Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circulation ; 147(25): 1902-1918, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37128901

RESUMEN

BACKGROUND: Cardiac-specific myosin light chain kinase (cMLCK), encoded by MYLK3, regulates cardiac contractility through phosphorylation of ventricular myosin regulatory light chain. However, the pathophysiological and therapeutic implications of cMLCK in human heart failure remain unclear. We aimed to investigate whether cMLCK dysregulation causes cardiac dysfunction and whether the restoration of cMLCK could be a novel myotropic therapy for systolic heart failure. METHODS: We generated the knock-in mice (Mylk3+/fs and Mylk3fs/fs) with a familial dilated cardiomyopathy-associated MYLK3 frameshift mutation (MYLK3+/fs) that had been identified previously by us (c.1951-1G>T; p.P639Vfs*15) and the human induced pluripotent stem cell-derived cardiomyocytes from the carrier of the mutation. We also developed a new small-molecule activator of cMLCK (LEUO-1154). RESULTS: Both mice (Mylk3+/fs and Mylk3fs/fs) showed reduced cMLCK expression due to nonsense-mediated messenger RNA decay, reduced MLC2v (ventricular myosin regulatory light chain) phosphorylation in the myocardium, and systolic dysfunction in a cMLCK dose-dependent manner. Consistent with this result, myocardium from the mutant mice showed an increased ratio of cardiac superrelaxation/disordered relaxation states that may contribute to impaired cardiac contractility. The phenotypes observed in the knock-in mice were rescued by cMLCK replenishment through the AAV9_MYLK3 vector. Human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation reduced cMLCK expression by 50% and contractile dysfunction, accompanied by an increased superrelaxation/disordered relaxation ratio. CRISPR-mediated gene correction, or cMLCK replenishment by AAV9_MYLK3 vector, successfully recovered cMLCK expression, the superrelaxation/disordered relaxation ratio, and contractile dysfunction. LEUO-1154 increased human cMLCK activity ≈2-fold in the Vmax for ventricular myosin regulatory light chain phosphorylation without affecting the Km. LEUO-1154 treatment of human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation restored the ventricular myosin regulatory light chain phosphorylation level and superrelaxation/disordered relaxation ratio and improved cardiac contractility without affecting calcium transients, indicating that the cMLCK activator acts as a myotrope. Finally, human myocardium from advanced heart failure with a wide variety of causes had a significantly lower MYLK3/PPP1R12B messenger RNA expression ratio than control hearts, suggesting an altered balance between myosin regulatory light chain kinase and phosphatase in the failing myocardium, irrespective of the causes. CONCLUSIONS: cMLCK dysregulation contributes to the development of cardiac systolic dysfunction in humans. Our strategy to restore cMLCK activity could form the basis of a novel myotropic therapy for advanced systolic heart failure.


Asunto(s)
Insuficiencia Cardíaca Sistólica , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosforilación , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Contracción Miocárdica/fisiología , ARN Mensajero/genética , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo
2.
Dev Growth Differ ; 66(2): 119-132, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38193576

RESUMEN

Research on cardiomyopathy models using engineered heart tissue (EHT) created from disease-specific induced pluripotent stem cells (iPSCs) is advancing rapidly. However, the study of restrictive cardiomyopathy (RCM), a rare and intractable cardiomyopathy, remains at the experimental stage because there is currently no established method to replicate the hallmark phenotype of RCM, particularly diastolic dysfunction, in vitro. In this study, we generated iPSCs from a patient with early childhood-onset RCM harboring the TNNI3 R170W mutation (R170W-iPSCs). The properties of R170W-iPSC-derived cardiomyocytes (CMs) and EHTs were evaluated and compared with an isogenic iPSC line in which the mutation was corrected. Our results indicated altered calcium kinetics in R170W-iPSC-CMs, including prolonged tau, and an increased ratio of relaxation force to contractile force in R170W-EHTs. These properties were reversed in the isogenic line, suggesting that our model recapitulates impaired relaxation of RCM, i.e., diastolic dysfunction in clinical practice. Furthermore, overexpression of wild-type TNNI3 in R170W-iPSC-CMs and -EHTs effectively rescued impaired relaxation. These results highlight the potential efficacy of EHT, a modality that can accurately recapitulate diastolic dysfunction in vitro, to elucidate the pathophysiology of RCM, as well as the possible benefits of gene therapies for patients with RCM.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Restrictiva , Células Madre Pluripotentes Inducidas , Niño , Preescolar , Humanos , Cardiomiopatía Restrictiva/genética , Cardiomiopatía Restrictiva/terapia , Mutación , Miocitos Cardíacos/fisiología
3.
Hum Mol Genet ; 30(15): 1384-1397, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-33949662

RESUMEN

Desmoglein-2, encoded by DSG2, is one of the desmosome proteins that maintain the structural integrity of tissues, including heart. Genetic mutations in DSG2 cause arrhythmogenic cardiomyopathy, mainly in an autosomal dominant manner. Here, we identified a homozygous stop-gain mutations in DSG2 (c.C355T, p.R119X) that led to complete desmoglein-2 deficiency in a patient with severe biventricular heart failure. Histological analysis revealed abnormal deposition of desmosome proteins, disrupted intercalated disk structures in the myocardium. Induced pluripotent stem cells (iPSCs) were generated from the patient (R119X-iPSC), and the mutated DSG2 gene locus was heterozygously corrected to a normal allele via homology-directed repair (HDR-iPSC). Both isogenic iPSCs were differentiated into cardiomyocytes [induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs)]. Multielectrode array analysis detected abnormal excitation in R119X-iPSC-CMs but not in HDR-iPSC-CMs. Micro-force testing of three-dimensional self-organized tissue rings (SOTRs) revealed tissue fragility and a weak maximum force in SOTRs from R119X-iPSC-CMs. Notably, these phenotypes were significantly recovered in HDR-iPSC-CMs. Myocardial fiber structures in R119X-iPSC-CMs were severely aberrant, and electron microscopic analysis confirmed that desmosomes were disrupted in these cells. Unexpectedly, the absence of desmoglein-2 in R119X-iPSC-CMs led to decreased expression of desmocollin-2 but no other desmosome proteins. Adeno-associated virus-mediated replacement of DSG2 significantly recovered the contraction force in SOTRs generated from R119X-iPSC-CMs. Our findings confirm the presence of a desmoglein-2-deficient cardiomyopathy among clinically diagnosed dilated cardiomyopathies. Recapitulation and correction of the disease phenotype using iPSC-CMs provide evidence to support the development of precision medicine and the proof of concept for gene replacement therapy for this cardiomyopathy.


Asunto(s)
Cardiomiopatías/patología , Desmogleína 2/deficiencia , Miocitos Cardíacos/metabolismo , Calcio/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatía Dilatada/metabolismo , Diferenciación Celular , Desmogleína 2/metabolismo , Desmogleínas/genética , Desmogleínas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Miocardio/metabolismo
4.
Biochem Biophys Res Commun ; 637: 40-49, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36375249

RESUMEN

Kinetic analysis of intracellular calcium (Ca2+) in cardiomyocytes is commonly used to determine the pathogenicity of genetic mutations identified in patients with dilated cardiomyopathy (DCM). Conventional methods for measuring Ca2+ kinetics target whole-well cultured cardiomyocytes and therefore lack information concerning individual cells. Results are also affected by heterogeneity in cell populations. Here, we developed an analytical method using CRISPR/Cas9 genome editing combined with high-content image analysis (HCIA) that links cell-by-cell Ca2+ kinetics and immunofluorescence images in thousands of cardiomyocytes at a time. After transfecting cultured mouse cardiomyocytes that constitutively express Cas9 with gRNAs, we detected a prolonged action potential duration specifically in Serca2a-depleted ventricular cardiomyocytes in mixed culture. To determine the phenotypic effect of a frameshift mutation in PKD1 in a patient with DCM, we introduced the mutation into Cas9-expressing cardiomyocytes by gRNA transfection and found that it decreases the expression of PKD1-encoded PC1 protein that co-localizes specifically with Serca2a and L-type voltage-gated calcium channels. We also detected the suppression of Ca2+ amplitude in ventricular cardiomyocytes with decreased PC1 expression in mixed culture. Our HCIA method provides comprehensive kinetic and static information on individual cardiomyocytes and allows the pathogenicity of mutations to be determined rapidly.


Asunto(s)
Calcio , Cardiomiopatía Dilatada , Ratones , Animales , Calcio/metabolismo , Cinética , Miocitos Cardíacos/metabolismo , Edición Génica/métodos , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Cardiomiopatía Dilatada/genética , ARN Guía de Kinetoplastida/genética
6.
Int Heart J ; 60(1): 220-225, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30464138

RESUMEN

A 70-year-old man with dyspnea was admitted to our department and received standard therapy for recurrent heart failure. He was diagnosed with polycystic kidney disease (PKD) in his thirties and received hemodialysis for 4 years before undergoing renal transplantation at age 45. Although his left ventricular ejection fraction (LVEF) was preserved in his 50s, LVEF decreased progressively from 61% to 24%, while left ventricular diastolic dimension (LVDd) increased from 54 mm to 65 mm between 63 and 69 years of age. Right ventricular endomyocardial biopsy demonstrated myocardial disarray and interstitial fibrosis. Genetic analysis identified a heterozygous frameshift mutation in PKD1, which encodes polycystin-1, a major causative gene of PKD. We detected PKD1 protein expression in myocardial tissue by immunostaining. Recent epidemiological studies and animal models have clarified the pathological correlation between ventricular contractile dysfunction and PKD1 function. Here, we present a case of old-age onset progressive cardiac contractile dysfunction with a PKD1 gene mutation.


Asunto(s)
Mutación del Sistema de Lectura/genética , Cardiopatías/fisiopatología , Miocardio/metabolismo , Enfermedades Renales Poliquísticas/complicaciones , Enfermedades Renales Poliquísticas/genética , Anciano , Ecocardiografía , Fibrosis/patología , Cardiopatías/etiología , Cardiopatías/genética , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/genética , Humanos , Trasplante de Riñón , Masculino , Contracción Miocárdica/genética , Miocardio/patología , Enfermedades Renales Poliquísticas/terapia , Volumen Sistólico/fisiología , Canales Catiónicos TRPP
7.
Circ J ; 82(4): 1083-1091, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29398672

RESUMEN

BACKGROUND: Erythropoietin (EPO) has antiapoptotic and tissue-protective effects, but previous clinical studies using high-dose EPO have not shown cardioprotective effects, probably because of platelet activation and a lack of knowledge regarding the optimal dose. In contrast, a small pilot study using low-dose EPO has shown improvement in left ventricular function without adverse cardiovascular events.Methods and Results:We performed a multicenter (25 hospitals), prospective, randomized, double-blind, placebo-controlled, dose-finding study to clarify the efficacy and safety of low-dose EPO in patients with ST-segment elevation myocardial infarction (STEMI) under the Evaluation System of Investigational Medical Care of the Ministry of Health, Labor and Welfare of Japan. In total, 198 STEMI patients with low left ventricular ejection fraction (LVEF <50%) were randomly assigned to receive intravenous administration of EPO (6,000 or 12,000 IU) or placebo within 6 h of successful percutaneous coronary intervention. At 6 months, there was no significant dose-response relationship in LVEF improvement among the 3 groups tested (EPO 12,000 IU: 5.4±9.3%, EPO 6,000 IU: 7.3±7.7%, Placebo: 8.1±8.3%, P=0.862). Low-dose EPO also did not improve cardiac function, as evaluated by 99 mTc-MIBI SPECT or NT-proBNP at 6 months and did not increase adverse events. CONCLUSIONS: Administration of low-dose EPO did not improve LVEF at 6 months in STEMI patients (UMIN000005721).


Asunto(s)
Eritropoyetina/administración & dosificación , Infarto del Miocardio con Elevación del ST/tratamiento farmacológico , Anciano , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Japón , Masculino , Persona de Mediana Edad , Proyectos Piloto , Volumen Sistólico , Insuficiencia del Tratamiento , Función Ventricular Izquierda
8.
Proc Natl Acad Sci U S A ; 112(5): 1553-8, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605899

RESUMEN

Cytochrome c oxidase (CcO) is the only enzyme that uses oxygen to produce a proton gradient for ATP production during mitochondrial oxidative phosphorylation. Although CcO activity increases in response to hypoxia, the underlying regulatory mechanism remains elusive. By screening for hypoxia-inducible genes in cardiomyocytes, we identified hypoxia inducible domain family, member 1A (Higd1a) as a positive regulator of CcO. Recombinant Higd1a directly integrated into highly purified CcO and increased its activity. Resonance Raman analysis revealed that Higd1a caused structural changes around heme a, the active center that drives the proton pump. Using a mitochondria-targeted ATP biosensor, we showed that knockdown of endogenous Higd1a reduced oxygen consumption and subsequent mitochondrial ATP synthesis, leading to increased cell death in response to hypoxia; all of these phenotypes were rescued by exogenous Higd1a. These results suggest that Higd1a is a previously unidentified regulatory component of CcO, and represents a therapeutic target for diseases associated with reduced CcO activity.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Adenosina Trifosfato/biosíntesis , Animales , Bovinos , Complejo IV de Transporte de Electrones/química , Transferencia Resonante de Energía de Fluorescencia , Hipoxia/enzimología , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Mitocondrias/enzimología , Fosforilación Oxidativa , Conformación Proteica
9.
Proc Natl Acad Sci U S A ; 111(1): 273-8, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24344269

RESUMEN

The oxidative phosphorylation (OXPHOS) system generates most of the ATP in respiring cells. ATP-depleting conditions, such as hypoxia, trigger responses that promote ATP production. However, how OXPHOS is regulated during hypoxia has yet to be elucidated. In this study, selective measurement of intramitochondrial ATP levels identified the hypoxia-inducible protein G0/G1 switch gene 2 (G0s2) as a positive regulator of OXPHOS. A mitochondria-targeted, FRET-based ATP biosensor enabled us to assess OXPHOS activity in living cells. Mitochondria-targeted, FRET-based ATP biosensor and ATP production assay in a semiintact cell system revealed that G0s2 increases mitochondrial ATP production. The expression of G0s2 was rapidly and transiently induced by hypoxic stimuli, and G0s2 interacts with OXPHOS complex V (FoF1-ATP synthase). Furthermore, physiological enhancement of G0s2 expression prevented cells from ATP depletion and induced a cellular tolerance for hypoxic stress. These results show that G0s2 positively regulates OXPHOS activity by interacting with FoF1-ATP synthase, which causes an increase in ATP production in response to hypoxic stress and protects cells from a critical energy crisis. These findings contribute to the understanding of a unique stress response to energy depletion. Additionally, this study shows the importance of assessing intramitochondrial ATP levels to evaluate OXPHOS activity in living cells.


Asunto(s)
Adenosina Trifosfato/química , Proteínas de Ciclo Celular/metabolismo , Genes de Cambio , Fosforilación Oxidativa , Animales , Técnicas Biosensibles , Bovinos , Supervivencia Celular , Fase G1 , Células HEK293 , Células HeLa , Humanos , Ratones , Microscopía Confocal , Mitocondrias/metabolismo , Miocitos Cardíacos/citología , Oligomicinas/química , Análisis de Secuencia por Matrices de Oligonucleótidos , Consumo de Oxígeno , Fosforilación , Ratas , Ratas Wistar , Proteínas Recombinantes/metabolismo , Fase de Descanso del Ciclo Celular , Factores de Tiempo
10.
EMBO Rep ; 15(4): 438-45, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24610369

RESUMEN

Toll-like receptor 9 (TLR9) has a key role in the recognition of pathogen DNA in the context of infection and cellular DNA that is released from damaged cells. Pro-inflammatory TLR9 signalling pathways in immune cells have been well investigated, but we have recently discovered an alternative pathway in which TLR9 temporarily reduces energy substrates to induce cellular protection from stress in cardiomyocytes and neurons. However, the mechanism by which TLR9 stimulation reduces energy substrates remained unknown. Here, we identify the calcium-transporting ATPase, SERCA2 (also known as Atp2a2), as a key molecule for the alternative TLR9 signalling pathway. TLR9 stimulation reduces SERCA2 activity, modulating Ca(2+) handling between the SR/ER and mitochondria, which leads to a decrease in mitochondrial ATP levels and the activation of cellular protective machinery. These findings reveal how distinct innate responses can be elicited in immune and non-immune cells--including cardiomyocytes--using the same ligand-receptor system.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Fibroblastos/fisiología , Miocitos Cardíacos/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Receptor Toll-Like 9/fisiología , Animales , Calcio/metabolismo , Señalización del Calcio , Células Cultivadas , Retículo Endoplásmico/metabolismo , Ratones , Mitocondrias/metabolismo , Unión Proteica , Estrés Fisiológico
11.
FASEB J ; 28(4): 1870-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24391132

RESUMEN

Recent advances in genome analysis have enabled the identification of numerous distal enhancers that regulate gene expression in various conditions. However, the enhancers involved in pathological conditions are largely unknown because of the lack of in vivo quantitative assessment of enhancer activity in live animals. Here, we established a noninvasive and quantitative live imaging system for monitoring transcriptional activity and identified a novel stress-responsive enhancer of Nppa and Nppb, the most common markers of heart failure. The enhancer is a 650-bp fragment within 50 kb of the Nppa and Nppb loci. A chromosome conformation capture (3C) assay revealed that this distal enhancer directly interacts with the 5'-flanking regions of Nppa and Nppb. To monitor the enhancer activity in a live heart, we established an imaging system using the firefly luciferase reporter. Using this imaging system, we observed that the novel enhancer activated the reporter gene in pressure overload-induced failing hearts (failing hearts: 5.7±1.3-fold; sham-surgery hearts: 1.0±0.2-fold; P<0.001, repeated-measures ANOVA). This method will be particularly useful for identifying enhancers that function only during pathological conditions.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Insuficiencia Cardíaca/genética , Mediciones Luminiscentes/métodos , Péptido Natriurético Encefálico/genética , Péptido Natriurético Tipo-C/genética , Precursores de Proteínas/genética , Región de Flanqueo 5'/genética , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Animales Recién Nacidos , Factor Natriurético Atrial , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Insuficiencia Cardíaca/metabolismo , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico
12.
iScience ; 27(2): 108992, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38333703

RESUMEN

Human iPSC-derived cardiomyocytes (hiPSC-CMs) exhibit functional immaturity, potentially impacting their suitability for assessing drug proarrhythmic potential. We previously devised a traveling wave (TW) system to promote maturation in 3D cardiac tissue. To align with current drug assessment paradigms (CiPA and JiCSA), necessitating a 2D monolayer cardiac tissue, we integrated the TW system with a multi-electrode array. This gave rise to a hiPSC-derived closed-loop cardiac tissue (iCT), enabling spontaneous TW initiation and swift pacing of cardiomyocytes from various cell lines. The TW-paced cardiomyocytes demonstrated heightened sarcomeric and functional maturation, exhibiting enhanced response to isoproterenol. Moreover, these cells showcased diminished sensitivity to verapamil and maintained low arrhythmia rates with ranolazine-two drugs associated with a low risk of torsades de pointes (TdP). Notably, the TW group displayed increased arrhythmia rates with high and intermediate risk TdP drugs (quinidine and pimozide), underscoring the potential utility of this system in drug assessment applications.

13.
World J Stem Cells ; 15(3): 71-82, 2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37007457

RESUMEN

Cardiomyopathy is a pathological condition characterized by cardiac pump failure due to myocardial dysfunction and the major cause of advanced heart failure requiring heart transplantation. Although optimized medical therapies have been developed for heart failure during the last few decades, some patients with cardiomyopathy exhibit advanced heart failure and are refractory to medical therapies. Desmosome, which is a dynamic cell-to-cell junctional component, maintains the structural integrity of heart tissues. Genetic mutations in desmosomal genes cause arrhythmogenic cardiomyopathy (AC), a rare inheritable disease, and predispose patients to sudden cardiac death and heart failure. Recent advances in sequencing technologies have elucidated the genetic basis of cardiomyopathies and revealed that desmosome-related cardiomyopathy is concealed in broad cardiomyopathies. Among desmosomal genes, mutations in PKP2 (which encodes PKP2) are most frequently identified in patients with AC. PKP2 deficiency causes various pathological cardiac phenotypes. Human cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSCs) in combination with genome editing, which allows the precise arrangement of the targeted genome, are powerful experimental tools for studying disease. This review summarizes the current issues associated with practical medicine for advanced heart failure and the recent advances in disease modeling using iPSC-derived cardiomyocytes targeting desmosome-related cardiomyopathy caused by PKP2 deficiency.

14.
JACC Basic Transl Sci ; 8(6): 599-613, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37426526

RESUMEN

Study investigators encountered a female Becker muscular dystrophy (BMD) carrier with advanced heart failure (HF) and identified a stop-gain variant in procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) as a potential second-hit variant. Isogenic induced pluripotent stem cells (iPSCs) with dominant expression of WT-DMD, Δ45-48-DMD, or Δ45-48-DMD with corrected PLOD3 variant were established. Microforce testing using 3-dimensional self-organized tissue rings (SOTRs) generated from iPSC-derived cardiomyocytes (iPSC-CMs) demonstrated that correction of the heterozygous PLOD3 variant did not improve the reduced force, but it significantly recovered the reduced stiffness in Δ45-48-DMD SOTRs. Correction of the PLOD3 variant restored collagen synthesis in iPSC-CMs. Our findings revealed the pathogenesis underlying advanced HF in a female BMD carrier.

15.
Life Sci Alliance ; 6(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37236659

RESUMEN

Estimation of dynamic change of crossbridge formation in living cardiomyocytes is expected to provide crucial information for elucidating cardiomyopathy mechanisms, efficacy of an intervention, and others. Here, we established an assay system to dynamically measure second harmonic generation (SHG) anisotropy derived from myosin filaments depended on their crossbridge status in pulsating cardiomyocytes. Experiments utilizing an inheritable mutation that induces excessive myosin-actin interactions revealed that the correlation between sarcomere length and SHG anisotropy represents crossbridge formation ratio during pulsation. Furthermore, the present method found that ultraviolet irradiation induced an increased population of attached crossbridges that lost the force-generating ability upon myocardial differentiation. Taking an advantage of infrared two-photon excitation in SHG microscopy, myocardial dysfunction could be intravitally evaluated in a Drosophila disease model. Thus, we successfully demonstrated the applicability and effectiveness of the present method to evaluate the actomyosin activity of a drug or genetic defect on cardiomyocytes. Because genomic inspection alone may not catch the risk of cardiomyopathy in some cases, our study demonstrated herein would be of help in the risk assessment of future heart failure.


Asunto(s)
Miocitos Cardíacos , Microscopía de Generación del Segundo Armónico , Miosinas , Actomiosina , Miocardio
16.
Intern Med ; 62(21): 3167-3173, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36948619

RESUMEN

The MYH7 R453 variant has been identified in inherited hypertrophic cardiomyopathy (HCM) and is associated with sudden death and a poor prognosis. The detailed clinical course of HCM with the MYH7 R453 variant, from a preserved to a reduced left ventricular ejection fraction, has not been reported. We identified the MYH7 R453C and R453H variants in three patients who progressively developed advanced heart failure requiring circulatory support and summarized the clinical course and echocardiographic parameters of these patients over the years. Because of the rapid disease progression, we consider genetic screening for patients with HCM imperative for future prognosis stratification.


Asunto(s)
Cardiomiopatía Hipertrófica , Insuficiencia Cardíaca , Humanos , Mutación/genética , Volumen Sistólico , Función Ventricular Izquierda , Cardiomiopatía Hipertrófica/complicaciones , Cardiomiopatía Hipertrófica/genética , Insuficiencia Cardíaca/genética , Progresión de la Enfermedad , Cadenas Pesadas de Miosina/genética , Miosinas Cardíacas/genética
17.
Sci Rep ; 13(1): 21397, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049441

RESUMEN

Although an increased risk of myocarditis has been observed after vaccination with mRNA encoding severe acute respiratory syndrome coronavirus 2 spike protein, its underlying mechanism has not been elucidated. This study investigated the direct effects of spike receptor-binding domain (S-RBD) on human cardiomyocytes differentiated from induced pluripotent stem cells (iPSC-CMs). Immunostaining experiments using ACE2 wild-type (WT) and knockout (KO) iPSC-CMs treated with purified S-RBD demonstrated that S-RBD was bound to ACE2 and internalized into the subcellular space in the iPSC-CMs, depending on ACE2. Immunostaining combined with live cell imaging using a recombinant S-RBD fused to the superfolder GFP (S-RBD-sfGFP) demonstrated that S-RBD was bound to the cell membrane, co-localized with RAB5A, and then delivered from the endosomes to the lysosomes in iPSC-CMs. Quantitative PCR array analysis followed by single cell RNA sequence analysis clarified that S-RBD-sfGFP treatment significantly upregulated the NF-kß pathway-related gene (CXCL1) in the differentiated non-cardiomyocytes, while upregulated interferon (IFN)-responsive genes (IFI6, ISG15, and IFITM3) in the matured cardiomyocytes. S-RBD-sfGFP treatment promoted protein ISGylation, an ISG15-mediated post-translational modification in ACE2-WT-iPSC-CMs, which was suppressed in ACE2-KO-iPSC-CMs. Our experimental study demonstrates that S-RBD is internalized through the endolysosomal pathway, which upregulates IFN-responsive genes and promotes ISGylation in the iPSC-CMs.


Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , Humanos , SARS-CoV-2/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , COVID-19/metabolismo , Miocitos Cardíacos/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Unión Proteica , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo
18.
Eur Heart J Open ; 3(5): oead104, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37908440

RESUMEN

Aims: Doxorubicin is used in classical chemotherapy for several cancer types. Doxorubicin-induced cardiomyopathy (DOX-CM) is a critical issue among cancer patients. However, differentiating the diagnosis of DOX-CM from that of other cardiomyopathies is difficult. Therefore, in this study, we aimed to determine novel histopathological characteristics to diagnose DOX-CM. Methods and results: Twelve consecutive patients with DOX-CM who underwent cardiac histopathological examination in two medical centres were included. Twelve patients with dilated cardiomyopathy, who were matched with DOX-CM patients in terms of age, sex, and left ventricular ejection fraction, formed the control group. Another control group comprised five consecutive patients with cancer therapy-related cardiac dysfunction induced by tyrosine kinase inhibitors or vascular endothelial growth factor inhibitors were the controls. The positive area of tenascin-C, number of infiltrating macrophages, and presence of p62- and ubiquitin-positive cardiomyocytes were evaluated. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were used for in vitro investigation. The myocardium exhibited significantly greater tenascin-C-positive area and macrophage number in the DOX-CM group than in the control groups (P < 0.01). The tenascin-C-positive area correlated with the number of both CD68- and CD163-positive cells (r = 0.748 and r = 0.656, respectively). Immunostaining for p62 was positive in 10 (83%) patients with DOX-CM. Furthermore, western blotting analysis revealed significant increase in tenascin-C levels in hiPSC-CMs upon doxorubicin treatment (P < 0.05). Conclusion: The combined histopathological assessment for tenascin-C, macrophages, and p62/ubiquitin may serve as a novel tool for the diagnosis of DOX-CM. Doxorubicin may directly affect the expression of tenascin-C in the myocardium.

19.
Cardiovasc Drugs Ther ; 26(5): 409-16, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22940818

RESUMEN

PURPOSE: The development of novel pharmaceutical interventions to improve the clinical outcomes of patients with acute ST-segment elevation myocardial infarction (STEMI) is an unmet medical need worldwide. In animal models, a single intravenous administration of erythropoietin (EPO) during reperfusion improves left ventricular (LV) function in the chronic stage. However, the results of recent proof-of-concept trials using high-dose EPO in patients with STEMI are inconsistent. In our pilot study, low-dose EPO after successful percutaneous coronary intervention (PCI) improved the LV ejection fraction (EF) and did not trigger severe adverse clinical events in patients with STEMI. One possible reason for this discrepancy is the dose of EPO used. METHODS AND RESULTS: We have started a double-blind, placebo-controlled, randomized, multicenter clinical trial (EPO-AMI-II) to clarify the safety and efficacy of low-dose EPO in patients with STEMI. STEMI patients who have a low LVEF (<50 %) will be randomly assigned to intravenous administration of placebo or EPO (6,000 or 12,000 IU) within 6 h after successful PCI. The primary endpoint is the difference in LVEF between the acute and chronic phases (6 months), as measured by single-photon emission computed tomography. The patient number needed for EPO-AMI-II is 600. The study will stop when superior efficacy or futility is detected by an interim analysis. This study has been approved by the Evaluation System of Investigational Medical Care. CONCLUSIONS: EPO-AMI-II study will clarify the safety and efficacy of low-dose EPO in STEMI patients with LV dysfunction in a double-blind, placebo-controlled, multicenter study. (247 words).


Asunto(s)
Eritropoyetina/administración & dosificación , Infarto del Miocardio/tratamiento farmacológico , Disfunción Ventricular Izquierda/tratamiento farmacológico , Adulto , Anciano , Método Doble Ciego , Eritropoyetina/efectos adversos , Humanos , Persona de Mediana Edad , Infarto del Miocardio/cirugía , Intervención Coronaria Percutánea , Daño por Reperfusión/prevención & control , Disfunción Ventricular Izquierda/cirugía , Adulto Joven
20.
Intern Med ; 61(13): 1987-1993, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34924461

RESUMEN

Phospholamban p.Arg14del is reported to cause hereditary cardiomyopathy with malignant ventricular tachycardia (VT) and advanced heart failure. However, the clinical courses of Japanese cardiomyopathy patients with phospholamban p.Arg14del remain uncharacterized. We identified five patients with this variant. All patients were diagnosed with dilated cardiomyopathy (DCM), developed end-stage heart failure and experienced VT requiring implantable cardioverter defibrillator discharge. Four patients survived after implantation of a left ventricular assist device (LVAD), while one patient who refused LVAD implantation died of heart failure. Based on the severe course of the disease, we propose genetic screening for phospholamban p.Arg14del in DCM patients.


Asunto(s)
Proteínas de Unión al Calcio , Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Taquicardia Ventricular , Arritmias Cardíacas/complicaciones , Proteínas de Unión al Calcio/genética , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Desfibriladores Implantables , Insuficiencia Cardíaca/complicaciones , Humanos , Japón , Taquicardia Ventricular/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA