Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Anal Chim Acta ; 1179: 338840, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34535264

RESUMEN

Glycosylation is a prominent co- and post-translational modification which contributes to a variety of important biological functions. Protein glycosylation characteristics, particularly N-glycosylation, are influenced by changes in one's pathological state, such as through the presence of disease, and as such, there is great interest in N-glycans as potential disease biomarkers. Human serum is an attractive source for N-glycan based biomarker studies as circulatory proteins are representative of one's physiology, with many serum proteins containing N-glycosylation. The difficulty in comprehensively characterizing the serum N-glycome arises from the absence of a biosynthetic template resulting in great structural heterogeneity and complexity. To help overcome these challenges we developed a 2-dimensional liquid chromatography platform which utilizes offline weak anion exchange (WAX) chromatography in the first dimension and hydrophilic interaction liquid chromatography (HILIC) in the second dimension to separate N-glycans by charge, corresponding to degree of sialylation, and size, respectively. Performing these separations offline enables subsequent derivatization with 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) for sialic acid linkage determination and the identification of sialic acid linkage isomers. Subsequent tandem mass spectrometry analysis revealed the identification of 212 complete and partial N-glycan structures including low abundant N-glycans containing acetyl and sulphate modifications. The identifications obtained through this platform were then applied to N-glycans released from a set of stage 3 gastric cancer serum samples obtained from patients before (pre-op) and after (post-op) tumour resection to investigate how the serum N-glycome can facilitate differentiation between the two pathological states.


Asunto(s)
Morfolinas , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Humanos
2.
RSC Med Chem ; 11(8): 950-959, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479690

RESUMEN

Human African trypanosomiasis is a neglected tropical disease (NTD) that is fatal if left untreated. Although approximately 13 million people live in moderate- to high-risk areas for infection, current treatments are plagued by problems with safety, efficacy, and emerging resistance. In an effort to fill the drug development pipeline for HAT, we have expanded previous work exploring the chemotype represented by the compound NEU-1090, with a particular focus on improvement of absorption, distribution, metabolism and elimination (ADME) properties. These efforts resulted in several compounds with substantially improved aqueous solubility, although these modifications typically resulted in a loss of trypanosomal activity. We herein report the results of our investigation into the antiparasitic activity, toxicity, and ADME properties of this class of compounds in the interest of informing the NTD drug discovery community and avoiding duplication of effort.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA