Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Nat Immunol ; 21(2): 168-177, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31873294

RESUMEN

Group 3 innate lymphoid cell (ILC3)-mediated production of the cytokine interleukin-22 (IL-22) is critical for the maintenance of immune homeostasis in the gastrointestinal tract. Here, we find that the function of ILC3s is not constant across the day, but instead oscillates between active phases and resting phases. Coordinate responsiveness of ILC3s in the intestine depended on the food-induced expression of the neuropeptide vasoactive intestinal peptide (VIP). Intestinal ILC3s had high expression of the G protein-coupled receptor vasoactive intestinal peptide receptor 2 (VIPR2), and activation by VIP markedly enhanced the production of IL-22 and the barrier function of the epithelium. Conversely, deficiency in signaling through VIPR2 led to impaired production of IL-22 by ILC3s and increased susceptibility to inflammation-induced gut injury. Thus, intrinsic cellular rhythms acted in synergy with the cyclic patterns of food intake to drive the production of IL-22 and synchronize protection of the intestinal epithelium through a VIP-VIPR2 pathway in ILC3s.


Asunto(s)
Inmunidad Mucosa/inmunología , Subgrupos Linfocitarios/inmunología , Linfocitos/inmunología , Periodicidad , Péptido Intestinal Vasoactivo/inmunología , Animales , Ingestión de Alimentos/inmunología , Inmunidad Innata/inmunología , Subgrupos Linfocitarios/metabolismo , Linfocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Péptido Intestinal Vasoactivo/metabolismo
3.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36355065

RESUMEN

Female mouse embryonic stem cells (mESCs) present differently from male mESCs in several fundamental ways; however, complications with their in vitro culture have resulted in an under-representation of female mESCs in the literature. Recent studies show that the second X chromosome in female, and more specifically the transcriptional activity from both of these chromosomes due to absent X chromosome inactivation, sets female and male mESCs apart. To avoid this undesirable state, female mESCs in culture preferentially adopt an XO karyotype, with this adaption leading to loss of their unique properties in favour of a state that is near indistinguishable from male mESCs. If female pluripotency is to be studied effectively in this system, it is crucial that high-quality cultures of XX mESCs are available. Here, we report a method for better maintaining XX female mESCs in culture that also stabilises the male karyotype and makes study of female-specific pluripotency more feasible.


Asunto(s)
Células Madre Embrionarias de Ratones , Inactivación del Cromosoma X , Masculino , Animales , Femenino , Ratones , Diferenciación Celular/fisiología , Inactivación del Cromosoma X/genética , Cariotipo
4.
Genomics ; 116(2): 110793, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38220132

RESUMEN

Single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for understanding cellular heterogeneity and function. However the choice of sample multiplexing reagents can impact data quality and experimental outcomes. In this study, we compared various multiplexing reagents, including MULTI-Seq, Hashtag antibody, and CellPlex, across diverse sample types such as human peripheral blood mononuclear cells (PBMCs), mouse embryonic brain and patient-derived xenografts (PDXs). We found that all multiplexing reagents worked well in cell types robust to ex vivo manipulation but suffered from signal-to-noise issues in more delicate sample types. We compared multiple demultiplexing algorithms which differed in performance depending on data quality. We find that minor improvements to laboratory workflows such as titration and rapid processing are critical to optimal performance. We also compared the performance of fixed scRNA-Seq kits and highlight the advantages of the Parse Biosciences kit for fragile samples. Highly multiplexed scRNA-Seq experiments require more sequencing resources, therefore we evaluated CRISPR-based destruction of non-informative genes to enhance sequencing value. Our comprehensive analysis provides insights into the selection of appropriate sample multiplexing reagents and protocols for scRNA-Seq experiments, facilitating more accurate and cost-effective studies.


Asunto(s)
Leucocitos Mononucleares , Análisis de la Célula Individual , Humanos , Animales , Ratones , RNA-Seq , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Perfilación de la Expresión Génica/métodos
5.
Development ; 148(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34550360

RESUMEN

Blood vessel growth and remodelling are essential during embryonic development and disease pathogenesis. The diversity of endothelial cells (ECs) is transcriptionally evident and ECs undergo dynamic changes in gene expression during vessel growth and remodelling. Here, we investigated the role of the histone acetyltransferase HBO1 (KAT7), which is important for activating genes during development and for histone H3 lysine 14 acetylation (H3K14ac). Loss of HBO1 and H3K14ac impaired developmental sprouting angiogenesis and reduced pathological EC overgrowth in the retinal endothelium. Single-cell RNA sequencing of retinal ECs revealed an increased abundance of tip cells in Hbo1-deficient retinas, which led to EC overcrowding in the retinal sprouting front and prevented efficient tip cell migration. We found that H3K14ac was highly abundant in the endothelial genome in both intra- and intergenic regions, suggesting that HBO1 acts as a genome organiser that promotes efficient tip cell behaviour necessary for sprouting angiogenesis. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Neovascularización Patológica/metabolismo , Acetilación , Animales , Movimiento Celular/fisiología , Células Cultivadas , Desarrollo Embrionario/fisiología , Células Endoteliales/metabolismo , Femenino , Histonas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lisina/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
6.
Hum Mutat ; 43(1): 16-29, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34633740

RESUMEN

Autism spectrum disorders (ASD) are neurodevelopmental disorders with an estimated heritability of >60%. Family-based genetic studies of ASD have generally focused on multiple small kindreds, searching for de novo variants of major effect. We hypothesized that molecular genetic analysis of large multiplex families would enable the identification of variants of milder effects. We studied a large multigenerational family of European ancestry with multiple family members affected with ASD or the broader autism phenotype (BAP). We identified a rare heterozygous variant in the gene encoding 1,4-ɑ-glucan branching enzyme 1 (GBE1) that was present in seven of seven individuals with ASD, nine of ten individuals with the BAP, and none of four tested unaffected individuals. We genotyped a community-acquired cohort of 389 individuals with ASD and identified three additional probands. Cascade analysis demonstrated that the variant was present in 11 of 13 individuals with familial ASD/BAP and neither of the two tested unaffected individuals in these three families, also of European ancestry. The variant was not enriched in the combined UK10K ASD cohorts of European ancestry but heterozygous GBE1 deletion was overrepresented in large ASD cohorts, collectively suggesting an association between GBE1 and ASD.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano , Trastorno del Espectro Autista , Sistema de la Enzima Desramificadora del Glucógeno , Enzima Ramificadora de 1,4-alfa-Glucano/genética , Trastorno del Espectro Autista/genética , Exoma , Predisposición Genética a la Enfermedad , Glucanos , Sistema de la Enzima Desramificadora del Glucógeno/genética , Humanos
7.
Genome Res ; 29(4): 532-542, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30858344

RESUMEN

Coding variants in epigenetic regulators are emerging as causes of neurological dysfunction and cancer. However, a comprehensive effort to identify disease candidates within the human epigenetic machinery (EM) has not been performed; it is unclear whether features exist that distinguish between variation-intolerant and variation-tolerant EM genes, and between EM genes associated with neurological dysfunction versus cancer. Here, we rigorously define 295 genes with a direct role in epigenetic regulation (writers, erasers, remodelers, readers). Systematic exploration of these genes reveals that although individual enzymatic functions are always mutually exclusive, readers often also exhibit enzymatic activity (dual-function EM genes). We find that the majority of EM genes are very intolerant to loss-of-function variation, even when compared to the dosage sensitive transcription factors, and we identify 102 novel EM disease candidates. We show that this variation intolerance is driven by the protein domains encoding the epigenetic function, suggesting that disease is caused by a perturbed chromatin state. We then describe a large subset of EM genes that are coexpressed within multiple tissues. This subset is almost exclusively populated by extremely variation-intolerant genes and shows enrichment for dual-function EM genes. It is also highly enriched for genes associated with neurological dysfunction, even when accounting for dosage sensitivity, but not for cancer-associated EM genes. Finally, we show that regulatory regions near epigenetic regulators are genetically important for common neurological traits. These findings prioritize novel disease candidate EM genes and suggest that this coexpression plays a functional role in normal neurological homeostasis.


Asunto(s)
Epigénesis Genética , Enfermedades del Sistema Nervioso/genética , Polimorfismo Genético , Ensamble y Desensamble de Cromatina , Humanos , Mutación con Pérdida de Función , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
PLoS Comput Biol ; 17(10): e1009524, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34695109

RESUMEN

A key benefit of long-read nanopore sequencing technology is the ability to detect modified DNA bases, such as 5-methylcytosine. The lack of R/Bioconductor tools for the effective visualization of nanopore methylation profiles between samples from different experimental groups led us to develop the NanoMethViz R package. Our software can handle methylation output generated from a range of different methylation callers and manages large datasets using a compressed data format. To fully explore the methylation patterns in a dataset, NanoMethViz allows plotting of data at various resolutions. At the sample-level, we use dimensionality reduction to look at the relationships between methylation profiles in an unsupervised way. We visualize methylation profiles of classes of features such as genes or CpG islands by scaling them to relative positions and aggregating their profiles. At the finest resolution, we visualize methylation patterns across individual reads along the genome using the spaghetti plot and heatmaps, allowing users to explore particular genes or genomic regions of interest. In summary, our software makes the handling of methylation signal more convenient, expands upon the visualization options for nanopore data and works seamlessly with existing methylation analysis tools available in the Bioconductor project. Our software is available at https://bioconductor.org/packages/NanoMethViz.


Asunto(s)
Metilación de ADN/genética , Genómica/métodos , Secuenciación de Nanoporos/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Animales , Humanos , Ratones
9.
Thorax ; 76(10): 1032-1035, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33632769

RESUMEN

End points that are repeatable and sensitive to change are important in pulmonary arterial hypertension (PAH) for clinical practice and trials of new therapies. In 42 patients with PAH, test-retest repeatability was assessed using the intraclass correlation coefficient and treatment effect size using Cohen's d statistic. Intraclass correlation coefficients demonstrated excellent repeatability for MRI, 6 min walk test and log to base 10 N-terminal pro-brain natriuretic peptide (log10NT-proBNP). The treatment effect size for MRI-derived right ventricular ejection fraction was large (Cohen's d 0.81), whereas the effect size for the 6 min walk test (Cohen's d 0.22) and log10NT-proBNP (Cohen's d 0.20) were fair. This study supports further evaluation of MRI as a non-invasive end point for clinical assessment and PAH therapy trials.Trial registration number NCT03841344.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Volumen Sistólico , Función Ventricular Derecha , Prueba de Paso
10.
Eur Respir J ; 57(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33334933

RESUMEN

Pulmonary arterial hypertension (PAH) is a devastating complication of systemic sclerosis (SSc). Screening for PAH in SSc has increased detection, allowed early treatment for PAH and improved patient outcomes. Blood-based biomarkers that reliably identify SSc patients at risk of PAH, or with early disease, would significantly improve screening, potentially leading to improved survival, and provide novel mechanistic insights into early disease. The main objective of this study was to identify a proteomic biomarker signature that could discriminate SSc patients with and without PAH using a machine learning approach and to validate the findings in an external cohort.Serum samples from patients with SSc and PAH (n=77) and SSc without pulmonary hypertension (non-PH) (n=80) were randomly selected from the clinical DETECT study and underwent proteomic screening using the Myriad RBM Discovery platform consisting of 313 proteins. Samples from an independent validation SSc cohort (PAH n=22 and non-PH n=22) were obtained from the University of Sheffield (Sheffield, UK).Random forest analysis identified a novel panel of eight proteins, comprising collagen IV, endostatin, insulin-like growth factor binding protein (IGFBP)-2, IGFBP-7, matrix metallopeptidase-2, neuropilin-1, N-terminal pro-brain natriuretic peptide and RAGE (receptor for advanced glycation end products), that discriminated PAH from non-PH in SSc patients in the DETECT Discovery Cohort (average area under the receiver operating characteristic curve 0.741, 65.1% sensitivity/69.0% specificity), which was reproduced in the Sheffield Confirmatory Cohort (81.1% accuracy, 77.3% sensitivity/86.5% specificity).This novel eight-protein biomarker panel has the potential to improve early detection of PAH in SSc patients and may provide novel insights into the pathogenesis of PAH in the context of SSc.


Asunto(s)
Hipertensión Arterial Pulmonar , Esclerodermia Sistémica , Biomarcadores , Humanos , Aprendizaje Automático , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Proteómica
11.
Bioinformatics ; 36(7): 2288-2290, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31778143

RESUMEN

MOTIVATION: Bioinformatic analysis of single-cell gene expression data is a rapidly evolving field. Hundreds of bespoke methods have been developed in the past few years to deal with various aspects of single-cell analysis and consensus on the most appropriate methods to use under different settings is still emerging. Benchmarking the many methods is therefore of critical importance and since analysis of single-cell data usually involves multi-step pipelines, effective evaluation of pipelines involving different combinations of methods is required. Current benchmarks of single-cell methods are mostly implemented with ad-hoc code that is often difficult to reproduce or extend, and exhaustive manual coding of many combinations is infeasible in most instances. Therefore, new software is needed to manage pipeline benchmarking. RESULTS: The CellBench R software facilitates method comparisons in either a task-centric or combinatorial way to allow pipelines of methods to be evaluated in an effective manner. CellBench automatically runs combinations of methods, provides facilities for measuring running time and delivers output in tabular form which is highly compatible with tidyverse R packages for summary and visualization. Our software has enabled comprehensive benchmarking of single-cell RNA-seq normalization, imputation, clustering, trajectory analysis and data integration methods using various performance metrics obtained from data with available ground truth. CellBench is also amenable to benchmarking other bioinformatics analysis tasks. AVAILABILITY AND IMPLEMENTATION: Available from https://bioconductor.org/packages/CellBench.


Asunto(s)
RNA-Seq , Análisis de la Célula Individual , Biología Computacional , Análisis de Secuencia de ARN , Programas Informáticos , Secuenciación del Exoma
12.
Circ Res ; 124(6): 904-919, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30661465

RESUMEN

RATIONALE: Accumulating evidence implicates inflammation in pulmonary arterial hypertension (PAH) and therapies targeting immunity are under investigation, although it remains unknown if distinct immune phenotypes exist. OBJECTIVE: Identify PAH immune phenotypes based on unsupervised analysis of blood proteomic profiles. METHODS AND RESULTS: In a prospective observational study of group 1 PAH patients evaluated at Stanford University (discovery cohort; n=281) and University of Sheffield (validation cohort; n=104) between 2008 and 2014, we measured a circulating proteomic panel of 48 cytokines, chemokines, and factors using multiplex immunoassay. Unsupervised machine learning (consensus clustering) was applied in both cohorts independently to classify patients into proteomic immune clusters, without guidance from clinical features. To identify central proteins in each cluster, we performed partial correlation network analysis. Clinical characteristics and outcomes were subsequently compared across clusters. Four PAH clusters with distinct proteomic immune profiles were identified in the discovery cohort. Cluster 2 (n=109) had low cytokine levels similar to controls. Other clusters had unique sets of upregulated proteins central to immune networks-cluster 1 (n=58; TRAIL [tumor necrosis factor-related apoptosis-inducing ligand], CCL5 [C-C motif chemokine ligand 5], CCL7, CCL4, MIF [macrophage migration inhibitory factor]), cluster 3 (n=77; IL [interleukin]-12, IL-17, IL-10, IL-7, VEGF [vascular endothelial growth factor]), and cluster 4 (n=37; IL-8, IL-4, PDGF-ß [platelet-derived growth factor beta], IL-6, CCL11). Demographics, PAH clinical subtypes, comorbidities, and medications were similar across clusters. Noninvasive and hemodynamic surrogates of clinical risk identified cluster 1 as high-risk and cluster 3 as low-risk groups. Five-year transplant-free survival rates were unfavorable for cluster 1 (47.6%; 95% CI, 35.4%-64.1%) and favorable for cluster 3 (82.4%; 95% CI, 72.0%-94.3%; across-cluster P<0.001). Findings were replicated in the validation cohort, where machine learning classified 4 immune clusters with comparable proteomic, clinical, and prognostic features. CONCLUSIONS: Blood cytokine profiles distinguish PAH immune phenotypes with differing clinical risk that are independent of World Health Organization group 1 subtypes. These phenotypes could inform mechanistic studies of disease pathobiology and provide a framework to examine patient responses to emerging therapies targeting immunity.


Asunto(s)
Aprendizaje Automático , Hipertensión Arterial Pulmonar/inmunología , Adulto , Anciano , Estudios de Cohortes , Citocinas/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Proteómica , Hipertensión Arterial Pulmonar/mortalidad
13.
PLoS Comput Biol ; 16(2): e1007664, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32097405

RESUMEN

Correct annotation metadata is critical for reproducible and accurate RNA-seq analysis. When files are shared publicly or among collaborators with incorrect or missing annotation metadata, it becomes difficult or impossible to reproduce bioinformatic analyses from raw data. It also makes it more difficult to locate the transcriptomic features, such as transcripts or genes, in their proper genomic context, which is necessary for overlapping expression data with other datasets. We provide a solution in the form of an R/Bioconductor package tximeta that performs numerous annotation and metadata gathering tasks automatically on behalf of users during the import of transcript quantification files. The correct reference transcriptome is identified via a hashed checksum stored in the quantification output, and key transcript databases are downloaded and cached locally. The computational paradigm of automatically adding annotation metadata based on reference sequence checksums can greatly facilitate genomic workflows, by helping to reduce overhead during bioinformatic analyses, preventing costly bioinformatic mistakes, and promoting computational reproducibility. The tximeta package is available at https://bioconductor.org/packages/tximeta.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica , RNA-Seq , Algoritmos , Animales , Drosophila melanogaster , Genómica , Humanos , Ratones , Modelos Estadísticos , Reconocimiento de Normas Patrones Automatizadas , Lenguajes de Programación , Reproducibilidad de los Resultados , Programas Informáticos , Transcriptoma
14.
Am J Respir Crit Care Med ; 201(4): 458-468, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31647310

RESUMEN

Rationale: Pulmonary arterial hypertension (PAH) is a life-shortening condition. The European Society of Cardiology and European Respiratory Society and the REVEAL (North American Registry to Evaluate Early and Long-Term PAH Disease Management) risk score calculator (REVEAL 2.0) identify thresholds to predict 1-year mortality.Objectives: This study evaluates whether cardiac magnetic resonance imaging (MRI) thresholds can be identified and used to aid risk stratification and facilitate decision-making.Methods: Consecutive patients with PAH (n = 438) undergoing cardiac MRI were identified from the ASPIRE (Assessing the Spectrum of Pulmonary Hypertension Identified at a Referral Center) MRI database. Thresholds were identified from a discovery cohort and evaluated in a test cohort.Measurements and Main Results: A percentage-predicted right ventricular end-systolic volume index threshold of 227% or a left ventricular end-diastolic volume index of 58 ml/m2 identified patients at low (<5%) and high (>10%) risk of 1-year mortality. These metrics respectively identified 63% and 34% of patients as low risk. Right ventricular ejection fraction >54%, 37-54%, and <37% identified 21%, 43%, and 36% of patients at low, intermediate, and high risk, respectively, of 1-year mortality. At follow-up cardiac MRI, patients who improved to or were maintained in a low-risk group had a 1-year mortality <5%. Percentage-predicted right ventricular end-systolic volume index independently predicted outcome and, when used in conjunction with the REVEAL 2.0 risk score calculator or a modified French Pulmonary Hypertension Registry approach, improved risk stratification for 1-year mortality.Conclusions: Cardiac MRI can be used to risk stratify patients with PAH using a threshold approach. Percentage-predicted right ventricular end-systolic volume index can identify a high percentage of patients at low-risk of 1-year mortality and, when used in conjunction with current risk stratification approaches, can improve risk stratification. This study supports further evaluation of cardiac MRI in risk stratification in PAH.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Hipertensión Arterial Pulmonar/diagnóstico , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/diagnóstico por imagen , Medición de Riesgo/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas
15.
J Autoimmun ; 109: 102439, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32201227

RESUMEN

In primary Sjögren's syndrome (pSS), FcRL4+ B cells are present in inflamed salivary gland tissue, within or in close proximity to ductal epithelium. FcRL4 is also expressed by nearly all pSS-related mucosa-associated lymphoid tissue (MALT) B cell lymphomas, linking FcRL4 expression to lymphomagenesis. Whether glandular FcRL4+ B cells are pathogenic, how these cells originate, and how they functionally differ from FcRL4- B cells in pSS is unclear. This study aimed to investigate the phenotype and function of FcRL4+ B cells in the periphery and parotid gland tissue of patients with pSS. First, circulating FcRL4+ B cells from 44 pSS and 54 non-SS-sicca patients were analyzed by flow cytometry. Additionally, RNA sequencing of FcRL4+ B cells sorted from parotid gland cell suspensions of 6 pSS patients was performed. B cells were sorted from cell suspensions as mini bulk (5 cells/well) based on the following definitions: CD19+CD27-FcRL4- ('naive'), CD19+CD27+FcRL4- ('memory'), and CD19+FcRL4+ B cells. We found that, although FcRL4+ B cells were not enriched in blood in pSS compared with non-SS sicca patients, these cells generally exhibited a pro-inflammatory phenotype. Genes coding for CD11c (ITGAX), T-bet (TBX21), TACI (TNFRSF13B), Src tyrosine kinases and NF-κB pathway-related genes were, among others, significantly upregulated in glandular FcRL4+ B cells versus FcRL4- B cells. Pathway analysis showed upregulation of B cell activation, cell cycle and metabolic pathways. Thus, FcRL4+ B cells in pSS exhibit many characteristics of chronically activated, pro-inflammatory B cells and their gene expression profile suggests increased risk of lymphomagenesis. We postulate that these cells contribute significantly to the epithelial damage seen in the glandular tissue and that FcRL4+ B cells are an important treatment target in pSS.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Epitelio/inmunología , Epitelio/metabolismo , Perfilación de la Expresión Génica , Receptores Fc/metabolismo , Síndrome de Sjögren/etiología , Transcriptoma , Anciano , Biomarcadores , Susceptibilidad a Enfermedades , Femenino , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Inmunofenotipificación , Masculino , Persona de Mediana Edad , Receptores Fc/genética , Glándulas Salivales/inmunología , Glándulas Salivales/metabolismo , Transducción de Señal , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/patología
17.
Anal Chem ; 90(9): 5664-5670, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29629760

RESUMEN

The high sensitivity of proton transfer reaction-mass spectrometry (PTR-MS) makes it a suitable analytical tool for detecting trace compounds. Its specificity is primarily determined by the accuracy of identifying the m/ z of the product ions specific to a particular compound. However, specificity can be enhanced by changing the product ions (concentrations and types) through modifying the reduced electric field. For current PTR-MS systems, this is not possible for trace compounds that would only be present in the reaction chamber of a PTR-MS for a short time (seconds). For such circumstances, it is necessary to change the reduce electric field swiftly if specificity enhancements are to be achieved. In this paper we demonstrate such a novel approach, which permits any compound that may only be present in the drift tube for seconds to be thoroughly investigated. Specifically, we have developed hardware and software which permits the reaction region's voltages to be rapidly switched at a frequency of 0.1-5 Hz. We show how this technique can be used to provide a higher confidence in the identification of compounds than is possible by keeping to one reduced electric field value through illustrating the detection of explosives. Although demonstrated for homeland security applications, this new technique has applications in other analytical areas and disciplines where rapid changes in a compound's concentration can occur, for example, in the Earth's atmosphere, plant emissions and in breath. Importantly, this adaptation provides a method for improved selectivity without expensive instrumental changes or the need for high mass resolution instruments.

18.
Proc Natl Acad Sci U S A ; 112(31): 9698-703, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26195802

RESUMEN

Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) are chronic inflammatory diseases that together affect 2-3% of the population. RA and AS predominantly involve joints, but heart disease is also a common feature in RA and AS patients. Here we have studied a new spontaneous mutation that causes severe polyarthritis in bone phenotype spontaneous mutation 1 (BPSM1) mice. In addition to joint destruction, mutant mice also develop aortic root aneurism and aorto-mitral valve disease that can be fatal depending on the genetic background. The cause of the disease is the spontaneous insertion of a retrotransposon into the 3' untranslated region (3'UTR) of the tumor necrosis factor (TNF), which triggers its strong overexpression in myeloid cells. We found that several members of a family of RNA-binding, CCCH-containing zinc-finger proteins control TNF expression through its 3'UTR, and we identified a previously unidentified regulatory element in the UTR. The disease in BPSM1 mice is independent of the adaptive immune system and does not appear to involve inflammatory cytokines other than TNF. To our knowledge, this is the first animal model showing both polyarthritis and heart disease as a direct result of TNF deregulation. These results emphasize the therapeutic potential of anti-TNF drugs for the treatment of heart valve disease and identify potential therapeutic targets to control TNF expression and inflammation.


Asunto(s)
Regiones no Traducidas 3'/genética , Artritis/genética , Enfermedades de las Válvulas Cardíacas/genética , Mutagénesis Insercional/genética , Mutación/genética , Retroelementos/genética , Factor de Necrosis Tumoral alfa/genética , Aneurisma/patología , Animales , Insuficiencia de la Válvula Aórtica/complicaciones , Insuficiencia de la Válvula Aórtica/diagnóstico por imagen , Insuficiencia de la Válvula Aórtica/patología , Artritis/sangre , Artritis/diagnóstico por imagen , Artritis/patología , Secuencia de Bases , Trasplante de Médula Ósea , Quimiocinas/sangre , Enfermedad Crónica , Modelos Animales de Enfermedad , Fibrosis , Enfermedades de las Válvulas Cardíacas/sangre , Enfermedades de las Válvulas Cardíacas/diagnóstico por imagen , Enfermedades de las Válvulas Cardíacas/patología , Humanos , Inflamación/patología , Articulaciones/patología , Ratones Mutantes , Válvula Mitral/patología , Datos de Secuencia Molecular , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Elementos de Nucleótido Esparcido Corto/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ultrasonografía , Microtomografía por Rayos X , Dedos de Zinc/genética
19.
Eur Heart J ; 37(33): 2586-90, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27106955

RESUMEN

AIMS: We identified a novel homozygous truncating mutation in the gene encoding alpha kinase 3 (ALPK3) in a family presenting with paediatric cardiomyopathy. A recent study identified biallelic truncating mutations of ALPK3 in three unrelated families; therefore, there is strong genetic evidence that ALPK3 mutation causes cardiomyopathy. This study aimed to clarify the mutation mechanism and investigate the molecular and cellular pathogenesis underlying ALPK3-mediated cardiomyopathy. METHODS AND RESULTS: We performed detailed clinical and genetic analyses of a consanguineous family, identifying a new ALPK3 mutation (c.3792G>A, p.W1264X) which undergoes nonsense-mediated decay in ex vivo and in vivo tissues. Ultra-structural analysis of cardiomyocytes derived from patient-specific and human ESC-derived stem cell lines lacking ALPK3 revealed disordered sarcomeres and intercalated discs. Multi-electrode array analysis and calcium imaging demonstrated an extended field potential duration and abnormal calcium handling in mutant contractile cultures. CONCLUSIONS: This study validates the genetic evidence, suggesting that mutations in ALPK3 can cause familial cardiomyopathy and demonstrates loss of function as the underlying genetic mechanism. We show that ALPK3-deficient cardiomyocytes derived from pluripotent stem cell models recapitulate the ultrastructural and electrophysiological defects observed in vivo. Analysis of differentiated contractile cultures identified abnormal calcium handling as a potential feature of cardiomyocytes lacking ALPK3, providing functional insights into the molecular mechanisms underlying ALPK3-mediated cardiomyopathy.


Asunto(s)
Miocitos Cardíacos , Calcio , Cardiomiopatías , Células Madre Embrionarias Humanas , Humanos , Células Madre Pluripotentes Inducidas , Proteínas Musculares , Proteínas Quinasas
20.
Anal Chem ; 88(21): 10624-10630, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27715015

RESUMEN

A key issue with any analytical system based on mass spectrometry with no initial separation of compounds is to have a high level of confidence in chemical assignment. This is particularly true for areas of security, such as airports, and recent terrorist attacks have highlighted the need for reliable analytical instrumentation. Proton transfer reaction mass spectrometry is a useful technology for these purposes because the chances of false positives are small owing to the use of a mass spectrometric analysis. However, the detection of an ion at a given m/z for an explosive does not guarantee that that explosive is present. There is still some ambiguity associated with any chemical assignment owing to the presence of isobaric compounds and, depending on mass resolution, ions with the same nominal m/z. In this article we describe how for the first time the use of a radio frequency ion-funnel (RFIF) in the reaction region (drift tube) of a proton transfer reaction-time-of-flight-mass spectrometer (PTR-ToF-MS) can be used to enhance specificity by manipulating the ion-molecule chemistry through collisional induced processes. Results for trinitrotoluene, dinitrotoluenes, and nitrotoluenes are presented to demonstrate the advantages of this new RFIF-PTR-ToF-MS for analytical chemical purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA