RESUMEN
Phosphate is an essential nutrient for life and is a critical component of bone formation, a major signaling molecule, and structural component of cell walls. Phosphate is also a component of high-energy compounds (i.e., AMP, ADP, and ATP) and essential for nucleic acid helical structure (i.e., RNA and DNA). Phosphate plays a central role in the process of mineralization, normal serum levels being associated with appropriate bone mineralization, while high and low serum levels are associated with soft tissue calcification. The serum concentration of phosphate and the total body content of phosphate are highly regulated, a process that is accomplished by the coordinated effort of two families of sodium-dependent transporter proteins. The three isoforms of the SLC34 family (SLC34A1-A3) show very restricted tissue expression and regulate intestinal absorption and renal excretion of phosphate. SLC34A2 also regulates the phosphate concentration in multiple lumen fluids including milk, saliva, pancreatic fluid, and surfactant. Both isoforms of the SLC20 family exhibit ubiquitous expression (with some variation as to which one or both are expressed), are regulated by ambient phosphate, and likely serve the phosphate needs of the individual cell. These proteins exhibit similarities to phosphate transporters in nonmammalian organisms. The proteins are nonredundant as mutations in each yield unique clinical presentations. Further research is essential to understand the function, regulation, and coordination of the various phosphate transporters, both the ones described in this review and the phosphate transporters involved in intracellular transport.
Asunto(s)
Transporte Biológico/fisiología , Epitelio/metabolismo , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato/fisiología , Animales , Transporte Biológico/genética , Homeostasis/fisiología , Humanos , Proteínas Cotransportadoras de Sodio-Fosfato/genéticaRESUMEN
SIGNIFICANCE STATEMENT: Kidneys are gatekeepers of systemic inorganic phosphate balance because they control urinary phosphate excretion. In yeast and plants, inositol hexakisphosphate kinases (IP6Ks) are central to regulate phosphate metabolism, whereas their role in mammalian phosphate homeostasis is mostly unknown. We demonstrate in a renal cell line and in mice that Ip6k1 and Ip6k2 are critical for normal expression and function of the major renal Na + /Pi transporters NaPi-IIa and NaPi-IIc. Moreover, Ip6k1/2-/- mice also show symptoms of more generalized kidney dysfunction. Thus, our results suggest that IP6Ks are essential for phosphate metabolism and proper kidney function in mammals. BACKGROUND: Inorganic phosphate is an essential mineral, and its plasma levels are tightly regulated. In mammals, kidneys are critical for maintaining phosphate homeostasis through mechanisms that ultimately regulate the expression of the Na + /Pi cotransporters NaPi-IIa and NaPi-IIc in proximal tubules. Inositol pyrophosphate 5-IP 7 , generated by IP6Ks, is a main regulator of phosphate metabolism in yeast and plants. IP6Ks are conserved in mammals, but their role in phosphate metabolism in vivo remains unexplored. METHODS: We used in vitro (opossum kidney cells) and in vivo (renal tubular-specific Ip6k1/2-/- mice) models to analyze the role of IP6K1/2 in phosphate homeostasis in mammals. RESULTS: In both systems, Ip6k1 and Ip6k2 are responsible for synthesis of 5-IP 7 . Depletion of Ip6k1/2 in vitro reduced phosphate transport and mRNA expression of Na + /Pi cotransporters, and it blunts phosphate transport adaptation to changes in ambient phosphate. Renal ablation of both kinases in mice also downregulates the expression of NaPi-IIa and NaPi-IIc and lowered the uptake of phosphate into proximal renal brush border membranes. In addition, the absence of Ip6k1 and Ip6k2 reduced the plasma concentration of fibroblast growth factor 23 and increased bone resorption, despite of which homozygous males develop hypophosphatemia. Ip6k1/2-/- mice also show increased diuresis, albuminuria, and hypercalciuria, although the morphology of glomeruli and proximal brush border membrane seemed unaffected. CONCLUSIONS: Depletion of renal Ip6k1/2 in mice not only altered phosphate homeostasis but also dysregulated other kidney functions.
Asunto(s)
Túbulos Renales , Fosfotransferasas (Aceptor del Grupo Fosfato) , Animales , Masculino , Ratones , Riñón/metabolismo , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Túbulos Renales/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismoRESUMEN
The Calcium-sensing receptor (CaSR) senses extracellular calcium, regulates parathyroid hormone (PTH) secretion, and has additional functions in various organs related to systemic and local calcium and mineral homeostasis. Familial hypocalciuric hypercalcemia type I (FHH1) is caused by heterozygous loss-of-function mutations in the CaSR gene, and is characterized by the combination of hypercalcemia, hypocalciuria, normal to elevated PTH, and facultatively hypermagnesemia and mild bone mineralization defects. To date, only heterozygous Casr null mice have been available as model for FHH1. Here we present a novel mouse FHH1 model identified in a large ENU-screen that carries an c.2579 T > A (p.Ile859Asn) variant in the Casr gene (CasrBCH002 mice). In order to dissect direct effects of the genetic variant from PTH-dependent effects, we crossed CasrBCH002 mice with PTH deficient mice. Heterozygous CasrBCH002 mice were fertile, had normal growth and body weight, were hypercalcemic and hypermagnesemic with inappropriately normal PTH levels and urinary calcium excretion replicating some features of FHH1. Hypercalcemia and hypermagnesemia were independent from PTH and correlated with higher expression of claudin 16 and 19 in kidneys. Likewise, reduced expression of the renal TRPM6 channel in CasrBCH002 mice was not dependent on PTH. In bone, mutations in Casr rescued the bone phenotype observed in Pth null mice by increasing osteoclast numbers and improving the columnar pattern of chondrocytes in the growth zone. In summary, CasrBCH002 mice represent a new model to study FHH1 and our results indicate that only a part of the phenotype is driven by PTH.
Asunto(s)
Hipercalcemia , Hormona Paratiroidea , Receptores Sensibles al Calcio , Animales , Masculino , Ratones , Calcio/metabolismo , Modelos Animales de Enfermedad , Hipercalcemia/genética , Hipercalcemia/metabolismo , Hipercalcemia/congénito , Ratones Endogámicos C57BL , Hormona Paratiroidea/metabolismo , Hormona Paratiroidea/genética , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismoRESUMEN
Intestinal absorption of phosphate is bimodal, consisting of a transcellular pathway and a poorly characterized paracellular mode, even though the latter one contributes to the bulk of absorption under normal dietary conditions. Claudin-3 (Cldn3), a tight junction protein present along the whole intestine in mice, has been proposed to tighten the paracellular pathway for phosphate. The aim of this work was to characterize the phosphate-related phenotype of Cldn3-deficient mice. Cldn3-deficient mice and wildtype littermates were fed standard diet or challenged for 3 days with high dietary phosphate. Feces, urine, blood, intestinal segments and kidneys were collected. Measurements included fecal, urinary, and plasma concentrations of phosphate and calcium, plasma levels of phosphate-regulating hormones, evaluation of trans- and paracellular phosphate transport across jejunum and ileum, and analysis of intestinal phosphate and calcium permeabilities. Fecal and urinary excretion of phosphate as well as its plasma concentration was similar in both genotypes, under standard and high-phosphate diet. However, Cldn3-deficient mice challenged with high dietary phosphate had a reduced urinary calcium excretion and increased plasma levels of calcitriol. Intact FGF23 concentration was also similar in both groups, regardless of the dietary conditions. We found no differences either in intestinal phosphate transport (trans- or paracellular) and phosphate and calcium permeabilities between genotypes. The intestinal expression of claudin-7 remained unaltered in Cldn3-deficient mice. Our data do not provide evidence for a decisive role of Cldn3 for intestinal phosphate absorption and phosphate homeostasis. In addition, our data suggest a novel role of Cldn3 in regulating calcitriol levels.
Asunto(s)
Claudina-3 , Factor-23 de Crecimiento de Fibroblastos , Absorción Intestinal , Fosfatos , Animales , Fosfatos/metabolismo , Fosfatos/orina , Ratones , Claudina-3/metabolismo , Claudina-3/genética , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Calcitriol/metabolismo , Calcitriol/sangre , Calcio/metabolismo , Ratones Endogámicos C57BL , Masculino , Ratones Noqueados , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Mucosa Intestinal/metabolismoRESUMEN
The kidney controls systemic inorganic phosphate (Pi) levels by adapting reabsorption to Pi intake. Renal Pi reabsorption is mostly mediated by sodium-phosphate cotransporters NaPi-IIa (SLC34A1) and NaPi-IIc (SLC34A3) that are tightly controlled by various hormones including parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23). PTH and FGF23 rise in response to Pi intake and decrease NaPi-IIa and NaPi-IIc brush border membrane abundance enhancing phosphaturia. Phosphaturia and transporter regulation occurs even in the absence of PTH and FGF23 signaling. The calcium-sensing receptor (CaSR) regulates PTH and FGF23 secretion, and may also directly affect renal Pi handling. Here, we combined pharmacological and genetic approaches to examine the role of the CaSR in the acute phosphaturic response to Pi loading. Animals pretreated with the calcimimetic cinacalcet were hyperphosphatemic, had blunted PTH levels upon Pi administration, a reduced Pi-induced phosphaturia, and no Pi-induced NaPi-IIa downregulation. The calcilytic NPS-2143 exaggerated the PTH response to Pi loading but did not abolish Pi-induced downregulation of NaPi-IIa. In mice with a dominant inactivating mutation in the Casr (CasrBCH002), baseline NaPi-IIa expression was higher, whereas downregulation of transporter expression was blunted in double CasrBCH002/PTH knockout (KO) transgenic animals. Thus, in response to an acute Pi load, acute modulation of the CaSR affects the endocrine and renal response, whereas chronic genetic inactivation, displays only subtle differences in the downregulation of NaPi-IIa and NaPi-IIc renal expression. We did not find evidence that the CaSR impacts on the acute renal response to oral Pi loading beyond its role in regulating PTH secretion.NEW & NOTEWORTHY Consumption of phosphate-rich diets causes an adaptive response of the body leading to the urinary excretion of phosphate. The underlying mechanisms are still poorly understood. Here, we examined the role of the calcium-sensing receptor (CaSR) that senses both calcium and phosphate. We confirmed that the receptor increases the secretion of parathyroid hormone involved in stimulating urinary phosphate excretion. However, we did not find any evidence for a role of the receptor beyond this function.
Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , Riñón , Hormona Paratiroidea , Fosfatos , Receptores Sensibles al Calcio , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc , Animales , Masculino , Ratones , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Riñón/metabolismo , Riñón/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Hormona Paratiroidea/metabolismo , Fosfatos/metabolismo , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/genética , Reabsorción Renal/efectos de los fármacos , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/genéticaRESUMEN
The concentration of inorganic phosphate (Pi) in plasma is under hormonal control, with deviations from normal values promptly corrected to avoid hyper- or hypophosphatemia. Major regulators include parathyroid hormone (PTH), fibroblast growth factor 23 (FGF-23), and active vitamin D3 (calcitriol). This control is achieved by mechanisms largely dependent on regulating intestinal absorption and renal excretion, whose combined actions stabilise plasma Pi levels at around 1-2 mM. Instead, Pi concentrations up to 13 and 40 mM have been measured in saliva from humans and ruminants, respectively, suggesting that salivary glands have the capacity to concentrate Pi. Here we analysed the transcriptome of parotid glands, ileum, and kidneys of mice, to investigate their potential differences regarding the expression of genes responsible for epithelial transport of Pi as well as their known regulators. Given that Pi and Ca2+ homeostasis are tightly connected, the expression of genes involved in Ca2+ homeostasis was also included. In addition, we studied the effect of vitamin D3 treatment on the expression of Pi and Ca2+ regulating genes in the three major salivary glands. We found that parotid glands are equipped preferentially with Slc20 rather than with Slc34 Na+/Pi cotransporters, are suited to transport Ca2+ through the transcellular and paracellular route and are potential targets for PTH and vitamin D3 regulation.
Asunto(s)
Calcio , Fosfatos , Humanos , Animales , Ratones , Calcio/metabolismo , Fosfatos/metabolismo , Glándula Parótida/metabolismo , Calcitriol/farmacología , Hormona Paratiroidea/metabolismo , Proteínas de Transporte de Membrana , Factores de Crecimiento de Fibroblastos/metabolismoRESUMEN
BACKGROUND: Variants in SLC34A2 encoding the sodium-dependent phosphate transport protein 2b (NaPi-IIb) cause the rare lung disease pulmonary alveolar microlithiasis (PAM). PAM is characterised by the deposition of calcium-phosphate concretions in the alveoli usually progressing over time. No effective treatment is available. So far, 30 allelic variants in patients have been reported but only a few have been functionally characterised. This study aimed to determine the impact of selected SLC34A2 variants on transporter expression and phosphate uptake in cellular studies. METHODS: Two nonsense variants (c.910A > T and c.1456C > T), one frameshift (c.1328delT), and one in-frame deletion (c.1402_1404delACC) previously reported in patients with PAM were selected for investigation. Wild-type and mutant c-Myc-tagged human NaPi-IIb constructs were expressed in Xenopus laevis oocytes. The transport function was investigated with a 32Pi uptake assay. NaPi-IIb protein expression and localisation were determined with immunoblotting and immunohistochemistry, respectively. RESULTS: Oocytes injected with the wild-type human NaPi-IIb construct had significant 32Pi transport compared to water-injected oocytes. In addition, the protein had a molecular weight as expected for the glycosylated form, and it was readily detectable in the oocyte membrane. Although the protein from the Thr468del construct was synthesised and expressed in the oocyte membrane, phosphate transport was similar to non-injected control oocytes. All other mutants were non-functional and not expressed in the membrane, consistent with the expected impact of the truncations caused by premature stop codons. CONCLUSIONS: Of four analysed SLC34A2 variants, only the Thr468del showed similar protein expression as the wild-type cotransporter in the oocyte membrane. All mutant transporters were non-functional, supporting that dysfunction of NaPi-IIb underlies the pathology of PAM.
Asunto(s)
Calcinosis , Enfermedades Pulmonares , Mutación del Sistema de Lectura , Enfermedades Genéticas Congénitas , Humanos , Enfermedades Pulmonares/genética , Fosfatos , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/genéticaRESUMEN
Studies addressing homeostasis of inorganic phosphate (Pi) are mostly restricted to murine models. Data provided by genetically modified mice suggest that renal Pi reabsorption is primarily mediated by the Na+/Pi cotransporter NaPi-IIa/Slc34a1, whereas the contribution of NaPi-IIc/Slc34a3 in adult animals seems negligible. However, mutations in both cotransporters associate with hypophosphatemic syndromes in humans, suggesting major inter-species heterogeneity. Urinary extracellular vesicles (UEV) have been proposed as an alternative source to analyse the intrinsic expression of renal proteins in vivo. Here, we analyse in rats whether the protein abundance of renal Pi transporters in UEV correlates with their renal content. For that, we compared the abundance of NaPi-IIa and NaPi-IIc in paired samples from kidneys and UEV from rats fed acutely and chronically on diets with low or high Pi. In renal brush border membranes (BBM) NaPi-IIa was detected as two fragments corresponding to the full-length protein and to a proteolytic product, whereas NaPi-IIc migrated as a single full-length band. The expression of NaPi-IIa (both fragments) in BBM adapted to acute as well to chronic changes of dietary Pi, whereas adaptation of NaPi-IIc was only detected in response to chronic administration. Both transporters were detected in UEV as well. UEV reflected the renal adaptation of the NaPi-IIa proteolytic fragment (but not the full-length protein) upon chronic but not acute dietary changes, while also reproducing the chronic regulation of NaPi-IIc. Thus, the composition of UEV reflects only partially changes in the expression of NaPi-IIa and NaPi-IIc at the BBM triggered by dietary Pi.
Asunto(s)
Vesículas Extracelulares , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa , Animales , Vesículas Extracelulares/metabolismo , Humanos , Riñón/metabolismo , Ratones , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Ratas , Sodio/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/genéticaRESUMEN
KEY POINTS: Intestinal absorption of phosphate proceeds via an active/transcellular route mostly mediated by NaPi-IIb/Slc34a2 and a poorly characterized passive/paracellular pathway. Intestinal phosphate absorption and expression of NaPi-IIb are stimulated by 1,25(OH)2 vitamin D3 but whether NaPi-IIb is the only target under hormonal control remains unknown. We report that administration of 1,25(OH)2 vitamin D3 to wild-type mice resulted in the expected increase in active transport of phosphate in jejunum, without changing paracellular fluxes. Instead, the same treatment failed to alter phosphate transport in intestinal-depleted Slc34a2-deficient mice. In both genotypes, 1,25(OH)2 vitamin D3 induced similar hyperphosphaturic responses and changes in the plasma levels of FGF23 and PTH. While urinary phosphate loss induced by administration of 1,25(OH)2 vitamin D3 did not alter plasma phosphate, further studies should investigate whether chronic administration would lead to phosphate imbalance in mice with reduced active intestinal absorption. ABSTRACT: Intestinal absorption of phosphate is stimulated by 1,25(OH)2 vitamin D3. At least two distinct mechanisms underlie phosphate absorption in the gut, an active transcellular transport requiring the Na+ /phosphate cotransporter NaPi-IIb/Slc34a2, and a poorly characterized paracellular passive pathway. 1,25(OH)2 vitamin D3 stimulates NaPi-IIb expression and function, and loss of NaPi-IIb reduces intestinal phosphate absorption. However, it is remains unknown whether NaPi-IIb is the only target for hormonal regulation by 1,25(OH)2 vitamin D3 . Here we compared the effects of intraperitoneal administration of 1,25(OH)2 vitamin D3 (2 days, once per day) in wild-type and intestinal-specific Slc34a2-deficient mice, and analysed trans- vs. paracellular routes of phosphate absorption. We found that treatment stimulated active transport of phosphate only in jejunum of wild-type mice, though NaPi-IIb protein expression was upregulated in jejunum and ileum. In contrast, 1,25(OH)2 vitamin D3 administration had no effect in Slc34a2-deficient mice, suggesting that the hormone specifically regulates NaPi-IIb expression. In both groups, 1,25(OH)2 vitamin D3 elicited the expected increase of plasma fibroblast growth factor 23 (FGF23) and reduction of parathyroid hormone (PTH). Treatment resulted in hyperphosphaturia (and hypercalciuria) in both genotypes, though mice remained normophosphataemic. While increased intestinal absorption and higher FGF23 can trigger the hyperphosphaturic response in wild types, only higher FGF23 can explain the renal response in Slc34a2-deficient mice. Thus, 1,25(OH)2 vitamin D3 stimulates intestinal phosphate absorption by acting on the active transcellular pathway mostly mediated by NaPi-IIb while the paracellular pathway appears not to be affected.
Asunto(s)
Colecalciferol , Fosfatos , Animales , Transporte Biológico Activo , Colecalciferol/farmacología , Factor-23 de Crecimiento de Fibroblastos , Absorción Intestinal , Transporte Iónico , RatonesRESUMEN
Na+-dependent phosphate cotransporters NaPi-IIa and NaPi-IIc, located at the brush-border membrane of renal proximal tubules, are regulated by numerous factors, including fibroblast growth factor 23 (FGF23). FGF23 downregulates NaPi-IIa and NaPi-IIc abundance after activating a signaling pathway involving phosphorylation of ERK1/2 (phospho-ERK1/2). FGF23 also downregulates expression of renal 1-α-hydroxylase (Cyp27b1) and upregulates 24-hydroxylase (Cyp24a1), thus reducing plasma calcitriol levels. Here, we examined the time course of FGF23-induced internalization of NaPi-IIa and NaPi-IIc and their intracellular pathway toward degradation in vivo. Mice were injected intraperitoneally with recombinant human (rh)FGF23 in the absence (biochemical analysis) or presence (immunohistochemistry) of leupeptin, an inhibitor of lysosomal proteases. Phosphorylation of ERK1/2 was enhanced 60 min after rhFGF23 administration, and increased phosphorylation was still detected 480 min after injection. Colocalization of phospho-ERK1/2 with NaPi-IIa was seen at 60 and 120 min and partly at 480 min. The abundance of both cotransporters was reduced 240 min after rhFGF23 administration, with a further reduction at 480 min. NaPi-IIa and NaPi-IIc were found to colocalize with clathrin and early endosomal antigen 1 as early as 120 min after rhFGF23 injection. Both cotransporters partially colocalized with cathepsin B and lysosomal-associated membrane protein-1, markers of lysosomes, 120 min after rhFGF23 injection. Thus, NaPi-IIa and NaPi-IIc are internalized within 2 h upon rhFGF23 injection. Both cotransporters share the pathway of clathrin-mediated endocytosis that leads first to early endosomes, finally resulting in trafficking toward the lysosome as early as 120 min after rhFGF23 administration.NEW & NOTEWORTHY The hormone fibroblast growth factor 23 (FGF23) controls phosphate homeostasis by regulating renal phosphate excretion. FGF23 acts on several phosphate transporters in the kidney. Here, we define the time course of this action and demonstrate how phosphate transporters NaPi-IIa and NaPi-IIc are internalized.
Asunto(s)
Endosomas/efectos de los fármacos , Factor-23 de Crecimiento de Fibroblastos/farmacología , Riñón/efectos de los fármacos , Lisosomas/efectos de los fármacos , Animales , Endosomas/metabolismo , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Riñón/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Lisosomas/metabolismo , Ratones , Hormona Paratiroidea/metabolismo , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismoRESUMEN
BACKGROUND: Phosphate intake has increased in the last decades due to a higher consumption of processed foods. This higher intake is detrimental for patients with chronic kidney disease, increasing mortality and cardiovascular disease risk and accelerating kidney dysfunction. Whether a chronic high phosphate diet is also detrimental for the healthy population is still under debate. METHODS: We fed healthy mature adult mice over a period of one year with either a high (1.2% w/w) or a standard (0.6% w/w) phosphate diet, and investigated the impact of a high phosphate diet on mineral homeostasis, kidney function and bone health. RESULTS: The high phosphate diet increased plasma phosphate, parathyroid hormone (PTH) and calcitriol levels, with no change in fibroblast growth factor 23 levels. Urinary phosphate, calcium and ammonium excretion were increased. Measured glomerular filtration rate was apparently unaffected, while blood urea was lower and urea clearance was higher in animals fed the high phosphate diet. No change was observed in plasma creatinine levels. Blood and urinary pH were more acidic paralleled by higher bone resorption observed in animals fed a high phosphate diet. Total and cortical bone mineral density was lower in animals fed a high phosphate diet and this effect is independent of the higher PTH levels observed. CONCLUSIONS: A chronic high phosphate intake did not cause major renal alterations, but affected negatively bone health, increasing bone resorption and decreasing bone mineral density.
RESUMEN
Na+-coupled phosphate cotransporters from the SLC34 and SLC20 families of solute carriers mediate transepithelial transport of inorganic phosphate (Pi). NaPi-IIa/Slc34a1, NaPi-IIc/Slc34a3, and Pit-2/Slc20a2 are all expressed at the apical membrane of renal proximal tubules and therefore contribute to renal Pi reabsorption. Unlike NaPi-IIa and NaPi-IIc, which are rather kidney-specific, NaPi-IIb/Slc34a2 is expressed in several epithelial tissues, including the intestine, lung, testis, and mammary glands. Recently, the expression of NaPi-IIb was also reported in kidneys from rats fed on high Pi. Here, we systematically quantified the mRNA expression of SLC34 and SLC20 cotransporters in kidneys from mice, rats, and humans. In all three species, NaPi-IIa mRNA was by far the most abundant renal transcript. Low and comparable mRNA levels of the other four transporters, including NaPi-IIb, were detected in kidneys from rodents and humans. In mice, the renal expression of NaPi-IIa transcripts was restricted to the cortex, whereas NaPi-IIb mRNA was observed in medullary segments. Consistently, NaPi-IIb protein colocalized with uromodulin at the luminal membrane of thick ascending limbs of the loop of Henle segments. The abundance of NaPi-IIb transcripts in kidneys from mice was neither affected by dietary Pi, the absence of renal NaPi-IIc, nor the depletion of intestinal NaPi-IIb. In contrast, it was highly upregulated in a model of oxalate-induced kidney disease where all other SLC34 phosphate transporters were downregulated. Thus, NaPi-IIb may contribute to renal phosphate reabsorption, and its upregulation in kidney disease might promote hyperphosphatemia.
Asunto(s)
Riñón/metabolismo , Insuficiencia Renal Crónica/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/metabolismo , Regulación hacia Arriba , Animales , Membrana Celular/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Fosfatos/metabolismo , Ratas Wistar , Sodio/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismoRESUMEN
The sorting and stabilization of proteins at specific subcellular domains depend upon the formation of networks build up by specific protein-protein interactions. In addition, protein networks also ensure the specificity of many regulatory processes by bringing together regulatory molecules with their targets. Whereas the success on the identification of protein-protein interactions is (up to a point) technology-driven, the assignment of functional roles to specific partners remains a major challenge. This review summarizes the work that led to the identification of partners of the Na+/phosphate cotransporter NaPi-IIa as well as the effects of the interactions in the expression and/or regulation of the cotransporter.
Asunto(s)
Mapas de Interacción de Proteínas , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo II/metabolismo , Animales , Sitios de Unión , Humanos , Túbulos Renales/metabolismo , Unión Proteica , Reabsorción Renal , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo II/química , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo II/genéticaRESUMEN
Inorganic phosphate (Pi) is crucial for many biological functions, such as energy metabolism, signal transduction, and pH buffering. Efficient systems must exist to ensure sufficient supply for the body of Pi from diet. Previous experiments in humans and rodents suggest that two pathways for the absorption of Pi exist, an active transcellular Pi transport and a second paracellular pathway. Whereas the identity, role, and regulation of active Pi transport have been extensively studied, much less is known about the properties of the paracellular pathway. In Ussing chamber experiments, we characterized paracellular intestinal Pi permeabilities and fluxes. Dilution potential measurements in intestinal cell culture models demonstrated that the tight junction is permeable to Pi, with monovalent Pi having a higher permeability than divalent Pi. These findings were confirmed in rat and mouse intestinal segments by use of Ussing chambers and a combination of dilution potential measurements and fluxes of radiolabeled 32Pi. Both techniques yielded very similar results, showing that paracellular Pi fluxes were bidirectional and that Pi permeability was ~50% of the permeability for Na+ or Cl-. Pi fluxes were a function of the concentration gradient and Pi species (mono- vs. divalent Pi). In mice lacking the active transcellular Pi transport component sodium-dependent Pi transporter NaPi-IIb, the paracellular pathway was not upregulated. In summary, the small and large intestines have a very high paracellular Pi permeability, which may favor monovalent Pi fluxes and allow efficient uptake of Pi even in the absence of active transcellular Pi uptake.NEW & NOTEWORTHY The paracellular permeability for phosphate is high along the entire axis of the small and large intestine. There is a slight preference for monovalent phosphate. Paracellular phosphate fluxes do not increase when transcellular phosphate transport is genetically abolished. Paracellular phosphate transport may be an important target for therapies aiming to reduce intestinal phosphate absorption.
Asunto(s)
Espacio Extracelular/fisiología , Mucosa Intestinal/metabolismo , Transporte Iónico/fisiología , Fosfatos , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/metabolismo , Uniones Estrechas/fisiología , Animales , Células Cultivadas , Absorción Intestinal , Ratones , Permeabilidad , Fosfatos/química , Fosfatos/metabolismo , RatasRESUMEN
Nephrolithiasis (NL) affects 1 in 11 individuals worldwide and causes significant patient morbidity. We previously demonstrated a genetic cause of NL can be identified in 11-29% of pre-dominantly American and European stone formers. Pakistan, which resides within the Afro-Asian stone belt, has a high prevalence of nephrolithiasis (12%) as well as high rate of consanguinity (> 50%). We recruited 235 Pakistani subjects hospitalized for nephrolithiasis from five tertiary hospitals in the Punjab province of Pakistan. Subjects were surveyed for age of onset, NL recurrence, and family history. We conducted high-throughput exon sequencing of 30 NL disease genes and variant analysis to identify monogenic causative mutations in each subject. We detected likely causative mutations in 4 of 30 disease genes, yielding a likely molecular diagnosis in 7% (17 of 235) of NL families. Only 1 of 17 causative mutations was identified in an autosomal recessive disease gene. 10 of the 12 detected mutations were novel mutations (83%). SLC34A1 was most frequently mutated (12 of 17 solved families). We observed a higher frequency of causative mutations in subjects with a positive NL family history (13/109, 12%) versus those with a negative family history (4/120, 3%). Five missense SLC34A1 variants identified through genetic analysis demonstrated defective phosphate transport. We examined the monogenic causes of NL in a novel geographic cohort and most frequently identified dominant mutations in the sodium-phosphate transporter SLC34A1 with functional validation.
Asunto(s)
Perfilación de la Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Nefrolitiasis/epidemiología , Nefrolitiasis/genética , Adolescente , Adulto , Anciano , Alelos , Animales , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Familia , Femenino , Perfilación de la Expresión Génica/métodos , Genotipo , Geografía Médica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación , Pakistán/epidemiología , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Xenopus laevis , Adulto JovenRESUMEN
BACKGROUND/AIMS: Phosphate (Pi) homeostasis is controlled by the intestine and kidneys whose capacities to transport Pi are under endocrine control. Several studies point to intestinal absorption as a therapeutic target to modulate Pi homeostasis. The small intestine is responsible for almost all Pi absorption in the gut, a process involving Na+-dependent and independent mechanisms. Three Na+-dependent Pi cotransporters have been described in the gastrointestinal tract: NaPi-IIb (a SLC34 member) and Pit-1 and Pit-2 (SLC20 transporters). We recently analysed the acute hormonal and renal response to intragastric (i.g) and intravenous (i.v) Pi-loading. This study demonstrated that the kidney quickly adapts to Pi-loading, with changes manifesting earlier in the i.v than i.g intervention. The aim of this work was to extend the previous studies in order to investigate the acute adaptation of intestinal transport of Pi and expression of intestinal Na+/Pi-cotransporters in response to acute Pi-loading. METHODS: Duodenal and jejunal mucosa was collected 40 minutes and/or 4 hours after administration (i.g and i.v) of either NaCl or Pi to anaesthetized rats. Uptakes of Pi and protein expression of Na+/Pi cotransporters were measured in brush border membrane vesicles (BBMV); the cotransporters' mRNA abundance was quantified by real-time PCR in total RNA extracted from whole mucosa. RESULTS: Pi-loading did not modify transport of Pi in duodenal and jejunal BBMV 4 hours after treatment. Administration of Pi did not alter either the intestinal expression of NaPi-IIb and Pit-2 mRNAs, whereas Pit-1 mRNA expression was only regulated (diminished) in duodenum collected 4 hours after i.g Pi-loading. NaPi-IIb protein expression was decreased in duodenum 4 hours upon i.v Pi infusion, whereas the duodenal and jejunal abundance of the cotransporter was unaffected by i.g administration of Pi. CONCLUSION: Together, these data suggest that the intestine responds acutely to Pi-loading, though this response seems slower than the renal adaptation.
Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Fosfatos/farmacología , Administración Intravenosa , Animales , Glucosa/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Masculino , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/metabolismo , Factor de Transcripción Pit-1/genética , Factor de Transcripción Pit-1/metabolismoRESUMEN
Renal phosphate handling critically determines plasma phosphate and whole body phosphate levels. Filtered phosphate is mostly reabsorbed by Na+-dependent phosphate transporters located in the brush border membrane of the proximal tubule: NaPi-IIa (SLC34A1), NaPi-IIc (SLC34A3), and Pit-2 (SLC20A2). Here we review new evidence for the role and relevance of these transporters in inherited disorders of renal phosphate handling. The importance of NaPi-IIa and NaPi-IIc for renal phosphate reabsorption and mineral homeostasis has been highlighted by the identification of mutations in these transporters in a subset of patients with infantile idiopathic hypercalcemia and patients with hereditary hypophosphatemic rickets with hypercalciuria. Both diseases are characterized by disturbed calcium homeostasis secondary to elevated 1,25-(OH)2 vitamin D3 as a consequence of hypophosphatemia. In vitro analysis of mutated NaPi-IIa or NaPi-IIc transporters suggests defective trafficking underlying disease in most cases. Monoallelic pathogenic mutations in both SLC34A1 and SLC34A3 appear to be very frequent in the general population and have been associated with kidney stones. Consistent with these findings, results from genome-wide association studies indicate that variants in SLC34A1 are associated with a higher risk to develop kidney stones and chronic kidney disease, but underlying mechanisms have not been addressed to date.
Asunto(s)
Túbulos Renales Proximales/metabolismo , Fosfatos/metabolismo , Reabsorción Renal , Defectos Congénitos del Transporte Tubular Renal/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato/metabolismo , Animales , Raquitismo Hipofosfatémico Familiar , Factor-23 de Crecimiento de Fibroblastos , Predisposición Genética a la Enfermedad , Herencia , Humanos , Mutación , Linaje , Fenotipo , Pronóstico , Defectos Congénitos del Transporte Tubular Renal/genética , Defectos Congénitos del Transporte Tubular Renal/fisiopatología , Medición de Riesgo , Factores de Riesgo , Proteínas Cotransportadoras de Sodio-Fosfato/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/metabolismoRESUMEN
Phosphate (Pi) homeostasis is regulated by renal, intestinal, and endocrine mechanisms through which Pi intake stimulates parathyroid hormone (PTH) and fibroblast growth factor-23 secretion, increasing phosphaturia. Mechanisms underlying the early adaptive phase and the role of the intestine, however, remain ill defined. We investigated mineral, endocrine, and renal responses during the first 4 hours after intravenous and intragastric Pi loading in rats. Intravenous Pi loading (0.5 mmol) caused a transient rise in plasma Pi levels and creatinine clearance and an increase in phosphaturia within 10 minutes. Plasma calcium levels fell and PTH levels increased within 10 minutes and remained low or high, respectively. Fibroblast growth factor-23, 1,25-(OH)2-vitamin D3, and insulin concentrations did not respond, but plasma dopamine levels increased by 4 hours. In comparison, gastric Pi loading elicited similar but delayed phosphaturia and endocrine responses but did not affect plasma mineral levels. Either intravenous or gastric loading led to decreased expression and activity of renal Pi transporters after 4 hours. In parathyroidectomized rats, however, only intravenous Pi loading caused phosphaturia, which was blunted and transient compared with that in intact rats. Intravenous but not gastric Pi loading in parathyroidectomized rats also led to higher creatinine clearance and lower plasma calcium levels but did not reduce the expression or activity of Pi transporters. This evidence suggests that an intravenous or intestinal Pi bolus causes rapid phosphaturia through mechanisms requiring PTH and downregulation of renal Pi transporters but does not support a role of the intestine in stimulating renal clearance of Pi.
Asunto(s)
Adaptación Fisiológica , Hormona Paratiroidea/fisiología , Fosfatos/administración & dosificación , Fosfatos/metabolismo , Administración Intravenosa , Administración Oral , Animales , Hipofosfatemia Familiar/etiología , Mucosa Intestinal/metabolismo , Masculino , Ratas , Ratas WistarRESUMEN
Idiopathic infantile hypercalcemia (IIH) is characterized by severe hypercalcemia with failure to thrive, vomiting, dehydration, and nephrocalcinosis. Recently, mutations in the vitamin D catabolizing enzyme 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) were described that lead to increased sensitivity to vitamin D due to accumulation of the active metabolite 1,25-(OH)2D3. In a subgroup of patients who presented in early infancy with renal phosphate wasting and symptomatic hypercalcemia, mutations in CYP24A1 were excluded. Four patients from families with parental consanguinity were subjected to homozygosity mapping that identified a second IIH gene locus on chromosome 5q35 with a maximum logarithm of odds (LOD) score of 6.79. The sequence analysis of the most promising candidate gene, SLC34A1 encoding renal sodium-phosphate cotransporter 2A (NaPi-IIa), revealed autosomal-recessive mutations in the four index cases and in 12 patients with sporadic IIH. Functional studies of mutant NaPi-IIa in Xenopus oocytes and opossum kidney (OK) cells demonstrated disturbed trafficking to the plasma membrane and loss of phosphate transport activity. Analysis of calcium and phosphate metabolism in Slc34a1-knockout mice highlighted the effect of phosphate depletion and fibroblast growth factor-23 suppression on the development of the IIH phenotype. The human and mice data together demonstrate that primary renal phosphate wasting caused by defective NaPi-IIa function induces inappropriate production of 1,25-(OH)2D3 with subsequent symptomatic hypercalcemia. Clinical and laboratory findings persist despite cessation of vitamin D prophylaxis but rapidly respond to phosphate supplementation. Therefore, early differentiation between SLC34A1 (NaPi-IIa) and CYP24A1 (24-hydroxylase) defects appears critical for targeted therapy in patients with IIH.