Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 162(1): 74-85, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23532584

RESUMEN

Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1's permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature.


Asunto(s)
Arabidopsis/genética , Glucosiltransferasas/genética , Alelos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dominio Catalítico/genética , Pared Celular/genética , Pared Celular/metabolismo , Celulosa/genética , Celulosa/metabolismo , Mutación , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Semillas/genética , Semillas/metabolismo , Temperatura
2.
Plant J ; 66(6): 915-28, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21535258

RESUMEN

The shape of plants depends on cellulose, a biopolymer that self-assembles into crystalline, inextensible microfibrils (CMFs) upon synthesis at the plasma membrane by multi-enzyme cellulose synthase complexes (CSCs). CSCs are displaced in directions predicted by underlying parallel arrays of cortical microtubules, but CMFs remain transverse in cells that have lost the ability to expand unidirectionally as a result of disrupted microtubules. These conflicting findings suggest that microtubules are important for some physico-chemical property of cellulose that maintains wall integrity. Using X-ray diffraction, we demonstrate that abundant microtubules enable a decrease in the degree of wall crystallinity during rapid growth at high temperatures. Reduced microtubule polymer mass in the mor1-1 mutant at high temperatures is associated with failure of crystallinity to decrease and a loss of unidirectional expansion. Promotion of microtubule bundling by over-expressing the RIC1 microtubule-associated protein reduced the degree of crystallinity. Using live-cell imaging, we detected an increase in the proportion of CSCs that track in microtubule-free domains in mor1-1, and an increase in the CSC velocity. These results suggest that microtubule domains affect glucan chain crystallization during unidirectional cell expansion. Microtubule disruption had no obvious effect on the orientation of CMFs in dark-grown hypocotyl cells. CMFs at the outer face of the hypocotyl epidermal cells had highly variable orientation, in contrast to the transverse CMFs on the radial and inner periclinal walls. This suggests that the outer epidermal mechanical properties are relatively isotropic, and that axial expansion is largely dependent on the inner tissue layers.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Pared Celular/química , Hipocótilo/crecimiento & desarrollo , Microtúbulos/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aumento de la Célula , Membrana Celular/química , Celulosa/metabolismo , Oscuridad , Genotipo , Hipocótilo/química , Inflorescencia/química , Inflorescencia/crecimiento & desarrollo , Microfibrillas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multienzimáticos/metabolismo , Mutación , Temperatura , Difracción de Rayos X
3.
New Phytol ; 170(2): 275-90, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16608453

RESUMEN

Elongation of diffusely expanding plant cells is thought to be mainly under the control of cortical microtubules. Drug treatments that disrupt actin microfilaments, however, can reduce elongation and induce radial swelling. To understand how microfilaments assist growth anisotropy, we explored their functional interactions with microtubules by measuring how microtubule disruption affects the sensitivity of cells to microfilament-targeted drugs. We assessed the sensitivity to actin-targeted drugs by measuring the lengths and diameters of expanding roots and by analysing microtubule and microfilament patterns in the temperature-sensitive Arabidopsis thaliana mutant microtubule organization 1 (mor1-1), along with other mutants that constitutively alter microtubule arrays. At the restrictive temperature of mor1-1, root expansion was hypersensitive to the microfilament-disrupting drugs latrunculin B and cytochalasin D, while immunofluorescence microscopy showed that low doses of latrunculin B exacerbated microtubule disruption. Root expansion studies also showed that the botero and spiral1 mutants were hypersensitive to latrunculin B. Hypersensitivity to actin-targeted drugs is a direct consequence of altered microtubule polymer status, demonstrating that cross-talk between microfilaments and microtubules is critical for regulating anisotropic cell expansion.


Asunto(s)
Citoesqueleto de Actina/efectos de los fármacos , Actinas/antagonistas & inhibidores , Arabidopsis/crecimiento & desarrollo , Microtúbulos/efectos de los fármacos , Moduladores de Tubulina/farmacología , Citoesqueleto de Actina/fisiología , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Citocalasina D/farmacología , Dinitrobencenos/farmacología , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/fisiología , Mutación , Paclitaxel/farmacología , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Sulfanilamidas/farmacología , Tiazoles/farmacología , Tiazolidinas
4.
Plant Physiol ; 140(1): 102-14, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16377747

RESUMEN

MICROTUBULE ORGANIZATION 1 (MOR1) is a plant member of the highly conserved MAP215/Dis1 family of microtubule-associated proteins. Prior studies with the temperature-sensitive mor1 mutants of Arabidopsis (Arabidopsis thaliana), which harbor single amino acid substitutions in an N-terminal HEAT repeat, proved that MOR1 regulates cortical microtubule organization and function. Here we demonstrate by use of live cell imaging and immunolabeling that the mor1-1 mutation generates specific defects in the microtubule arrays of dividing vegetative cells. Unlike the universal cortical microtubule disorganization in elongating mor1-1 cells, disruption of mitotic and cytokinetic microtubule arrays was not detected in all dividing cells. Nevertheless, quantitative analysis identified distinct defects in preprophase bands (PPBs), spindles, and phragmoplasts. In nearly one-half of dividing cells at the restrictive temperature of 30 degrees C, PPBs were not detected prior to spindle formation, and those that did form were often disrupted. mor1-1 spindles and phragmoplasts were short and abnormally organized and persisted for longer times than in wild-type cells. The reduced length of these arrays predicts that the component microtubule lengths are also reduced, suggesting that microtubule length is a critical determinant of spindle and phragmoplast structure, orientation, and function. Microtubule organizational defects led to aberrant chromosomal arrangements, misaligned or incomplete cell plates, and multinucleate cells. Antiserum raised against an N-terminal MOR1 sequence labeled the full length of microtubules in interphase arrays, PPBs, spindles, and phragmoplasts. Continued immunolabeling of the disorganized and short microtubules of mor1-1 at the restrictive temperature demonstrated that the mutant mor1-1(L174F) protein loses function without dissociating from microtubules, providing important insight into the mechanism by which MOR1 may regulate microtubule length.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Citocinesis , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/fisiología , Mitosis , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Pared Celular/metabolismo , Microscopía Fluorescente , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Familia de Multigenes , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Huso Acromático/metabolismo , Huso Acromático/ultraestructura
5.
Plant Cell ; 17(6): 1749-63, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15849274

RESUMEN

The orientation of cell expansion is a process at the heart of plant morphogenesis. Cellulose microfibrils are the primary anisotropic material in the cell wall and thus are likely to be the main determinant of the orientation of cell expansion. COBRA (COB) has been identified previously as a potential regulator of cellulose biogenesis. In this study, characterization of a null allele, cob-4, establishes the key role of COB in controlling anisotropic expansion in most developing organs. Quantitative polarized-light and field-emission scanning electron microscopy reveal that loss of anisotropic expansion in cob mutants is accompanied by disorganization of the orientation of cellulose microfibrils and subsequent reduction of crystalline cellulose. Analyses of the conditional cob-1 allele suggested that COB is primarily implicated in microfibril deposition during rapid elongation. Immunodetection analysis in elongating root cells revealed that, in agreement with its substitution by a glycosylphosphatidylinositol anchor, COB was polarly targeted to both the plasma membrane and the longitudinal cell walls and was distributed in a banding pattern perpendicular to the longitudinal axis via a microtubule-dependent mechanism. Our observations suggest that COB, through its involvement in cellulose microfibril orientation, is an essential factor in highly anisotropic expansion during plant morphogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Glicoproteínas de Membrana/metabolismo , Microfibrillas/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Diferenciación Celular/fisiología , Aumento de la Célula , Membrana Celular/metabolismo , Polaridad Celular/fisiología , Pared Celular/ultraestructura , Glicosilfosfatidilinositoles/metabolismo , Glicoproteínas de Membrana/genética , Microfibrillas/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Mutación/genética , Transporte de Proteínas/fisiología
6.
Plant J ; 36(4): 565-75, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14617086

RESUMEN

Cellulose microfibril deposition patterns define the direction of plant cell expansion. To better understand how microfibril alignment is controlled, we examined microfibril orientation during cortical microtubule disruption using the temperature-sensitive mutant of Arabidopsis thaliana, mor1-1. In a previous study, it was shown that at restrictive temperature for mor1-1, cortical microtubules lose transverse orientation and cells lose growth anisotropy without any change in the parallel arrangement of cellulose microfibrils. In this study, we investigated whether a pre-existing template of well-ordered microfibrils or the presence of well-organized cortical microtubules was essential for the cell to resume deposition of parallel microfibrils. We first transiently disrupted the parallel order of microfibrils in mor1-1 using a brief treatment with the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB). We then analysed the alignment of recently deposited cellulose microfibrils (by field emission scanning electron microscopy) as cellulose synthesis recovered and microtubules remained disrupted at the mor1-1 mutant's non-permissive culture temperature. Despite the disordered cortical microtubules and an initially randomized wall texture, new cellulose microfibrils were deposited with parallel, transverse orientation. These results show that transverse cellulose microfibril deposition requires neither accurately transverse cortical microtubules nor a pre-existing template of well-ordered microfibrils. We also demonstrated that DCB treatments reduced the ability of cortical microtubules to form transverse arrays, supporting a role for cellulose microfibrils in influencing cortical microtubule organization.


Asunto(s)
Arabidopsis/metabolismo , Celulosa/metabolismo , Microtúbulos/metabolismo , Nitrilos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Celulosa/ultraestructura , Herbicidas/farmacología , Microscopía Electrónica de Rastreo/métodos , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , Mutación , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Temperatura
7.
Plant Cell ; 15(6): 1414-29, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12782733

RESUMEN

As critical determinants of growth anisotropy in plants, cortical microtubules are thought to constrain the movement of cellulose synthase complexes and thus align newly deposited cellulose microfibrils. We tested this cellulose synthase constraint model using the temperature-sensitive mor1-1 mutant of Arabidopsis. Contrary to predictions, the disruption of cortical microtubules in mor1-1 root epidermal cells led to left-handed root twisting and radial swelling but did not alter the transverse orientation of cellulose microfibrils. We also found that drug-dependent disassembly or hyperstabilization of cortical microtubules did not alter the parallel order of cellulose microfibrils. By measuring cellulose content in mor1-1 seedlings, we verified that cellulose synthesis is not reduced at the restrictive temperature. The independence of cortical microtubule organization and cellulose microfibril alignment was supported by the observation that double mutants of mor1-1 and rsw1-1, the cellulose-deficient mutant with misaligned microfibrils, had additive phenotypes. Our results suggest that cortical microtubules regulate growth anisotropy by some mechanism other than cellulose microfibril alignment or synthesis.


Asunto(s)
Arabidopsis/metabolismo , Celulosa/metabolismo , Microtúbulos/metabolismo , Raíces de Plantas/metabolismo , Sulfanilamidas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , División Celular/efectos de los fármacos , Dinitrobencenos/farmacología , Microtúbulos/efectos de los fármacos , Mutación , Paclitaxel/farmacología , Fenotipo , Epidermis de la Planta/genética , Epidermis de la Planta/crecimiento & desarrollo , Epidermis de la Planta/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA