Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 493(7432): 393-7, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23302797

RESUMEN

High (3)He/(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source. This helium source may have been isolated at the core-mantle boundary region since Earth's accretion. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core-mantle boundary or is distributed throughout the lower mantle. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high (3)He/(4)He. We propose that a less-degassed nickel-rich source formed by core-mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core-mantle boundary.

2.
Nature ; 458(7238): 619-22, 2009 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-19340079

RESUMEN

Geological mapping and geochronological studies have shown much lower eruption rates for ocean island basalts (OIBs) in comparison with those of lavas from large igneous provinces (LIPs) such as oceanic plateaux and continental flood provinces. However, a quantitative petrological comparison has never been made between mantle source temperature and the extent of melting for OIB and LIP sources. Here we show that the MgO and FeO contents of Galapagos-related lavas and their primary magmas have decreased since the Cretaceous period. From petrological modelling, we infer that these changes reflect a cooling of the Galapagos mantle plume from a potential temperature of 1,560-1,620 degrees C in the Cretaceous to 1,500 degrees C at present. Iceland also exhibits secular cooling, in agreement with previous studies. Our work provides quantitative petrological evidence that, in general, mantle plumes for LIPs with Palaeocene-Permian ages were hotter and melted more extensively than plumes of more modern ocean islands. We interpret this to reflect episodic flow from lower-mantle domains that are lithologically and geochemically heterogeneous.

3.
Nature ; 444(7119): 605-9, 2006 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-17136091

RESUMEN

There is uncertainty about whether the abundant tholeiitic lavas on Hawaii are the product of melt from peridotite or pyroxenite/eclogite rocks. Using a parameterization of melting experiments on peridotite with glass analyses from the Hawaii Scientific Deep Project 2 on Mauna Kea volcano, I show here that a small population of the core samples had fractionated from a peridotite-source primary magma. Most lavas, however, differentiated from magmas that were too deficient in CaO and enriched in NiO (ref. 2) to have formed from a peridotite source. For these, experiments indicate that they were produced by the melting of garnet pyroxenite, a lithology that had formed in a second stage by reaction of peridotite with partial melts of subducted oceanic crust. Samples in the Hawaiian core are therefore consistent with previous suggestions that pyroxenite occurs in a host peridotite, and both contribute to melt production. Primary magma compositions vary down the drill core, and these reveal evidence for temperature variations within the underlying mantle plume. Mauna Kea magmatism is represented in other Hawaiian volcanoes, and provides a key for a general understanding of melt production in lithologically heterogeneous mantle.

4.
Nature ; 436(7052): 789-90, 2005 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-16094356
5.
Science ; 316(5823): 378-9, 2007 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-17395792
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA