Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(5): 957-974.e28, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36812912

RESUMEN

Bats are distinctive among mammals due to their ability to fly, use laryngeal echolocation, and tolerate viruses. However, there are currently no reliable cellular models for studying bat biology or their response to viral infections. Here, we created induced pluripotent stem cells (iPSCs) from two species of bats: the wild greater horseshoe bat (Rhinolophus ferrumequinum) and the greater mouse-eared bat (Myotis myotis). The iPSCs from both bat species showed similar characteristics and had a gene expression profile resembling that of cells attacked by viruses. They also had a high number of endogenous viral sequences, particularly retroviruses. These results suggest that bats have evolved mechanisms to tolerate a large load of viral sequences and may have a more intertwined relationship with viruses than previously thought. Further study of bat iPSCs and their differentiated progeny will provide insights into bat biology, virus host relationships, and the molecular basis of bats' special traits.


Asunto(s)
Quirópteros , Células Madre Pluripotentes , Virosis , Virus , Animales , Virus/genética , Transcriptoma , Filogenia
2.
Cell ; 163(6): 1527-38, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638077

RESUMEN

The killifish Nothobranchius furzeri is the shortest-lived vertebrate that can be bred in the laboratory. Its rapid growth, early sexual maturation, fast aging, and arrested embryonic development (diapause) make it an attractive model organism in biomedical research. Here, we report a draft sequence of its genome that allowed us to uncover an intra-species Y chromosome polymorphism representing-in real time-different stages of sex chromosome formation that display features of early mammalian XY evolution "in action." Our data suggest that gdf6Y, encoding a TGF-ß family growth factor, is the master sex-determining gene in N. furzeri. Moreover, we observed genomic clustering of aging-related genes, identified genes under positive selection, and revealed significant similarities of gene expression profiles between diapause and aging, particularly for genes controlling cell cycle and translation. The annotated genome sequence is provided as an online resource (http://www.nothobranchius.info/NFINgb).


Asunto(s)
Evolución Biológica , Peces Killi/genética , Cromosomas Sexuales , Envejecimiento , Animales , Femenino , Genoma , Peces Killi/fisiología , Masculino , Datos de Secuencia Molecular , Procesos de Determinación del Sexo
3.
Nature ; 583(7817): 578-584, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32699395

RESUMEN

Bats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols1 to generate, to our knowledge, the first reference-quality genomes of six bat species (Rhinolophus ferrumequinum, Rousettus aegyptiacus, Phyllostomus discolor, Myotis myotis, Pipistrellus kuhlii and Molossus molossus). We integrated gene projections from our 'Tool to infer Orthologs from Genome Alignments' (TOGA) software with de novo and homology gene predictions as well as short- and long-read transcriptomics to generate highly complete gene annotations. To resolve the phylogenetic position of bats within Laurasiatheria, we applied several phylogenetic methods to comprehensive sets of orthologous protein-coding and noncoding regions of the genome, and identified a basal origin for bats within Scrotifera. Our genome-wide screens revealed positive selection on hearing-related genes in the ancestral branch of bats, which is indicative of laryngeal echolocation being an ancestral trait in this clade. We found selection and loss of immunity-related genes (including pro-inflammatory NF-κB regulators) and expansions of anti-viral APOBEC3 genes, which highlights molecular mechanisms that may contribute to the exceptional immunity of bats. Genomic integrations of diverse viruses provide a genomic record of historical tolerance to viral infection in bats. Finally, we found and experimentally validated bat-specific variation in microRNAs, which may regulate bat-specific gene-expression programs. Our reference-quality bat genomes provide the resources required to uncover and validate the genomic basis of adaptations of bats, and stimulate new avenues of research that are directly relevant to human health and disease1.


Asunto(s)
Adaptación Fisiológica/genética , Quirópteros/genética , Evolución Molecular , Genoma/genética , Genómica/normas , Adaptación Fisiológica/inmunología , Animales , Quirópteros/clasificación , Quirópteros/inmunología , Elementos Transponibles de ADN/genética , Inmunidad/genética , Anotación de Secuencia Molecular/normas , Filogenia , ARN no Traducido/genética , Estándares de Referencia , Reproducibilidad de los Resultados , Integración Viral/genética , Virus/genética
4.
Proc Natl Acad Sci U S A ; 120(43): e2307340120, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37844245

RESUMEN

Echolocation, the detection of objects by means of sound waves, has evolved independently in diverse animals. Echolocators include not only mammals such as toothed whales and yangochiropteran and rhinolophoid bats but also Rousettus fruit bats, as well as two bird lineages, oilbirds and swiftlets. In whales and yangochiropteran and rhinolophoid bats, positive selection and molecular convergence has been documented in key hearing-related genes, such as prestin (SLC26A5), but few studies have examined these loci in other echolocators. Here, we examine patterns of selection and convergence in echolocation-related genes in echolocating birds and Rousettus bats. Fewer of these loci were under selection in Rousettus or birds compared with classically recognized echolocators, and elevated convergence (compared to outgroups) was not evident across this gene set. In certain genes, however, we detected convergent substitutions with potential functional relevance, including convergence between Rousettus and classic echolocators in prestin at a site known to affect hair cell electromotility. We also detected convergence between Yangochiroptera, Rhinolophidea, and oilbirds in TMC1, an important mechanosensory transduction channel in vertebrate hair cells, and observed an amino acid change at the same site within the pore domain. Our results suggest that although most proteins implicated in echolocation in specialized mammals may not have been recruited in birds or Rousettus fruit bats, certain hearing-related loci may have undergone convergent functional changes. Investigating adaptations in diverse echolocators will deepen our understanding of this unusual sensory modality.


Asunto(s)
Quirópteros , Ecolocación , Animales , Quirópteros/fisiología , Filogenia , Evolución Molecular , Mamíferos/genética , Audición/genética , Ballenas/fisiología , Aves/genética , Ecolocación/fisiología
5.
PLoS Genet ; 19(7): e1010798, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37498820

RESUMEN

Some organisms in nature have developed the ability to enter a state of suspended metabolism called cryptobiosis when environmental conditions are unfavorable. This state-transition requires execution of a combination of genetic and biochemical pathways that enable the organism to survive for prolonged periods. Recently, nematode individuals have been reanimated from Siberian permafrost after remaining in cryptobiosis. Preliminary analysis indicates that these nematodes belong to the genera Panagrolaimus and Plectus. Here, we present precise radiocarbon dating indicating that the Panagrolaimus individuals have remained in cryptobiosis since the late Pleistocene (~46,000 years). Phylogenetic inference based on our genome assembly and a detailed morphological analysis demonstrate that they belong to an undescribed species, which we named Panagrolaimus kolymaensis. Comparative genome analysis revealed that the molecular toolkit for cryptobiosis in P. kolymaensis and in C. elegans is partly orthologous. We show that biochemical mechanisms employed by these two species to survive desiccation and freezing under laboratory conditions are similar. Our experimental evidence also reveals that C. elegans dauer larvae can remain viable for longer periods in suspended animation than previously reported. Altogether, our findings demonstrate that nematodes evolved mechanisms potentially allowing them to suspend life over geological time scales.


Asunto(s)
Nematodos , Hielos Perennes , Humanos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Larva/genética , Larva/metabolismo , Filogenia
6.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376487

RESUMEN

The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.


Asunto(s)
Balaenoptera , Neoplasias , Animales , Balaenoptera/genética , Duplicaciones Segmentarias en el Genoma , Genoma , Demografía , Neoplasias/genética
7.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37071810

RESUMEN

Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.


Asunto(s)
Quirópteros , Elementos Transponibles de ADN , Animales , Elementos Transponibles de ADN/genética , Quirópteros/genética , Transferencia de Gen Horizontal , Evolución Molecular , Mamíferos/genética , Filogenia
8.
Artículo en Inglés | MEDLINE | ID: mdl-38946691

RESUMEN

Vertebrate animals that run or jump across sparsely vegetated habitats, such as horses and jerboas, have reduced the number of distal limb bones, and many have lost most or all distal limb muscle. We previously showed that nascent muscles are present in the jerboa hindfoot at birth and that these myofibers are rapidly and completely lost soon after by a process that shares features with pathological skeletal muscle atrophy. Here, we apply an intra- and interspecies differential RNA-Seq approach, comparing jerboa and mouse muscles, to identify gene expression differences associated with the initiation and progression of jerboa hindfoot muscle loss. We show evidence for reduced hepatocyte growth factor and fibroblast growth factor signaling and an imbalance in nitric oxide signaling; all are pathways that are necessary for skeletal muscle development and regeneration. We also find evidence for phagosome formation, which hints at how myofibers may be removed by autophagy or by nonprofessional phagocytes without evidence for cell death or immune cell activation. Last, we show significant overlap between genes associated with jerboa hindfoot muscle loss and genes that are differentially expressed in a variety of human muscle pathologies and rodent models of muscle loss disorders. All together, these data provide molecular insight into the process of evolutionary and developmental muscle loss in jerboa hindfeet.

9.
Nature ; 554(7690): 56-61, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364871

RESUMEN

The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms.


Asunto(s)
Evolución Molecular , Genoma/genética , Planarias/citología , Planarias/genética , Animales , Proteínas de Ciclo Celular/deficiencia , Genómica , Puntos de Control de la Fase M del Ciclo Celular/genética , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Proteínas Mad2/deficiencia , Planarias/fisiología , Regeneración/genética , Reproducción Asexuada/genética , Retroelementos/genética
10.
Nature ; 554(7690): 50-55, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364872

RESUMEN

Salamanders serve as important tetrapod models for developmental, regeneration and evolutionary studies. An extensive molecular toolkit makes the Mexican axolotl (Ambystoma mexicanum) a key representative salamander for molecular investigations. Here we report the sequencing and assembly of the 32-gigabase-pair axolotl genome using an approach that combined long-read sequencing, optical mapping and development of a new genome assembler (MARVEL). We observed a size expansion of introns and intergenic regions, largely attributable to multiplication of long terminal repeat retroelements. We provide evidence that intron size in developmental genes is under constraint and that species-restricted genes may contribute to limb regeneration. The axolotl genome assembly does not contain the essential developmental gene Pax3. However, mutation of the axolotl Pax3 paralogue Pax7 resulted in an axolotl phenotype that was similar to those seen in Pax3-/- and Pax7-/- mutant mice. The axolotl genome provides a rich biological resource for developmental and evolutionary studies.


Asunto(s)
Ambystoma mexicanum/genética , Evolución Molecular , Genoma/genética , Genómica , Animales , ADN Intergénico/genética , Genes Esenciales/genética , Proteínas de Homeodominio/genética , Intrones/genética , Masculino , Ratones , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX7/genética , Picea/genética , Pinus/genética , Regeneración/genética , Retroelementos/genética , Secuencias Repetidas Terminales/genética
11.
Nature ; 559(7712): E2, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29795340

RESUMEN

In the originally published version of this Article, the sequenced axolotl strain (the homozygous white mutant) was denoted as 'D/D' rather than 'd/d' in Fig. 1a and the accompanying legend, the main text and the Methods section. The original Article has been corrected online.

12.
BMC Biol ; 21(1): 79, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37041515

RESUMEN

BACKGROUND: Baleen whales are a clade of gigantic and highly specialized marine mammals. Their genomes have been used to investigate their complex evolutionary history and to decipher the molecular mechanisms that allowed them to reach these dimensions. However, many unanswered questions remain, especially about the early radiation of rorquals and how cancer resistance interplays with their huge number of cells. The pygmy right whale is the smallest and most elusive among the baleen whales. It reaches only a fraction of the body length compared to its relatives and it is the only living member of an otherwise extinct family. This placement makes the pygmy right whale genome an interesting target to update the complex phylogenetic past of baleen whales, because it splits up an otherwise long branch that leads to the radiation of rorquals. Apart from that, genomic data of this species might help to investigate cancer resistance in large whales, since these mechanisms are not as important for the pygmy right whale as in other giant rorquals and right whales. RESULTS: Here, we present a first de novo genome of the species and test its potential in phylogenomics and cancer research. To do so, we constructed a multi-species coalescent tree from fragments of a whole-genome alignment and quantified the amount of introgression in the early evolution of rorquals. Furthermore, a genome-wide comparison of selection rates between large and small-bodied baleen whales revealed a small set of conserved candidate genes with potential connections to cancer resistance. CONCLUSIONS: Our results suggest that the evolution of rorquals is best described as a hard polytomy with a rapid radiation and high levels of introgression. The lack of shared positive selected genes between different large-bodied whale species supports a previously proposed convergent evolution of gigantism and hence cancer resistance in baleen whales.


Asunto(s)
Neoplasias , Ballenas , Animales , Filogenia , Genoma , Genómica , Neoplasias/genética
13.
BMC Genomics ; 24(1): 443, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550607

RESUMEN

BACKGROUND: Morphological and traditional genetic studies of the young Pliocene genus Hyles have led to the understanding that despite its importance for taxonomy, phenotypic similarity of wing patterns does not correlate with phylogenetic relationship. To gain insights into various aspects of speciation in the Spurge Hawkmoth (Hyles euphorbiae), we assembled a chromosome-level genome and investigated some of its characteristics. RESULTS: The genome of a male H. euphorbiae was sequenced using PacBio and Hi-C data, yielding a 504 Mb assembly (scaffold N50 of 18.2 Mb) with 99.9% of data represented by the 29 largest scaffolds forming the haploid chromosome set. Consistent with this, FISH analysis of the karyotype revealed n = 29 chromosomes and a WZ/ZZ (female/male) sex chromosome system. Estimates of chromosome length based on the karyotype image provided an additional quality metric of assembled chromosome size. Rescaffolding the published male H. vespertilio genome resulted in a high-quality assembly (651 Mb, scaffold N50 of 22 Mb) with 98% of sequence data in the 29 chromosomes. The larger genome size of H. vespertilio (average 1C DNA value of 562 Mb) was accompanied by a proportional increase in repeats from 45% in H. euphorbiae (measured as 472 Mb) to almost 55% in H. vespertilio. Several wing pattern genes were found on the same chromosomes in the two species, with varying amounts and positions of repetitive elements and inversions possibly corrupting their function. CONCLUSIONS: Our two-fold comparative genomics approach revealed high gene synteny of the Hyles genomes to other Sphingidae and high correspondence to intact Merian elements, the ancestral linkage groups of Lepidoptera, with the exception of three simple fusion events. We propose a standardized approach for genome taxonomy using nucleotide homology via scaffold chaining as the primary tool combined with Oxford plots based on Merian elements to infer and visualize directionality of chromosomal rearrangements. The identification of wing pattern genes promises future understanding of the evolution of forewing patterns in the genus Hyles, although further sequencing data from more individuals are needed. The genomic data obtained provide additional reliable references for further comparative studies in hawkmoths (Sphingidae).


Asunto(s)
Cromosomas , Mariposas Nocturnas , Animales , Femenino , Masculino , Sintenía , Haploidia , Filogenia , Mariposas Nocturnas/genética , Cariotipo
14.
Proc Natl Acad Sci U S A ; 117(36): 22311-22322, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32826334

RESUMEN

The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19. The main receptor of SARS-CoV-2, angiotensin I converting enzyme 2 (ACE2), is now undergoing extensive scrutiny to understand the routes of transmission and sensitivity in different species. Here, we utilized a unique dataset of ACE2 sequences from 410 vertebrate species, including 252 mammals, to study the conservation of ACE2 and its potential to be used as a receptor by SARS-CoV-2. We designed a five-category binding score based on the conservation properties of 25 amino acids important for the binding between ACE2 and the SARS-CoV-2 spike protein. Only mammals fell into the medium to very high categories and only catarrhine primates into the very high category, suggesting that they are at high risk for SARS-CoV-2 infection. We employed a protein structural analysis to qualitatively assess whether amino acid changes at variable residues would be likely to disrupt ACE2/SARS-CoV-2 spike protein binding and found the number of predicted unfavorable changes significantly correlated with the binding score. Extending this analysis to human population data, we found only rare (frequency <0.001) variants in 10/25 binding sites. In addition, we found significant signals of selection and accelerated evolution in the ACE2 coding sequence across all mammals, and specific to the bat lineage. Our results, if confirmed by additional experimental data, may lead to the identification of intermediate host species for SARS-CoV-2, guide the selection of animal models of COVID-19, and assist the conservation of animals both in native habitats and in human care.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/metabolismo , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Neumonía Viral/metabolismo , Aminoácidos , Animales , Betacoronavirus/metabolismo , Sitios de Unión , COVID-19 , Infecciones por Coronavirus/virología , Evolución Molecular , Variación Genética , Especificidad del Huésped , Humanos , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , Unión Proteica , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2 , Selección Genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vertebrados
15.
BMC Biol ; 20(1): 245, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36344967

RESUMEN

BACKGROUND: The Nile rat (Avicanthis niloticus) is an important animal model because of its robust diurnal rhythm, a cone-rich retina, and a propensity to develop diet-induced diabetes without chemical or genetic modifications. A closer similarity to humans in these aspects, compared to the widely used Mus musculus and Rattus norvegicus models, holds the promise of better translation of research findings to the clinic. RESULTS: We report a 2.5 Gb, chromosome-level reference genome assembly with fully resolved parental haplotypes, generated with the Vertebrate Genomes Project (VGP). The assembly is highly contiguous, with contig N50 of 11.1 Mb, scaffold N50 of 83 Mb, and 95.2% of the sequence assigned to chromosomes. We used a novel workflow to identify 3613 segmental duplications and quantify duplicated genes. Comparative analyses revealed unique genomic features of the Nile rat, including some that affect genes associated with type 2 diabetes and metabolic dysfunctions. We discuss 14 genes that are heterozygous in the Nile rat or highly diverged from the house mouse. CONCLUSIONS: Our findings reflect the exceptional level of genomic resolution present in this assembly, which will greatly expand the potential of the Nile rat as a model organism.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Animales , Haplotipos , Diabetes Mellitus Tipo 2/genética , Murinae , Genoma , Genómica
16.
Mol Biol Evol ; 38(2): 380-392, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-32853335

RESUMEN

Mutations in cis-regulatory elements play important roles for phenotypic changes during evolution. Eye degeneration in the blind mole rat (BMR; Nannospalax galili) and other subterranean mammals is significantly associated with widespread divergence of eye regulatory elements, but the effect of these regulatory mutations on eye development and function has not been explored. Here, we investigate the effect of mutations observed in the BMR sequence of a conserved noncoding element upstream of Tdrd7, a pleiotropic gene required for lens development and spermatogenesis. We first show that this conserved element is a transcriptional repressor in lens cells and that the BMR sequence partially lost repressor activity. Next, we recapitulated evolutionary changes in this element by precisely replacing the endogenous regulatory element in a mouse line by the orthologous BMR sequence with CRISPR-Cas9. Strikingly, this repressor replacement caused a more than 2-fold upregulation of Tdrd7 in the developing lens; however, increased mRNA level does not result in a corresponding increase in TDRD7 protein nor an obvious lens phenotype, possibly explained by buffering at the posttranscriptional level. Our results are consistent with eye degeneration in subterranean mammals having a polygenic basis where many small-effect mutations in different eye-regulatory elements collectively contribute to phenotypic differences.


Asunto(s)
Evolución Molecular , Cristalino/metabolismo , Ratas Topo/genética , Elementos Reguladores de la Transcripción/genética , Ribonucleoproteínas/genética , Animales , Femenino , Cristalino/crecimiento & desarrollo , Masculino , Ratones Transgénicos , Ribonucleoproteínas/metabolismo
17.
J Evol Biol ; 35(2): 225-239, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34882899

RESUMEN

The inactivation of ancestral protein-coding genes (gene loss) can be associated with phenotypic modifications. Within placental mammals, repeated losses of PNLIPRP1 (gene inhibiting fat digestion) occurred preferentially in strictly herbivorous species, whereas repeated NR1I3 losses (gene involved in detoxification) occurred preferentially in strictly carnivorous species. It was hypothesized that lower fat contents of herbivorous diets and lower toxin contents of carnivorous diets cause relaxed selection pressure on these genes, resulting in the accumulation of mutations and ultimately to convergent gene losses. However, because herbivorous and carnivorous diets differ vastly in their composition, a fine-grained analysis is required for hypothesis testing. We generated a trait matrix recording diet and semi-quantitative estimates of fat and toxin consumption for 52 placental species. By including data from 31 fossil taxa, we reconstructed the ancestral diets in major lineages (grundplan reconstruction). We found support that PNLIPRP1 loss is primarily associated with low levels of fat intake and not simply with herbivory/carnivory. In particular, PNLIPRP1 loss also occurred in carnivorous lineages feeding on a fat-poor diet, suggesting that the loss of this gene may be beneficial for occupying ecological niches characterized by fat-poor food resources. Similarly, we demonstrated that carnivorous species are indeed less exposed to diet-related toxins, suggesting that the loss of NR1I3 and related genes (NR1I2 and UGT1A6) resulted from relaxed selection pressure. This study illustrates the need of detailed phenotype studies to obtain a deeper understanding of factors underlying gene losses and to progress in understanding genomic causes of phenotypic variation in mammals.


Asunto(s)
Placenta , Xenobióticos , Animales , Carnivoría/fisiología , Dieta , Femenino , Lipasa , Mamíferos/genética , Embarazo
18.
Proc Natl Acad Sci U S A ; 116(8): 3036-3041, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30718421

RESUMEN

The repeated evolution of dietary specialization represents a hallmark of mammalian ecology. To detect genomic changes that are associated with dietary adaptations, we performed a systematic screen for convergent gene losses associated with an obligate herbivorous or carnivorous diet in 31 placental mammals. For herbivores, our screen discovered the repeated loss of the triglyceride lipase inhibitor PNLIPRP1, suggesting enhanced triglyceride digestion efficiency. Furthermore, several herbivores lost the pancreatic exocytosis factor SYCN, providing an explanation for continuous pancreatic zymogen secretion in these species. For carnivores, we discovered the repeated loss of the hormone-receptor pair INSL5-RXFP4 that regulates appetite and glucose homeostasis, which likely relates to irregular feeding patterns and constant gluconeogenesis. Furthermore, reflecting the reduced need to metabolize plant-derived xenobiotics, several carnivores lost the xenobiotic receptors NR1I3 and NR1I2 Finally, the carnivore-associated loss of the gastrointestinal host defense gene NOX1 could be related to a reduced gut microbiome diversity. By revealing convergent gene losses associated with differences in dietary composition, feeding patterns, and gut microbiomes, our study contributes to understanding how similar dietary specializations evolved repeatedly in mammals.


Asunto(s)
Carnivoría/fisiología , Tracto Gastrointestinal/microbiología , Herbivoria/genética , Filogenia , Animales , Dieta , Femenino , Microbioma Gastrointestinal/genética , Tracto Gastrointestinal/metabolismo , Genoma/genética , Herbivoria/fisiología , Mamíferos/microbiología , Plantas , Embarazo , ARN Ribosómico 16S/genética
19.
Mol Biol Evol ; 37(7): 1847-1854, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32145026

RESUMEN

Toll-like receptors (TLRs) play an important role for the innate immune system by detecting pathogen-associated molecular patterns. TLR5 encodes the major extracellular receptor for bacterial flagellin and frequently evolves under positive selection, consistent with coevolutionary arms races between the host and pathogens. Furthermore, TLR5 is inactivated in several vertebrates and a TLR5 stop codon polymorphism is widespread in human populations. Here, we analyzed the genomes of 120 mammals and discovered that TLR5 is convergently lost in four independent lineages, comprising guinea pigs, Yangtze river dolphin, pinnipeds, and pangolins. Validated inactivating mutations, absence of protein-coding transcript expression, and relaxed selection on the TLR5 remnants confirm these losses. PCR analysis further confirmed the loss of TLR5 in the pinniped stem lineage. Finally, we show that TLR11, encoding a second extracellular flagellin receptor, is also absent in these four lineages. Independent losses of TLR5 and TLR11 suggest that a major pathway for detecting flagellated bacteria is not essential for different mammals and predicts an impaired capacity to sense extracellular flagellin.


Asunto(s)
Evolución Biológica , Flagelina/inmunología , Mamíferos/genética , Receptor Toll-Like 5/genética , Animales , Genoma , Cobayas , Humanos , Conejos
20.
PLoS Biol ; 16(6): e2005293, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29953435

RESUMEN

Descent of testes from a position near the kidneys into the lower abdomen or into the scrotum is an important developmental process that occurs in all placental mammals, with the exception of five afrotherian lineages. Since soft-tissue structures like testes are not preserved in the fossil record and since key parts of the placental mammal phylogeny remain controversial, it has been debated whether testicular descent is the ancestral or derived condition in placental mammals. To resolve this debate, we used genomic data of 71 mammalian species and analyzed the evolution of two key genes (relaxin/insulin-like family peptide receptor 2 [RXFP2] and insulin-like 3 [INSL3]) that induce the development of the gubernaculum, the ligament that is crucial for testicular descent. We show that both RXFP2 and INSL3 are lost or nonfunctional exclusively in four afrotherians (tenrec, cape elephant shrew, cape golden mole, and manatee) that completely lack testicular descent. The presence of remnants of once functional orthologs of both genes in these afrotherian species shows that these gene losses happened after the split from the placental mammal ancestor. These "molecular vestiges" provide strong evidence that testicular descent is the ancestral condition, irrespective of persisting phylogenetic discrepancies. Furthermore, the absence of shared gene-inactivating mutations and our estimates that the loss of RXFP2 happened at different time points strongly suggest that testicular descent was lost independently in Afrotheria. Our results provide a molecular mechanism that explains the loss of testicular descent in afrotherians and, more generally, highlight how molecular vestiges can provide insights into the evolution of soft-tissue characters.


Asunto(s)
Euterios/embriología , Euterios/genética , Evolución Molecular , Insulina/genética , Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Testículo/embriología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN/genética , Euterios/clasificación , Gubernáculo/crecimiento & desarrollo , Masculino , Mutación , Filogenia , Talidomida/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA