specifically, reduce GnRH/LH pulse generation. The findings suggest a mechanism by which increased activity of this hunger circuit, in response to negative energy balance, mediates impaired fertility in otherwise reproductively fit states, and highlight a potential mechanism to slow LH pulsatility in female infertility disorders, such as PCOS, that are associated with hyperactive LH secretion.


Asunto(s)
Hambre/fisiología , Hormona Luteinizante/metabolismo , Red Nerviosa/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Red Nerviosa/patología , Neuronas/metabolismo , Neuronas/patología , Neuropéptido Y/metabolismo , Síndrome del Ovario Poliquístico/complicaciones , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Síndrome del Ovario Poliquístico/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Efectos Tardíos de la Exposición Prenatal/psicología , Vías Secretoras/fisiología
3.
Proc Natl Acad Sci U S A ; 114(47): E10216-E10223, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109258

RESUMEN

The pulsatile release of luteinizing hormone (LH) is critical for mammalian fertility. However, despite several decades of investigation, the identity of the neuronal network generating pulsatile reproductive hormone secretion remains unproven. We use here a variety of optogenetic approaches in freely behaving mice to evaluate the role of the arcuate nucleus kisspeptin (ARNKISS) neurons in LH pulse generation. Using GCaMP6 fiber photometry, we find that the ARNKISS neuron population exhibits brief (∼1 min) synchronized episodes of calcium activity occurring as frequently as every 9 min in gonadectomized mice. These ARNKISS population events were found to be near-perfectly correlated with pulsatile LH secretion. The selective optogenetic activation of ARNKISS neurons for 1 min generated pulses of LH in freely behaving mice, whereas inhibition with archaerhodopsin for 30 min suppressed LH pulsatility. Experiments aimed at resetting the activity of the ARNKISS neuron population with halorhodopsin were found to reset ongoing LH pulsatility. These observations indicate the ARNKISS neurons as the long-elusive hypothalamic pulse generator driving fertility.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Luteinizante/metabolismo , Red Nerviosa/metabolismo , Neuronas/metabolismo , Potenciales de Acción , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/diagnóstico por imagen , Femenino , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética/métodos , Periodicidad , Fotometría/métodos , Imagen de Colorante Sensible al Voltaje
4.
J Neurosci ; 38(28): 6310-6322, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29899026

RESUMEN

A population of kisspeptin-GABA coexpressing neurons located in the rostral periventricular area of the third ventricle (RP3V) is believed to activate gonadotropin-releasing hormone (GnRH) neurons to generate the luteinizing hormone (LH) surge triggering ovulation. Selective optogenetic activation of RP3V kisspeptin (RP3VKISS) neurons in female mice for >30 s and ≥10 Hz in either a continuous or bursting mode was found to reliably generate a delayed and long-lasting activation of GnRH neuron firing in brain slices. Optogenetic activation of RP3VKISS neurons in vivo at 10 Hz generated substantial increments in LH secretion of similar amplitude to the endogenous LH surge. Studies using GABAA receptor antagonists and optogenetic activation of RP3V GABA (RP3VGABA) neurons in vitro revealed that low-frequency (2 Hz) stimulation generated immediate and transient GABAA receptor-mediated increases in GnRH neuron firing, whereas higher frequencies (10 Hz) recruited the long-lasting activation observed following RP3VKISS neuron stimulation. In vivo, 2 Hz activation of RP3VGABA neurons did not alter LH secretion, whereas 10 Hz stimulation evoked a sustained large increase in LH identical to RP3VKISS neuron activation. Optogenetic activation of RP3VKISS neurons in which kisspeptin had been deleted did not alter LH secretion. These studies demonstrate the presence of parallel transmission streams from RP3V neurons to GnRH neurons that are frequency dependent and temporally distinct. This comprises a rapid and transient GABAA receptor-mediated activation and a slower onset kisspeptin-mediated stimulation of long duration. At the time of the LH surge, GABA release appears to be functionally redundant with the neuropeptide kisspeptin being the dominant cotransmitter influencing GnRH neuron output.SIGNIFICANCE STATEMENT Miscommunication between the brain and ovaries is thought to represent a major cause of infertility in humans. Studies in rodents suggest that a population of neurons located in the rostral periventricular area of the third ventricle (RP3V) are critical for activating the gonadotropin-releasing hormone (GnRH) neurons that trigger ovulation. The present study provides evidence that an RP3V neuron population coexpressing kisspeptin and GABA provides a functionally important excitatory input to GnRH neurons at the time of ovulation. This neural input releases GABA and/or kisspeptin in the classical frequency dependent and temporally distinct nature of amino acid-neuropeptide cotransmission. Unusually, however, the neuropeptide stream is found to be functionally dominant in activating GnRH neurons at the time of ovulation.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neuronas/fisiología , Ovulación/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Femenino , Hormona Luteinizante/metabolismo , Ratones , Tercer Ventrículo
5.
J Neurosci ; 37(12): 3342-3351, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28235895

RESUMEN

Fast cell-to-cell communication in the brain is achieved by action potential-dependent synaptic release of neurotransmitters. The fast kinetics of transmitter release are determined by transient Ca2+ elevations in presynaptic nerve terminals. Neuromodulators have previously been shown to regulate transmitter release by inhibiting presynaptic Ca2+ influx. Few studies to date have demonstrated the opposite, that is, neuromodulators directly driving presynaptic Ca2+ rises and increases in nerve terminal excitability. Here we use GCaMP Ca2+ imaging in brain slices from mice to address how nerve terminal Ca2+ is controlled in gonadotropin-releasing hormone (GnRH) neurons via action potentials and neuromodulators. Single spikes and bursts of action potentials evoked fast, voltage-gated Ca2+ channel-dependent Ca2+ elevations. In contrast, brief exposure to the neuropeptide kisspeptin-evoked long-lasting Ca2+ plateaus that persisted for tens of minutes. Neuropeptide-mediated Ca2+ elevations were independent of action potentials, requiring Ca2+ entry via voltage-gated Ca2+ channels and transient receptor potential channels in addition to release from intracellular store mechanisms. Together, these data reveal that neuromodulators can exert powerful and long-lasting regulation of nerve terminal Ca2+ independently from actions at the soma. Thus, GnRH nerve terminal function is controlled over disparate timescales via both classical spike-dependent and nonclassical neuropeptide-dependent mechanisms.SIGNIFICANCE STATEMENT Nerve terminals are highly specialized regions of a neuron where neurotransmitters and neurohormones are released. Many neuroendocrine neurons release neurohormones in long-duration bursts of secretion. To understand how this is achieved, we have performed live Ca2+ imaging in the nerve terminals of gonadotropin-releasing hormone neurons. We find that bursts of action potentials and local neuropeptide signals are both capable of evoking large increases in nerve terminal Ca2+ Increases in Ca2+ driven by spike bursts last seconds; however, the increases in nerve terminal Ca2+ driven by neuropeptides can persist for tens of minutes. These findings reveal new mechanisms by which neuroendocrine nerve terminal Ca2+ can be controlled in the brain.


Asunto(s)
Potenciales de Acción/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Neuropéptidos/metabolismo , Terminales Presinápticos/fisiología , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Plasticidad Neuronal/fisiología , Factores de Tiempo
6.
Proc Natl Acad Sci U S A ; 112(42): 13109-14, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26443858

RESUMEN

Normal reproductive functioning in mammals depends upon gonadotropin-releasing hormone (GnRH) neurons generating a pulsatile pattern of gonadotropin secretion. The neural mechanism underlying the episodic release of GnRH is not known, although recent studies have suggested that the kisspeptin neurons located in the arcuate nucleus (ARN) may be involved. In the present experiments we expressed channelrhodopsin (ChR2) in the ARN kisspeptin population to test directly whether synchronous activation of these neurons would generate pulsatile luteinizing hormone (LH) secretion in vivo. Characterization studies showed that this strategy targeted ChR2 to 70% of all ARN kisspeptin neurons and that, in vitro, these neurons were activated by 473-nm blue light with high fidelity up to 30 Hz. In vivo, the optogenetic activation of ARN kisspeptin neurons at 10 and 20 Hz evoked high amplitude, pulse-like increments in LH secretion in anesthetized male mice. Stimulation at 10 Hz for 2 min was sufficient to generate repetitive LH pulses. In diestrous female mice, only 20-Hz activation generated significant increments in LH secretion. In ovariectomized mice, 5-, 10-, and 20-Hz activation of ARN kisspeptin neurons were all found to evoke LH pulses. Part of the sex difference, but not the gonadal steroid dependence, resulted from differential pituitary sensitivity to GnRH. Experiments in kisspeptin receptor-null mice, showed that kisspeptin was the critical neuropeptide underlying the ability of ARN kisspeptin neurons to generate LH pulses. Together these data demonstrate that synchronized activation of the ARN kisspeptin neuronal population generates pulses of LH.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Neuronas/metabolismo , Optogenética , Animales , Núcleo Arqueado del Hipotálamo/citología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Proc Natl Acad Sci U S A ; 111(51): 18387-92, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25489105

RESUMEN

The mechanisms responsible for generating the pulsatile release of gonadotropins from the pituitary gland are unknown. We develop here a methodology in mice for controlling the activity of the gonadotropin-releasing hormone (GnRH) neurons in vivo to establish the minimal parameters of activation required to evoke a pulse of luteinizing hormone (LH) secretion. Injections of Cre-dependent channelrhodopsin (ChR2)-bearing adeno-associated virus into the median eminence of adult GnRH-Cre mice resulted in the selective expression of ChR2 in hypophysiotropic GnRH neurons. Acute brain slice experiments demonstrated that ChR2-expressing GnRH neurons could be driven to fire with high spike fidelity with blue-light stimulation frequencies up to 40 Hz for periods of seconds and up to 10 Hz for minutes. Anesthetized, ovariectomized mice had optical fibers implanted in the vicinity of GnRH neurons within the rostral preoptic area. Optogenetic activation of GnRH neurons for 30-s to 5-min time periods over a range of different frequencies revealed that 10 Hz stimulation for 2 min was the minimum required to generate a pulse-like increment of LH. The same result was found for optical activation of GnRH projections in the median eminence. Increases in LH secretion were compared with endogenous LH pulse parameters measured from ovariectomized mice. Driving GnRH neurons to exhibit simultaneous burst firing was ineffective at altering LH secretion. These observations provide an insight into how GnRH neurons generate pulsatile LH secretion in vivo.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Hormona Luteinizante/metabolismo , Neuronas/metabolismo , Optogenética , Animales , Femenino , Ratones , Ratones Endogámicos C57BL
8.
J Neurosci ; 35(43): 14533-43, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26511244

RESUMEN

Circulating estradiol exerts a profound influence on the activity of the gonadotropin-releasing hormone (GnRH) neuronal network controlling fertility. Using genetic strategies enabling neuron-specific deletion of estrogen receptor α (Esr1), we examine here whether estradiol-modulated GABA and glutamate transmission are critical for the functioning of the GnRH neuron network in the female mouse. Using Vgat- and Vglut2-ires-Cre knock-in mice and ESR1 immunohistochemistry, we demonstrate that subpopulations of GABA and glutamate neurons throughout the limbic forebrain express ESR1, with ESR1-GABAergic neurons being more widespread and numerous than ESR1-glutamatergic neurons. We crossed Vgat- and Vglut2-ires-Cre mice with an Esr1(lox/lox) line to generate animals with GABA-neuron-specific or glutamate-neuron-specific deletion of Esr1. Vgat-ires-Cre;Esr1(lox/lox) mice were infertile, with abnormal estrous cycles, and exhibited a complete failure of the estrogen positive feedback mechanism responsible for the preovulatory GnRH surge. However, puberty onset and estrogen negative feedback were normal. Vglut2-ires-Cre;Esr1(lox/lox) mice were also infertile but displayed a wider range of deficits, including advanced puberty onset, abnormal negative feedback, and abolished positive feedback. Whereas <25% of preoptic kisspeptin neurons expressed Cre in Vgat- and Vglut2-ires-Cre lines, ∼70% of arcuate kisspeptin neurons were targeted in Vglut2-ires-Cre;Esr1(lox/lox) mice, possibly contributing to their advanced puberty phenotype. These observations show that, unexpectedly, ESR1-GABA neurons are only essential for the positive feedback mechanism. In contrast, we reveal the key importance of ESR1 in glutamatergic neurons for multiple estrogen feedback loops within the GnRH neuronal network required for fertility in the female mouse.


Asunto(s)
Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/fisiología , Estrógenos/fisiología , Retroalimentación Fisiológica/fisiología , Fertilidad/genética , Fertilidad/fisiología , Glutamatos/fisiología , Neuronas/metabolismo , Maduración Sexual/genética , Maduración Sexual/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Receptor alfa de Estrógeno/biosíntesis , Ciclo Estral/genética , Ciclo Estral/fisiología , Femenino , Fase Folicular/genética , Fase Folicular/fisiología , Técnicas de Sustitución del Gen , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Kisspeptinas/fisiología , Sistema Límbico/metabolismo , Ratones , Prosencéfalo/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
9.
J Neurosci ; 35(17): 6881-92, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25926463

RESUMEN

The cellular mechanisms governing the impact of the central circadian clock on neuronal networks are incompletely understood. We examine here the influence of the suprachiasmatic nucleus output neuropeptide arginine-vasopressin (AVP) on the activity of preoptic area kisspeptin neurons. These cells integrate circadian and hormonal signals within the neuronal network that regulates fertility in females. Electrophysiological recordings in brain slices from kisspeptin-GFP mice showed that AVP dose-dependently increased the firing rate of most kisspeptin neurons. These actions were mediated directly at the kisspeptin neuron. Experiments in mice expressing the calcium indicator GCaMP3 in kisspeptin neurons enabled simultaneous monitoring of intracellular calcium concentrations ([Ca(2+)]i) in multiple cells and revealed that AVP increased [Ca(2+)]i in >80% of diestrous kisspeptin neurons via a mechanism involving voltage-gated calcium channels. We next examined whether AVP signaling in kisspeptin neurons was time and ovarian cycle dependent. AVP exerted the same effects on diestrous and proestrous days of the ovarian cycle, whether hours before [zeitgeber time 4 (ZT4)-ZT6] or just before (ZT10) the expected time of the proestrous preovulatory luteinizing hormone surge. Remarkably, however, AVP signaling was critically dependent on circulating ovarian steroids as AVP no longer excited preoptic kisspeptin neurons in ovariectomized mice, an effect that was fully restored by estradiol treatment. Together, these studies show that AVP exerts a potent and direct stimulatory influence upon the electrical activity and [Ca(2+)]i of most preoptic kisspeptin neurons. Unexpectedly, estrogen is found to permit circadian AVP signaling at preoptic kisspeptin neurons rather than dynamically modulate its activity throughout the estrous cycle.


Asunto(s)
Arginina Vasopresina/farmacología , Estrógenos/farmacología , Kisspeptinas/metabolismo , Red Nerviosa/fisiología , Neuronas/efectos de los fármacos , Área Preóptica/citología , Transducción de Señal/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Arginina Vasopresina/metabolismo , Calcio/metabolismo , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Ciclo Estral/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Kisspeptinas/genética , Ratones , Ovariectomía , Bloqueadores de los Canales de Sodio/farmacología , Núcleo Supraquiasmático/citología , Tetrodotoxina/farmacología
10.
Front Neuroendocrinol ; 36: 15-27, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24907402

RESUMEN

Kisspeptin neurons are critical components of the neuronal network controlling the activity of the gonadotropin-releasing hormone (GnRH) neurons. A variety of genetically-manipulated mouse models have recently facilitated the study of the electrical activity of the two principal kisspeptin neuron populations located in the rostral periventricular area of the third ventricle (RP3V) and arcuate nucleus (ARN) in acute brain slices. We discuss here the mechanisms and pathways through which kisspeptin neurons regulate GnRH neuron activity. We then examine the different kisspeptin-green fluorescent protein mouse models being used for kisspeptin electrophysiology and the data obtained to date for RP3V and ARN kisspeptin neurons. In light of these new observations on the spontaneous firing rates, intrinsic membrane properties, and neurotransmitter regulation of kisspeptin neurons, we speculate on the physiological roles of the different kisspeptin populations.


Asunto(s)
Encéfalo/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Animales , Fertilidad/fisiología , Ratones
11.
J Neurosci ; 34(46): 15297-305, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25392497

RESUMEN

Sex differences in brain function underlie robust differences between males and females in both normal and disease states. Although alternative mechanisms exist, sexual differentiation of the male mammalian brain is initiated predominantly by testosterone secreted by the testes during the perinatal period. Despite considerable advances in understanding how testosterone and its metabolite estradiol sexually differentiate the brain, little is known about the mechanism that generates the male-specific perinatal testosterone surge. In mice, we show that a male-specific activation of GnRH neurons occurs 0-2 h following birth and that this correlates with the male-specific surge of testosterone occurring up to 5 h after birth. The necessity of GnRH signaling for the sexually differentiating effects of the perinatal testosterone surge was demonstrated by the persistence of female-like brain characteristics in adult male, GnRH receptor knock-out mice. Kisspeptin neurons have recently been identified to be potent, direct activators of GnRH neurons. We demonstrate that a population of kisspeptin neurons appears in the preoptic area of only the male between E19 and P1. The importance of kisspeptin inputs to GnRH neurons for the process of sexual differentiation was demonstrated by the lack of a normal neonatal testosterone surge, and disordered brain sexual differentiation of male mice in which the kisspeptin receptor was deleted selectively from GnRH neurons. These observations demonstrate the necessity of perinatal GnRH signaling for driving brain sexual differentiation and indicate that kisspeptin inputs to GnRH neurons are essential for this process to occur.


Asunto(s)
Hormona Liberadora de Gonadotropina/fisiología , Neuronas/fisiología , Área Preóptica/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Diferenciación Sexual/fisiología , Transducción de Señal , Animales , Animales Recién Nacidos , Femenino , Hormona Liberadora de Gonadotropina/genética , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Embarazo , Receptores Acoplados a Proteínas G/genética , Receptores de Kisspeptina-1 , Receptores LHRH/genética , Receptores LHRH/fisiología , Caracteres Sexuales , Testosterona/sangre , Tirosina 3-Monooxigenasa/metabolismo , Vasopresinas/metabolismo
12.
Front Neuroendocrinol ; 35(1): 31-41, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23978477

RESUMEN

Gonadotropin-releasing hormone (GnRH) is produced by a heterogenous neuronal population in the hypothalamus to control pituitary gonadotropin production and reproductive function in all mammalian species. Estradiol is a critical component for the communication between the gonads and the central nervous system. Resolving the mechanisms by which estradiol modulates GnRH neurons is critical for the understanding of how fertility is regulated. Extensive studies during the past decades have provided compelling evidence that estradiol has the potential to alter the intracellular signal transduction mechanisms. The common target of many signaling pathways is the phosphorylation of a key transcription factor, the cAMP response element binding protein (CREB). This review first addresses the aspects of estradiol action on CREB phosphorylation (pCREB) in GnRH neurons. Secondly, this review considers the receptors and signaling network that regulates estradiol's action on pCREB within GnRH neurons and finally it summarizes the physiological significance of CREB to estrogen feedback.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Neuronas/metabolismo , Animales , Estrógenos/metabolismo , Humanos , Fosforilación/fisiología , Fosfotransferasas/metabolismo
13.
Neuroendocrinology ; 102(1-2): 1-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25300776

RESUMEN

Gonadotropin-releasing hormone (GnRH) neurons integrate synaptic information in their dendrites in order to precisely control GnRH secretion and hence fertility. Recent discoveries concerning the structure and function of GnRH neuron dendrites have shed new light on the control of GnRH neuron excitability and GnRH secretion. This work suggests that GnRH neurons have a unique projection to the median eminence that possesses both dendritic and axonal properties. We propose that this 'dendron' projection allows GnRH neurons to multitask and integrate information in ways that would not be possible in a classically envisioned axon projection.


Asunto(s)
Dendritas/fisiología , Hormona Liberadora de Gonadotropina/fisiología , Neuronas/fisiología , Animales , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Eminencia Media/citología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/citología
14.
J Neurosci ; 33(22): 9394-401, 2013 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-23719807

RESUMEN

The gonadotropin-releasing hormone (GnRH) neurons are the key cells regulating fertility in all mammalian species. The scattered distribution of these neurons has made investigation of their properties extremely difficult and the key goal of recording their electrical activity in vivo near impossible. The caudal-most extension of the GnRH neuron continuum brings some cells very close to the base of the brain at the level of the anterior hypothalamic area. Taking insight from this, we developed an experimental procedure in anesthetized GnRH-GFP mice that allows the electrical activity of these GnRH neurons to be recorded in vivo. On-cell recordings revealed that the majority of GnRH neurons (86%) were spontaneously active, exhibiting a range of firing patterns, although only a minority (15%) exhibited burst firing. Mean firing frequencies ranged from 0.06 to 3.65 Hz, with the most common interspike interval being ~500 ms. All GnRH neurons tested were activated by AMPA and kisspeptin. Whereas the GABAA receptor agonist muscimol evoked excitatory, inhibitory, or mixed effects on GnRH neuron firing, the GABAA receptor antagonist picrotoxin resulted in a consistent suppression of firing. These observations represent the first electrical recordings of GnRH neurons in vivo. They reveal that GnRH neurons in vivo exhibit considerable heterogeneity in their firing patterns with both similarities and differences to firing in vitro. These variable patterns of firing in vivo are found to be critically dependent upon ongoing GABAA receptor signaling.


Asunto(s)
Hormona Liberadora de Gonadotropina/fisiología , Neuronas/fisiología , Receptores de GABA-A/fisiología , Transducción de Señal/fisiología , Animales , Electrodos Implantados , Fenómenos Electrofisiológicos/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Kisspeptinas/farmacología , Masculino , Ratones , Muscimol/farmacología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Pentobarbital/farmacología , Faringe/inervación , Faringe/fisiología , Picrotoxina/farmacología , Receptores de GABA-A/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Tetrodotoxina/farmacología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
15.
J Neurosci ; 33(26): 10828-39, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-23804103

RESUMEN

Circulating gonadal steroid hormones are thought to modulate a wide range of brain functions. However, the effects of steroid fluctuations through the ovarian cycle on the intrinsic properties of neurons are not well understood. We examined here whether gonadal steroids modulated the excitability of kisspeptin neurons located in the rostral periventricular region of the third ventricle (RP3V) of female mice. These cells are strongly implicated in sensing the high levels of circulating estradiol on proestrus to activate gonadotropin-releasing hormone (GnRH) neurons that, in turn, trigger ovulation. Electrophysiological studies were undertaken in brain slices from ovariectomized (OVX), diestrous, and proestrous kisspeptin-GFP mice. RP3V kisspeptin neurons exhibited marked changes in the hyperpolarization-evoked depolarizing sag and rebound firing across these groups. The hyperpolarization-activated current Ih was identified to be responsible for the depolarizing sag and was increased across OVX → diestrous → proestrous mice. Experiments in OVX mice given estradiol replacement identified an estradiol-dependent increase in Ih within RP3V kisspeptin neurons. Ih in these cells was found to contribute to their subthreshold membrane properties and the dynamics of rebound firing following hyperpolarizing stimuli in an estrous cycle-dependent manner. Only a minor role was found for Ih in modulating the spontaneous burst firing of RP3V kisspeptin neurons. These observations identify Ih as an ionic current that is regulated in a cyclical manner by circulating estradiol within the female brain, and suggest that such plasticity in the intrinsic properties of RP3V kisspeptin neurons may contribute to the generation of the preovulatory GnRH surge.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Estradiol/fisiología , Ciclo Estral/fisiología , Kisspeptinas/fisiología , Neuronas/fisiología , Canales de Potasio/fisiología , Área Preóptica/fisiología , Animales , Interpretación Estadística de Datos , Fenómenos Electrofisiológicos , Femenino , Hormona Liberadora de Gonadotropina/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ovariectomía , Técnicas de Placa-Clamp , Área Preóptica/citología
16.
J Neurosci ; 33(31): 12689-97, 2013 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-23904605

RESUMEN

Information processing by neurons has been traditionally envisioned to occur in discrete neuronal compartments. Specifically, dendrites receive and integrate synaptic inputs while axons initiate and conduct spikes to distal neuronal targets. We report here in mice, using morphological reconstructions and electrophysiology, that the gonadotropin-releasing hormone (GnRH) neurons that control mammalian fertility do not conform to this stereotype and instead possess a single projection structure that functions simultaneously as an axon and dendrite. Specifically, we show that the GnRH neuron projection to the median eminence to control pituitary hormone secretion possesses a spike initiation site and conducts action potentials while also exhibiting spines and synaptic appositions along its entire length. Classical axonal or dendritic markers are not detectable in the projection process. Activation of ionotropic glutamate and/or GABA receptors along the GnRH neuron projection is capable of depolarizing the membrane potential and initiating action potentials. In addition, focal glutamate application to the projection is able to regulate the width of propagating spikes. These data demonstrate that GnRH neurons elaborate a previously uncharacterized neuronal projection that functions simultaneously as an axon and dendrite. This structure, termed a "dendron," greatly expands the dynamic control of GnRH secretion into the pituitary portal system to regulate fertility.


Asunto(s)
Axones/fisiología , Dendritas/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Neuronas/citología , Neuronas/metabolismo , Animales , Biotina/metabolismo , Vasos Sanguíneos/metabolismo , Channelrhodopsins , GABAérgicos/farmacología , Galectina 1/metabolismo , Ácido Glutámico/farmacología , Hormona Liberadora de Gonadotropina/genética , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Masculino , Eminencia Media/citología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Estimulación Luminosa , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Proteínas tau/metabolismo
17.
Neuroendocrinology ; 100(2-3): 191-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25301053

RESUMEN

Kisspeptin-Gpr54 signaling is critical for regulating the activity of gonadotropin-releasing hormone (GnRH) neurons in mammals. Previous studies have shown that the negative feedback mechanism is disrupted in global Gpr54-null mutants. The present investigation aimed to determine (1) if a lack of cyclical estrogen exposure of the GnRH neuronal network in the life-long hypogonadotropic Gpr54-null mice contributed to their failed negative feedback mechanism and (2) the cellular location of disrupted kisspeptin-Gpr54 signaling. Plasma luteinizing hormone (LH) concentrations were determined in individual adult female mice when intact, following ovariectomy (OVX) and in response to an acute injection of 17ß-estradiol (E2). Control mice exhibited a characteristic rise in LH after OVX that was suppressed by acute E2. Global Gpr54-null mice failed to exhibit any post-OVX increase in LH or response to E2. Adult female global Gpr54-null mice given a cyclical regimen of estradiol for three cycles prior to OVX also failed to exhibit any post-OVX increase in LH or response to E2. To address whether Gpr54 signaling at the GnRH neuron itself was necessary for the failed response to OVX in global Gpr54-null animals, adult female mice with a GnRH neuron-selective deletion of Gpr54 were examined. These mice also failed to exhibit any post-OVX increase in LH or response to E2. These experiments demonstrate defective negative feedback in global Gpr54-null mice that cannot be attributed to a lack of prior exposure of the GnRH neuronal network to cyclical estradiol. The absence of negative feedback in GnRH neuron-selective Gpr54-null mice demonstrates the necessity of direct kisspeptin signaling at the GnRH neuron for this mechanism to occur.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Neuronas/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Análisis Químico de la Sangre , Estradiol/administración & dosificación , Estrógenos/administración & dosificación , Estrógenos/metabolismo , Retroalimentación Fisiológica/efectos de los fármacos , Femenino , Hormona Luteinizante/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Ovariectomía , Periodicidad , Hipófisis/efectos de los fármacos , Hipófisis/fisiología , Radioinmunoensayo , Receptores Acoplados a Proteínas G/genética , Receptores de Kisspeptina-1
18.
Endocrinology ; 165(3)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38279940

RESUMEN

The arcuate nucleus kisspeptin (ARNKISS) neurons represent the GnRH pulse generator that likely drives pulsatile gonadotropin secretion in all mammals. Using an improved GCaMP fiber photometry system enabling long-term continuous recordings, we aimed to establish a definitive profile of ARNKISS neuronal activity across the murine estrous cycle. As noted previously, a substantial reduction in the frequency of ARNKISS neuron synchronization events (SEs) occurs on late proestrus and extends into estrus. The SE amplitude remains constant throughout the cycle. During metestrus, we unexpectedly detected many multipeak SEs where many SEs occurred rapidly, within 160 seconds of each other. By applying a machine learning-based, k-means clustering analysis, we were further able to detect substantial within-stage variability in the patterns of pulse generator activity. Estrous cycle-dependent changes in SE activity occurred around the time of lights on and off. We also find that a mild stressor such as vaginal lavage reduces ARNKISS neuron SE frequency for up to 3 hours. These observations provide a comprehensive account of ARNKISS neuron activity across the estrous cycle, highlight a new pattern of multipeak SE activity, and introduce a new k-means clustering approach for analyzing ARNKISS neuron population behavior.


Asunto(s)
Hormona Liberadora de Gonadotropina , Hormona Luteinizante , Animales , Femenino , Ratones , Núcleo Arqueado del Hipotálamo/metabolismo , Ciclo Estral/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neuronas/metabolismo
19.
J Neurosci ; 32(1): 151-8, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22219278

RESUMEN

Gonadotropin-releasing hormone (GnRH) neurons are the final output neurons in a complex neuronal network that regulates fertility. The morphology of GnRH neuron dendrites is very different to other central neurons in that they are very long, thin, and unbranched. To study the function of these dendrites, we have used Na(+) and Ca(2+) imaging in combination with dual soma and dendrite electrical recordings in brain slices from GnRH-GFP mice. Here, we show that GnRH neurons actively propagate Na(+) spikes throughout their dendrites. Multisite dendritic recordings confirmed that these spikes were observed in one of the dendrites before the soma in the great majority of neurons tested. Na(+) imaging experiments revealed that the initial 150 µm of dendrite has a higher density of functional Na(+) channels than more distal regions, suggesting that this region of dendrite is highly excitable and may be the site of spike initiation. Finally, we show that the depolarization from dendritic spikes opens voltage-gated Ca(2+) channels giving rise to dendritic Ca(2+) transients. Together, these findings suggest that the proximal dendrites of GnRH neurons are highly excitable and are likely to be the site of action potential initiation in these neurons.


Asunto(s)
Potenciales de Acción/fisiología , Dendritas/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Neuronas/fisiología , Área Preóptica/fisiología , Animales , Canales de Calcio/fisiología , Señalización del Calcio/fisiología , Dendritas/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Área Preóptica/citología , Área Preóptica/metabolismo , Canales de Sodio/fisiología
20.
J Neurosci ; 32(33): 11309-17, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22895714

RESUMEN

The mechanisms through which estradiol (E2) regulates gonadotropin-releasing hormone (GnRH) neurons to control fertility are unclear. Previous studies have demonstrated that E2 rapidly phosphorylates cAMP response element-binding protein (CREB) in GnRH neurons in vivo. In the present study, we used GnRH neuron-specific CREB-deleted mutant mice [GnRH-CREB knock-outs (KOs)] with and without global cAMP response element modulator (CREM) deletion (global-CREM KOs) to investigate the role of CREB in estrogen negative feedback on GnRH neurons. Evaluation of GnRH-CREB KO mice with and without global CREM deletion revealed normal puberty onset. Although estrus cycle length in adults was the same in controls and knock-out mice, cycles in mutant mice consisted of significantly longer periods of diestrus and less estrus. In GnRH-CREB KO mice, basal levels of luteinizing hormone (LH) and the postovariectomy increment in LH were normal, but the ability of E2 to rapidly suppress LH was significantly blunted. In contrast, basal and postovariectomy LH levels were abnormal in GnRH-CREB KO/global-CREM KO mice. Fecundity studies showed that GnRH-CREB KO with and without global CREM deletion were normal up to ∼9 months of age, at which time they became prematurely reproductively senescent. Morphological analysis of GnRH neurons revealed a significant reduction (p < 0.01) in GnRH somatic spine density of GnRH-CREB KO mice compared to control females. These observations implicate CREB within the GnRH neuron as an important target for E2's negative feedback actions. They also indicate that the rapid modulation of CREB by E2 is of physiological significance in the CNS.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Estrógenos/metabolismo , Retroalimentación Fisiológica/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Neuronas/metabolismo , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Envejecimiento/metabolismo , Análisis de Varianza , Animales , Proteína de Unión a CREB/deficiencia , Modulador del Elemento de Respuesta al AMP Cíclico/deficiencia , Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Espinas Dendríticas/metabolismo , Estradiol , Estrógenos/genética , Ciclo Estral/genética , Femenino , Fertilidad/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hormona Liberadora de Gonadotropina/deficiencia , Hipotálamo/citología , Hormona Luteinizante/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Neuronas/ultraestructura , Ovariectomía , Radioinmunoensayo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA