Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 609(7925): 151-158, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35978186

RESUMEN

Compelling evidence shows that brown and beige adipose tissue are protective against metabolic diseases1,2. PR domain-containing 16 (PRDM16) is a dominant activator of the biogenesis of beige adipocytes by forming a complex with transcriptional and epigenetic factors and is therefore an attractive target for improving metabolic health3-8. However, a lack of knowledge surrounding the regulation of PRDM16 protein expression hampered us from selectively targeting this transcriptional pathway. Here we identify CUL2-APPBP2 as the ubiquitin E3 ligase that determines PRDM16 protein stability by catalysing its polyubiquitination. Inhibition of CUL2-APPBP2 sufficiently extended the half-life of PRDM16 protein and promoted beige adipocyte biogenesis. By contrast, elevated CUL2-APPBP2 expression was found in aged adipose tissues and repressed adipocyte thermogenesis by degrading PRDM16 protein. Importantly, extended PRDM16 protein stability by adipocyte-specific deletion of CUL2-APPBP2 counteracted diet-induced obesity, glucose intolerance, insulin resistance and dyslipidaemia in mice. These results offer a cell-autonomous route to selectively activate the PRDM16 pathway in adipose tissues.


Asunto(s)
Tejido Adiposo Beige , Proteínas de Unión al ADN , Factores de Transcripción , Animales , Ratones , Adipocitos Beige/metabolismo , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Proteínas Cullin , Proteínas de Unión al ADN/metabolismo , Dislipidemias , Intolerancia a la Glucosa , Resistencia a la Insulina , Obesidad , Estabilidad Proteica , Termogénesis/fisiología , Factores de Transcripción/metabolismo , Ubiquitinación
2.
Am J Hum Genet ; 111(6): 1035-1046, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38754426

RESUMEN

Obesity is a major risk factor for a myriad of diseases, affecting >600 million people worldwide. Genome-wide association studies (GWASs) have identified hundreds of genetic variants that influence body mass index (BMI), a commonly used metric to assess obesity risk. Most variants are non-coding and likely act through regulating genes nearby. Here, we apply multiple computational methods to prioritize the likely causal gene(s) within each of the 536 previously reported GWAS-identified BMI-associated loci. We performed summary-data-based Mendelian randomization (SMR), FINEMAP, DEPICT, MAGMA, transcriptome-wide association studies (TWASs), mutation significance cutoff (MSC), polygenic priority score (PoPS), and the nearest gene strategy. Results of each method were weighted based on their success in identifying genes known to be implicated in obesity, ranking all prioritized genes according to a confidence score (minimum: 0; max: 28). We identified 292 high-scoring genes (≥11) in 264 loci, including genes known to play a role in body weight regulation (e.g., DGKI, ANKRD26, MC4R, LEPR, BDNF, GIPR, AKT3, KAT8, MTOR) and genes related to comorbidities (e.g., FGFR1, ISL1, TFAP2B, PARK2, TCF7L2, GSK3B). For most of the high-scoring genes, however, we found limited or no evidence for a role in obesity, including the top-scoring gene BPTF. Many of the top-scoring genes seem to act through a neuronal regulation of body weight, whereas others affect peripheral pathways, including circadian rhythm, insulin secretion, and glucose and carbohydrate homeostasis. The characterization of these likely causal genes can increase our understanding of the underlying biology and offer avenues to develop therapeutics for weight loss.


Asunto(s)
Índice de Masa Corporal , Estudio de Asociación del Genoma Completo , Obesidad , Humanos , Obesidad/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Herencia Multifactorial/genética , Sitios Genéticos , Análisis de la Aleatorización Mendeliana
3.
Nature ; 583(7814): 122-126, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32461692

RESUMEN

The cellular NADH/NAD+ ratio is fundamental to biochemistry, but the extent to which it reflects versus drives metabolic physiology in vivo is poorly understood. Here we report the in vivo application of Lactobacillus brevis (Lb)NOX1, a bacterial water-forming NADH oxidase, to assess the metabolic consequences of directly lowering the hepatic cytosolic NADH/NAD+ ratio in mice. By combining this genetic tool with metabolomics, we identify circulating α-hydroxybutyrate levels as a robust marker of an elevated hepatic cytosolic NADH/NAD+ ratio, also known as reductive stress. In humans, elevations in circulating α-hydroxybutyrate levels have previously been associated with impaired glucose tolerance2, insulin resistance3 and mitochondrial disease4, and are associated with a common genetic variant in GCKR5, which has previously been associated with many seemingly disparate metabolic traits. Using LbNOX, we demonstrate that NADH reductive stress mediates the effects of GCKR variation on many metabolic traits, including circulating triglyceride levels, glucose tolerance and FGF21 levels. Our work identifies an elevated hepatic NADH/NAD+ ratio as a latent metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases. Moreover, it underscores the utility of genetic tools such as LbNOX to empower studies of 'causal metabolism'.


Asunto(s)
Hígado/metabolismo , NAD/metabolismo , Estrés Fisiológico , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Citosol/metabolismo , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/sangre , Variación Genética , Prueba de Tolerancia a la Glucosa , Humanos , Resistencia a la Insulina , Levilactobacillus brevis/enzimología , Levilactobacillus brevis/genética , Masculino , Ratones , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Oxidación-Reducción , Triglicéridos/sangre
4.
Nature ; 582(7811): 234-239, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499652

RESUMEN

On average, Peruvian individuals are among the shortest in the world1. Here we show that Native American ancestry is associated with reduced height in an ethnically diverse group of Peruvian individuals, and identify a population-specific, missense variant in the FBN1 gene (E1297G) that is significantly associated with lower height. Each copy of the minor allele (frequency of 4.7%) reduces height by 2.2 cm (4.4 cm in homozygous individuals). To our knowledge, this is the largest effect size known for a common height-associated variant. FBN1 encodes the extracellular matrix protein fibrillin 1, which is a major structural component of microfibrils. We observed less densely packed fibrillin-1-rich microfibrils with irregular edges in the skin of individuals who were homozygous for G1297 compared with individuals who were homozygous for E1297. Moreover, we show that the E1297G locus is under positive selection in non-African populations, and that the E1297 variant shows subtle evidence of positive selection specifically within the Peruvian population. This variant is also significantly more frequent in coastal Peruvian populations than in populations from the Andes or the Amazon, which suggests that short stature might be the result of adaptation to factors that are associated with the coastal environment in Peru.


Asunto(s)
Estatura/genética , Fibrilina-1/genética , Mutación Missense , Selección Genética , Femenino , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Herencia , Humanos , Indígenas Sudamericanos/genética , Masculino , Microfibrillas/química , Microfibrillas/genética , Perú
5.
J Med Genet ; 59(12): 1171-1178, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35803701

RESUMEN

BACKGROUND: Lowe syndrome (LS) is an X linked disease caused by pathogenic variants in the OCRL gene that impacts approximately 1 in 500 000 children. Classic features include congenital cataract, cognitive/behavioural impairment and renal tubulopathy. METHODS: This study is a retrospective review of clinical features reported by family based survey conducted by Lowe Syndrome Association. Frequency of non-ocular clinical feature(s) of LS and their age of onset was summarised. An LS-specific therapy effectiveness scale was used to assess the response to the administered treatment. Expression of OCRL and relevant neuropeptides was measured in postmortem human brain by qPCR. Gene expression in the mouse brain was determined by reanalysis of publicly available bulk and single cell RNA sequencing. RESULTS: A total of 137 individuals (1 female, 89.1% white, median age 14 years (range 0.8-56)) were included in the study. Short stature (height <3rd percentile) was noted in 81% (n=111) individuals, and 15% (n=20) received growth hormone therapy. Undescended testis was reported in 47% (n=64), and median age of onset of puberty was 15 years. Additional features were dental problems (n=77, 56%), bone fractures (n=63, 46%), hypophosphataemia (n=60, 44%), developmental delay and behavioural issues. OCRL is expressed in human and mouse hypothalami, and in hypothalamic cell clusters expressing Ghrh, Sst, Oxt, Pomc and pituitary cells expressing Gh and Prl. CONCLUSIONS: There is a wide spectrum of the clinical phenotype of LS. Some of the features may be partly driven by the loss of function of OCRL in the hypothalamus and the pituitary.


Asunto(s)
Catarata , Síndrome Oculocerebrorrenal , Niño , Masculino , Animales , Ratones , Femenino , Humanos , Lactante , Preescolar , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fenotipo , Catarata/genética , Encéfalo/metabolismo
6.
Diabetologia ; 65(9): 1495-1509, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35763030

RESUMEN

AIMS/HYPOTHESIS: Diabetic kidney disease (DKD) is the leading cause of kidney failure and has a substantial genetic component. Our aim was to identify novel genetic factors and genes contributing to DKD by performing meta-analysis of previous genome-wide association studies (GWAS) on DKD and by integrating the results with renal transcriptomics datasets. METHODS: We performed GWAS meta-analyses using ten phenotypic definitions of DKD, including nearly 27,000 individuals with diabetes. Meta-analysis results were integrated with estimated quantitative trait locus data from human glomerular (N=119) and tubular (N=121) samples to perform transcriptome-wide association study. We also performed gene aggregate tests to jointly test all available common genetic markers within a gene, and combined the results with various kidney omics datasets. RESULTS: The meta-analysis identified a novel intronic variant (rs72831309) in the TENM2 gene associated with a lower risk of the combined chronic kidney disease (eGFR<60 ml/min per 1.73 m2) and DKD (microalbuminuria or worse) phenotype (p=9.8×10-9; although not withstanding correction for multiple testing, p>9.3×10-9). Gene-level analysis identified ten genes associated with DKD (COL20A1, DCLK1, EIF4E, PTPRN-RESP18, GPR158, INIP-SNX30, LSM14A and MFF; p<2.7×10-6). Integration of GWAS with human glomerular and tubular expression data demonstrated higher tubular AKIRIN2 gene expression in individuals with vs without DKD (p=1.1×10-6). The lead SNPs within six loci significantly altered DNA methylation of a nearby CpG site in kidneys (p<1.5×10-11). Expression of lead genes in kidney tubules or glomeruli correlated with relevant pathological phenotypes (e.g. TENM2 expression correlated positively with eGFR [p=1.6×10-8] and negatively with tubulointerstitial fibrosis [p=2.0×10-9], tubular DCLK1 expression correlated positively with fibrosis [p=7.4×10-16], and SNX30 expression correlated positively with eGFR [p=5.8×10-14] and negatively with fibrosis [p<2.0×10-16]). CONCLUSIONS/INTERPRETATION: Altogether, the results point to novel genes contributing to the pathogenesis of DKD. DATA AVAILABILITY: The GWAS meta-analysis results can be accessed via the type 1 and type 2 diabetes (T1D and T2D, respectively) and Common Metabolic Diseases (CMD) Knowledge Portals, and downloaded on their respective download pages ( https://t1d.hugeamp.org/downloads.html ; https://t2d.hugeamp.org/downloads.html ; https://hugeamp.org/downloads.html ).


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/metabolismo , Quinasas Similares a Doblecortina , Fibrosis , Estudio de Asociación del Genoma Completo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Riñón/metabolismo , Polimorfismo de Nucleótido Simple/genética , Proteínas Serina-Treonina Quinasas/genética
7.
Hum Mol Genet ; 29(15): 2625-2636, 2020 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-32484228

RESUMEN

The growth hormone and insulin-like growth factor (IGF) system is integral to human growth. Genome-wide association studies (GWAS) have identified variants associated with height and located near the genes in this pathway. However, mechanisms underlying these genetic associations are not understood. To investigate the regulation of the genes in this pathway and mechanisms by which regulation could affect growth, we performed GWAS of measured serum protein levels of IGF-I, IGF binding protein-3 (IGFBP-3), pregnancy-associated plasma protein A (PAPP-A2), IGF-II and IGFBP-5 in 838 children (3-18 years) from the Cincinnati Genomic Control Cohort. We identified variants associated with protein levels near IGFBP3 and IGFBP5 genes, which contain multiple signals of association with height and other skeletal growth phenotypes. Surprisingly, variants that associate with protein levels at these two loci do not colocalize with height associations, confirmed through conditional analysis. Rather, the IGFBP3 signal (associated with total IGFBP-3 and IGF-II levels) colocalizes with an association with sitting height ratio (SHR); the IGFBP5 signal (associated with IGFBP-5 levels) colocalizes with birth weight. Indeed, height-associated single nucleotide polymorphisms near genes encoding other proteins in this pathway are not associated with serum levels, possibly excluding PAPP-A2. Mendelian randomization supports a stronger causal relationship of measured serum levels with SHR (for IGFBP-3) and birth weight (for IGFBP-5) than with height. In conclusion, we begin to characterize the genetic regulation of serum levels of IGF-related proteins in childhood. Furthermore, our data strongly suggest the existence of growth-regulating mechanisms acting through IGF-related genes in ways that are not reflected in measured serum levels of the corresponding proteins.


Asunto(s)
Estatura/genética , Hormona del Crecimiento/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Adolescente , Peso al Nacer/genética , Niño , Preescolar , Femenino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Análisis de la Aleatorización Mendeliana , Proteína Plasmática A Asociada al Embarazo/genética , Sedestación
8.
Am J Hum Genet ; 104(6): 1025-1039, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31056107

RESUMEN

Genome-wide association studies (GWASs) are valuable for understanding human biology, but associated loci typically contain multiple associated variants and genes. Thus, algorithms that prioritize likely causal genes and variants for a given phenotype can provide biological interpretations of association data. However, a critical, currently missing capability is to objectively compare performance of such algorithms. Typical comparisons rely on "gold standard" genes harboring causal coding variants, but such gold standards may be biased and incomplete. To address this issue, we developed Benchmarker, an unbiased, data-driven benchmarking method that compares performance of similarity-based prioritization strategies to each other (and to random chance) by leave-one-chromosome-out cross-validation with stratified linkage disequilibrium (LD) score regression. We first applied Benchmarker to 20 well-powered GWASs and compared gene prioritization based on strategies employing three different data sources, including annotated gene sets and gene expression; genes prioritized based on gene sets had higher per-SNP heritability than those prioritized based on gene expression. Additionally, in a direct comparison of three methods, DEPICT and MAGMA outperformed NetWAS. We also evaluated combinations of methods; our results indicated that combining data sources and algorithms can help prioritize higher-quality genes for follow-up. Benchmarker provides an unbiased approach to evaluate any similarity-based method that provides genome-wide prioritization of genes, variants, or gene sets and can determine the best such method for any particular GWAS. Our method addresses an important unmet need for rigorous tool assessment and can assist in mapping genetic associations to causal function.


Asunto(s)
Algoritmos , Sitios Genéticos , Estudio de Asociación del Genoma Completo/métodos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Benchmarking , Mapeo Cromosómico , Humanos , Fenotipo
9.
Hum Mol Genet ; 28(1): 166-174, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239722

RESUMEN

More than one in three adults worldwide is either overweight or obese. Epidemiological studies indicate that the location and distribution of excess fat, rather than general adiposity, are more informative for predicting risk of obesity sequelae, including cardiometabolic disease and cancer. We performed a genome-wide association study meta-analysis of body fat distribution, measured by waist-to-hip ratio (WHR) adjusted for body mass index (WHRadjBMI), and identified 463 signals in 346 loci. Heritability and variant effects were generally stronger in women than men, and we found approximately one-third of all signals to be sexually dimorphic. The 5% of individuals carrying the most WHRadjBMI-increasing alleles were 1.62 times more likely than the bottom 5% to have a WHR above the thresholds used for metabolic syndrome. These data, made publicly available, will inform the biology of body fat distribution and its relationship with disease.


Asunto(s)
Adiposidad/genética , Distribución de la Grasa Corporal/métodos , Obesidad/genética , Tejido Adiposo/fisiología , Adulto , Alelos , Índice de Masa Corporal , Femenino , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Relación Cintura-Cadera , Población Blanca/genética
10.
Am J Hum Genet ; 103(4): 522-534, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30269813

RESUMEN

The genetic causes of many Mendelian disorders remain undefined. Factors such as lack of large multiplex families, locus heterogeneity, and incomplete penetrance hamper these efforts for many disorders. Previous work suggests that gene-based burden testing-where the aggregate burden of rare, protein-altering variants in each gene is compared between case and control subjects-might overcome some of these limitations. The increasing availability of large-scale public sequencing databases such as Genome Aggregation Database (gnomAD) can enable burden testing using these databases as controls, obviating the need for additional control sequencing for each study. However, there exist various challenges with using public databases as controls, including lack of individual-level data, differences in ancestry, and differences in sequencing platforms and data processing. To illustrate the approach of using public data as controls, we analyzed whole-exome sequencing data from 393 individuals with idiopathic hypogonadotropic hypogonadism (IHH), a rare disorder with significant locus heterogeneity and incomplete penetrance against control subjects from gnomAD (n = 123,136). We leveraged presumably benign synonymous variants to calibrate our approach. Through iterative analyses, we systematically addressed and overcame various sources of artifact that can arise when using public control data. In particular, we introduce an approach for highly adaptable variant quality filtering that leads to well-calibrated results. Our approach "re-discovered" genes previously implicated in IHH (FGFR1, TACR3, GNRHR). Furthermore, we identified a significant burden in TYRO3, a gene implicated in hypogonadotropic hypogonadism in mice. Finally, we developed a user-friendly software package TRAPD (Test Rare vAriants with Public Data) for performing gene-based burden testing against public databases.


Asunto(s)
Exoma/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Animales , Bases de Datos Genéticas , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Hipogonadismo/genética , Masculino , Ratones , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Secuenciación del Exoma/métodos
11.
Blood Cells Mol Dis ; 86: 102504, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32949984

RESUMEN

In a recent clinical trial, the metabolite l-glutamine was shown to reduce painful crises in sickle cell disease (SCD) patients. To support this observation and identify other metabolites implicated in SCD clinical heterogeneity, we profiled 129 metabolites in the plasma of 705 SCD patients. We tested correlations between metabolite levels and six SCD-related complications (painful crises, cholecystectomy, retinopathy, leg ulcer, priapism, aseptic necrosis) or estimated glomerular filtration rate (eGFR), and used Mendelian randomization (MR) to assess causality. We found a potential causal relationship between l-glutamine levels and painful crises (N = 1278, odds ratio (OR) [95% confidence interval] = 0.68 [0.52-0.89], P = 0.0048). In two smaller SCD cohorts (N = 299 and 406), the protective effect of l-glutamine was observed (OR = 0.82 [0.50-1.34]), although the MR result was not significant (P = 0.44). We identified 66 significant correlations between the levels of other metabolites and SCD-related complications or eGFR. We tested these correlations for causality using MR analyses and found no significant causal relationship. The baseline levels of quinolinic acid were associated with prospectively ascertained survival in SCD patients, and this effect was dependent on eGFR. Metabolomics provide a promising approach to prioritize small molecules that may serve as biomarkers or drug targets in SCD.


Asunto(s)
Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/complicaciones , Glutamina/sangre , Dolor/etiología , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Dolor/sangre , Adulto Joven
12.
J Pediatr ; 236: 238-245, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33901521

RESUMEN

OBJECTIVE: To determine if the racial/ethnic inequity in growth hormone (GH) use is due to differences in GH stimulation testing and/or prescribing patterns in children referred for endocrine evaluation of short stature. STUDY DESIGN: Retrospective chart review was performed including children aged 2-16 years, height z-score of ≤-1.5, and of non-Hispanic White (NHW), non-Hispanic Black (NHB), or Hispanic race/ethnicity, referred for endocrine growth evaluation between January 2012 and December 2019. RESULTS: This study included 7425 children (5905 NHW, 800 NHB, and 720 Hispanic). GH stimulation testing was performed in 992, and 576 were prescribed GH. NHW children were 1.4 (95% CI, 1.04-1.8) times more likely than NHB children and 1.7 (95% CI, 1.2-2.2) times more likely than Hispanic children to undergo GH stimulation testing. GH-treated NHB children had (1) a lower median peak GH concentration when compared with NHW (P = .02) and Hispanic (P = .08) children (NHB 4.7 ng/mL [95% CI, 1.2-8.3 ng/mL] ng/mL, NHW 7.2 ng/mL [95% CI, 4.9-9.7 ng/mL], Hispanic 7.1 ng/mL [95% CI, 4.3-11.9 ng/mL]); (2) lower median height z-scores than NHW (P = .01) but not Hispanic children (P = .5); and (3) a greater height deficit from midparental height when compared with NHW (P = .01) and Hispanic (P = .002) children. CONCLUSIONS: Racial and ethnic disparities exist in the evaluation and treatment of children with disordered growth. This likely results from both overinvestigation of NHW children as well as underinvestigation and undertreatment of children from minority communities. The evaluation and treatment of children with short stature should be determined by clinical concern alone, but this is not current practice.


Asunto(s)
Negro o Afroamericano , Trastornos del Crecimiento/diagnóstico , Disparidades en Atención de Salud/etnología , Hispánicos o Latinos , Hormona de Crecimiento Humana/deficiencia , Población Blanca , Adolescente , Estatura , Niño , Preescolar , Técnicas de Diagnóstico Endocrino , Femenino , Trastornos del Crecimiento/etnología , Trastornos del Crecimiento/terapia , Humanos , Masculino , Pautas de la Práctica en Medicina , Estudios Retrospectivos
13.
Annu Rev Genomics Hum Genet ; 18: 31-44, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28142260

RESUMEN

In this interview, Kurt and Rochelle Hirschhorn talk with their son, Joel, about their research and collaborations, the early years of medical genetics, the development of genetic counseling, the challenges of being a woman in science, and new challenges and directions for the study of human genetics.


Asunto(s)
Genética Médica/historia , Adenosina Desaminasa/deficiencia , Enfermedad del Almacenamiento de Glucógeno Tipo II , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Enfermedades por Almacenamiento Lisosomal , Estados Unidos , Síndrome de Wolf-Hirschhorn
14.
Int J Obes (Lond) ; 44(7): 1596-1606, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32467615

RESUMEN

BACKGROUND: Obesity and its associated diseases are major health problems characterized by extensive metabolic disturbances. Understanding the causal connections between these phenotypes and variation in metabolite levels can uncover relevant biology and inform novel intervention strategies. Recent studies have combined metabolite profiling with genetic instrumental variable (IV) analysis (Mendelian randomization) to infer the direction of causality between metabolites and obesity, but often omitted a large portion of untargeted profiling data consisting of unknown, unidentified metabolite signals. METHODS: We expanded upon previous research by identifying body mass index (BMI)-associated metabolites in multiple untargeted metabolomics datasets, and then performing bidirectional IV analysis to classify metabolites based on their inferred causal relationships with BMI. Meta-analysis and pathway analysis of both known and unknown metabolites across datasets were enabled by our recently developed bioinformatics suite, PAIRUP-MS. RESULTS: We identified ten known metabolites that are more likely to be causes (e.g., alpha-hydroxybutyrate) or effects (e.g., valine) of BMI, or may have more complex bidirectional cause-effect relationships with BMI (e.g., glycine). Importantly, we also identified about five times more unknown than known metabolites in each of these three categories. Pathway analysis incorporating both known and unknown metabolites prioritized 40 enriched (p < 0.05) metabolite sets for the cause versus effect groups, providing further support that these two metabolite groups are linked to obesity via distinct biological mechanisms. CONCLUSIONS: These findings demonstrate the potential utility of our approach to uncover causal connections with obesity from untargeted metabolomics datasets. Combining genetically informed causal inference with the ability to map unknown metabolites across datasets provides a path to jointly analyze many untargeted datasets with obesity or other phenotypes. This approach, applied to larger datasets with genotype and untargeted metabolite data, should generate sufficient power for robust discovery and replication of causal biological connections between metabolites and various human diseases.


Asunto(s)
Metaboloma , Obesidad/metabolismo , Índice de Masa Corporal , Causalidad , Biología Computacional , Humanos , Metabolómica , Obesidad/genética
15.
Genet Med ; 22(2): 371-380, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31481752

RESUMEN

PURPOSE: Clinicians and researchers must contextualize a patient's genetic variants against population-based references with detailed phenotyping. We sought to establish globally scalable technology, policy, and procedures for sharing biosamples and associated genomic and phenotypic data on broadly consented cohorts, across sites of care. METHODS: Three of the nation's leading children's hospitals launched the Genomic Research and Innovation Network (GRIN), with federated information technology infrastructure, harmonized biobanking protocols, and material transfer agreements. Pilot studies in epilepsy and short stature were completed to design and test the collaboration model. RESULTS: Harmonized, broadly consented institutional review board (IRB) protocols were approved and used for biobank enrollment, creating ever-expanding, compatible biobanks. An open source federated query infrastructure was established over genotype-phenotype databases at the three hospitals. Investigators securely access the GRIN platform for prep to research queries, receiving aggregate counts of patients with particular phenotypes or genotypes in each biobank. With proper approvals, de-identified data is exported to a shared analytic workspace. Investigators at all sites enthusiastically collaborated on the pilot studies, resulting in multiple publications. Investigators have also begun to successfully utilize the infrastructure for grant applications. CONCLUSIONS: The GRIN collaboration establishes the technology, policy, and procedures for a scalable genomic research network.


Asunto(s)
Manejo de Datos/métodos , Procesamiento Automatizado de Datos/métodos , Almacenamiento y Recuperación de la Información/métodos , Bancos de Muestras Biológicas/normas , Investigación Biomédica/métodos , Bases de Datos Factuales , Bases de Datos Genéticas , Comités de Ética en Investigación , Genómica/métodos , Humanos , Difusión de la Información , Investigadores
17.
PLoS Comput Biol ; 15(1): e1006734, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30640898

RESUMEN

Metabolomics is a powerful approach for discovering biomarkers and for characterizing the biochemical consequences of genetic variation. While untargeted metabolite profiling can measure thousands of signals in a single experiment, many biologically meaningful signals cannot be readily identified as known metabolites nor compared across datasets, making it difficult to infer biology and to conduct well-powered meta-analyses across studies. To overcome these challenges, we developed a suite of computational methods, PAIRUP-MS, to match metabolite signals across mass spectrometry-based profiling datasets and to generate metabolic pathway annotations for these signals. To pair up signals measured in different datasets, where retention times (RT) are often not comparable or even available, we implemented an imputation-based approach that only requires mass-to-charge ratios (m/z). As validation, we treated each shared known metabolite as an unmatched signal and showed that PAIRUP-MS correctly matched 70-88% of these metabolites from among thousands of signals, equaling or outperforming a standard m/z- and RT-based approach. We performed further validation using genetic data: the most stringent set of matched signals and shared knowns showed comparable consistency of genetic associations across datasets. Next, we developed a pathway reconstitution method to annotate unknown signals using curated metabolic pathways containing known metabolites. We performed genetic validation for the generated annotations, showing that annotated signals associated with gene variants were more likely to be enriched for pathways functionally related to the genes compared to random expectation. Finally, we applied PAIRUP-MS to study associations between metabolites and genetic variants or body mass index (BMI) across multiple datasets, identifying up to ~6 times more significant signals and many more BMI-associated pathways compared to the standard practice of only analyzing known metabolites. These results demonstrate that PAIRUP-MS enables analysis of unknown signals in a robust, biologically meaningful manner and provides a path to more comprehensive, well-powered studies of untargeted metabolomics data.


Asunto(s)
Biología Computacional/métodos , Espectrometría de Masas/métodos , Metaboloma , Metabolómica/métodos , Anciano , Anciano de 80 o más Años , Biomarcadores/análisis , Biomarcadores/metabolismo , Bases de Datos Factuales , Humanos , Redes y Vías Metabólicas/fisiología , Metaboloma/genética , Metaboloma/fisiología
18.
Proc Natl Acad Sci U S A ; 114(3): E327-E336, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28031487

RESUMEN

Genetic variants affecting hematopoiesis can influence commonly measured blood cell traits. To identify factors that affect hematopoiesis, we performed association studies for blood cell traits in the population-based Estonian Biobank using high-coverage whole-genome sequencing (WGS) in 2,284 samples and SNP genotyping in an additional 14,904 samples. Using up to 7,134 samples with available phenotype data, our analyses identified 17 associations across 14 blood cell traits. Integration of WGS-based fine-mapping and complementary epigenomic datasets provided evidence for causal mechanisms at several loci, including at a previously undiscovered basophil count-associated locus near the master hematopoietic transcription factor CEBPA The fine-mapped variant at this basophil count association near CEBPA overlapped an enhancer active in common myeloid progenitors and influenced its activity. In situ perturbation of this enhancer by CRISPR/Cas9 mutagenesis in hematopoietic stem and progenitor cells demonstrated that it is necessary for and specifically regulates CEBPA expression during basophil differentiation. We additionally identified basophil count-associated variation at another more pleiotropic myeloid enhancer near GATA2, highlighting regulatory mechanisms for ordered expression of master hematopoietic regulators during lineage specification. Our study illustrates how population-based genetic studies can provide key insights into poorly understood cell differentiation processes of considerable physiologic relevance.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , Hematopoyesis/genética , Secuencia de Bases , Basófilos/citología , Diferenciación Celular/genética , Linaje de la Célula/genética , Mapeo Cromosómico , Bases de Datos de Ácidos Nucleicos , Elementos de Facilitación Genéticos , Epigénesis Genética , Estonia , Femenino , Factor de Transcripción GATA2/genética , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Recuento de Leucocitos , Masculino , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
19.
Am J Epidemiol ; 188(6): 991-1012, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31155658

RESUMEN

The Consortium of Metabolomics Studies (COMETS) was established in 2014 to facilitate large-scale collaborative research on the human metabolome and its relationship with disease etiology, diagnosis, and prognosis. COMETS comprises 47 cohorts from Asia, Europe, North America, and South America that together include more than 136,000 participants with blood metabolomics data on samples collected from 1985 to 2017. Metabolomics data were provided by 17 different platforms, with the most frequently used labs being Metabolon, Inc. (14 cohorts), the Broad Institute (15 cohorts), and Nightingale Health (11 cohorts). Participants have been followed for a median of 23 years for health outcomes including death, cancer, cardiovascular disease, diabetes, and others; many of the studies are ongoing. Available exposure-related data include common clinical measurements and behavioral factors, as well as genome-wide genotype data. Two feasibility studies were conducted to evaluate the comparability of metabolomics platforms used by COMETS cohorts. The first study showed that the overlap between any 2 different laboratories ranged from 6 to 121 metabolites at 5 leading laboratories. The second study showed that the median Spearman correlation comparing 111 overlapping metabolites captured by Metabolon and the Broad Institute was 0.79 (interquartile range, 0.56-0.89).


Asunto(s)
Epidemiología/organización & administración , Salud Global , Metabolómica/organización & administración , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Índice de Masa Corporal , Niño , Métodos Epidemiológicos , Femenino , Conductas Relacionadas con la Salud , Pruebas Hematológicas , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores Socioeconómicos , Adulto Joven
20.
Am J Hum Genet ; 99(3): 527-539, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27545677

RESUMEN

Whole-exome sequencing has enabled new approaches for discovering genes associated with monogenic disorders. One such approach is gene-based burden testing, in which the aggregate frequency of "qualifying variants" is compared between case and control subjects for each gene. Despite substantial successes of this approach, the genetic causes for many monogenic disorders remain unknown or only partially known. It is possible that particular genetic architectures lower rates of discovery, but the influence of these factors on power has not been rigorously evaluated. Here, we leverage large-scale exome-sequencing data to create an empirically based simulation framework to evaluate the impact of key parameters (background variation rates, locus heterogeneity, mode of inheritance, penetrance) on power in gene-based burden tests in the context of monogenic disorders. Our results demonstrate that across genes, there is a wide range in sample sizes needed to achieve power due to differences in the background rate of rare variants in each gene. Increasing locus heterogeneity results in rapid increases in sample sizes needed to achieve adequate power, particularly when individual genes contribute to less than 5% of cases under a dominant model. Interestingly, incomplete penetrance as low as 10% had little effect on power due to the low prevalence of monogenic disorders. Our results suggest that moderate incomplete penetrance is not an obstacle in this gene-based burden testing approach but that dominant disorders with high locus heterogeneity will require large sample sizes. Our simulations also provide guidance on sample size needs and inform study design under various genetic architectures.


Asunto(s)
Estudios de Asociación Genética/métodos , Enfermedades Genéticas Congénitas/genética , Modelos Genéticos , Exoma/genética , Genes Recesivos/genética , Humanos , Penetrancia , Tamaño de la Muestra , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA