Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Dev Neurosci ; 45(5): 290-308, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37004512

RESUMEN

Disruptions to neurodevelopment are known to be linked to behavioral disorders in childhood and into adulthood. The fetal brain is extremely vulnerable to stimuli that alter inhibitory GABAergic pathways and critical myelination processes, programing long-term neurobehavioral disruption. The maturation of the GABAergic system into the major inhibitory pathway in the brain and the development of oligodendrocytes into mature cells capable of producing myelin are integral components of optimal neurodevelopment. The current study aimed to elucidate prenatal stress-induced mechanisms that disrupt these processes and to delineate the role of placental pathways in these adverse outcomes. Pregnant guinea pig dams were exposed to prenatal stress with strobe light exposure for 2 h/day on gestational age (GA) 35, 40, 45, 50, 55, 60, and 65, and groups of fetuses and placentae were collected after the stress exposure on GA40, GA50, GA60, and GA69 (term). Fetal plasma, placental, and brain tissue were collected for allopregnanolone and cortisol quantification with ELISA. Relative mRNA expression of genes of specific pathways of interest was examined with real-time PCR in placental and hippocampal tissue, and myelin basic protein (MBP) was quantified immunohistochemically in the hippocampus and surrounding regions for assessment of mature myelin. Prenatal stress in mid-late gestation resulted in disruptions to the translational machinery responsible for the production of myelin and decreased myelin coverage in the hippocampus and surrounding regions. The male placenta showed an initial protective increase in allopregnanolone concentrations in response to maternal psychosocial stress. The male and female placentae had a sex-dependent increase in neurosteroidogenic enzymes at term following prenatal stress. Independent from exposure to prenatal stress, at gestational day 60 - a critical period for myelin development, the placentae of female fetuses had increased capability of preventing cortisol transfer to the fetus through expression of 11-beta-hydroxysteroid dehydrogenase types 1 and 2. The deficits early in the process of maturation of myelination indicate that the reduced myelination observed at childhood equivalence in previous studies begins in fetal life. This negative programing persists into childhood, potentially due to dysregulation of MBP translation processes. Expression patterns of neurosteroidogenic enzymes in the placenta at term following stress may identify at-risk fetuses that have been exposed to a stressful in utero environment.

2.
Ann Neurol ; 92(6): 1066-1079, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054160

RESUMEN

OBJECTIVE: Seizures are more common in the neonatal period than at any other stage of life. Phenobarbital is the first-line treatment for neonatal seizures and is at best effective in approximately 50% of babies, but may contribute to neuronal injury. Here, we assessed the efficacy of phenobarbital versus the synthetic neurosteroid, ganaxolone, to moderate seizure activity and neuropathology in neonatal lambs exposed to perinatal asphyxia. METHODS: Asphyxia was induced via umbilical cord occlusion in term lambs at birth. Lambs were treated with ganaxolone (5mg/kg/bolus then 5mg/kg/day for 2 days) or phenobarbital (20mg/kg/bolus then 5mg/kg/day for 2 days) at 6 hours. Abnormal brain activity was classified as stereotypic evolving (SE) seizures, epileptiform discharges (EDs), and epileptiform transients (ETs) using continuous amplitude-integrated electroencephalographic recordings. At 48 hours, lambs were euthanized for brain pathology. RESULTS: Asphyxia caused abnormal brain activity, including SE seizures that peaked at 18 to 20 hours, EDs, and ETs, and induced neuronal degeneration and neuroinflammation. Ganaxolone treatment was associated with an 86.4% reduction in the number of seizures compared to the asphyxia group. The total seizure duration in the asphyxia+ganaxolone group was less than the untreated asphyxia group. There was no difference in the number of SE seizures between the asphyxia and asphyxia+phenobarbital groups or duration of SE seizures. Ganaxolone treatment, but not phenobarbital, reduced neuronal degeneration within hippocampal CA1 and CA3 regions, and cortical neurons, and ganaxolone reduced neuroinflammation within the thalamus. INTERPRETATION: Ganaxolone provided better seizure control than phenobarbital in this perinatal asphyxia model and was neuroprotective for the newborn brain, affording a new therapeutic opportunity for treatment of neonatal seizures. ANN NEUROL 2022;92:1066-1079.


Asunto(s)
Asfixia Neonatal , Epilepsia , Pregnanolona , Animales , Humanos , Recién Nacido , Anticonvulsivantes/uso terapéutico , Asfixia Neonatal/complicaciones , Asfixia Neonatal/tratamiento farmacológico , Epilepsia/tratamiento farmacológico , Fenobarbital/uso terapéutico , Convulsiones/tratamiento farmacológico , Ovinos , Animales Recién Nacidos , Modelos Animales de Enfermedad
3.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919014

RESUMEN

Dehydroepiandrosterone (DHEA) and its sulfated metabolite (DHEAS) are dynamically regulated before birth and the onset of puberty. Yet, the origins and purpose of increasing DHEA[S] in postnatal development remain elusive. Here, we draw attention to this pre-pubertal surge from the adrenal gland-the adrenarche-and discuss whether this is the result of intra-adrenal gene expression specifically affecting the zona reticularis (ZR), if the ZR is influenced by the hypothalamic-pituitary axis, and the possible role of spino-sympathetic innervation in prompting increased ZR activity. We also discuss whether neural DHEA[S] synthesis is coordinately regulated with the developing adrenal gland. We propose that DHEA[S] is crucial in the brain maturation of humans prior to and during puberty, and suggest that the function of the adrenarche is to modulate, adapt and rewire the pre-adolescent brain for new and ever-changing social challenges. The etiology of DHEA[S] synthesis, neurodevelopment and recently described 11-keto and 11-oxygenated androgens are difficult to investigate in humans owing to: (i) ethical restrictions on mechanistic studies, (ii) the inability to predict which individuals will develop specific mental characteristics, and (iii) the difficulty of conducting retrospective studies based on perinatal complications. We discuss new opportunities for animal studies to overcome these important issues.


Asunto(s)
Adrenarquia , Trastornos del Neurodesarrollo/fisiopatología , Maduración Sexual , Adolescente , Femenino , Humanos , Recién Nacido , Embarazo
4.
Mol Hum Reprod ; 25(4): 228-240, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753586

RESUMEN

Inflammatory genes are expressed increasingly in the foetal membranes at late gestation triggering birth. Here we have examined whether epigenetic histone modifications contribute to the upregulation of proinflammatory genes in the amnion in late pregnancy and at labour. Amnion samples were collected from early pregnancy, at term in the absence of labour and after spontaneous birth. The expression of the labour-associated proinflammatory genes PTGS2, BMP2 and NAMPT was determined by reverse transcription-coupled quantitative real-time PCR (qRT-PCR). Chromatin immunoprecipitation (ChIP) and sequential double ChIP were performed to determine the levels and co-occurrence of activating histone-3, lysine-4 trimethylation (H3K4me3) and repressive histone-3, lysine-27 trimethylation (H3K27me3) at the gene promoters. H3K4 methyltransferase, H3K27me3 demethylase and H3K27 methyltransferase expression was determined by qRT-PCR and immunofluorescence confocal microscopy. PTGS2, BMP2 and NAMPT expression was upregulated robustly between early pregnancy and term (P < 0.05). The promoters were marked bivalently by both the H3K4me3 and H3K27me3 modifications. Bivalence was reduced at term by the decrease of the H3K27me3-modified fraction of promoter copies marked by H3K4me3 indicating epigenetic activation. Messenger RNAs encoding the H3K4-specific methyl transferases MLL1,-2,-3,-4, SETD1A,-B and the H3K27me3-specific demethylases KDM6A,-B were expressed increasingly while the H3K27 methyl transferase EZH2 was expressed decreasingly at term. Histone modifying enzyme proteins were detected in amnion epithelial and mesenchymal cells. These results with prototypical proinflammatory genes suggest that nucleosomes at labour-promoting genes are marked bivalently in the amnion, which is shifted towards monovalent H3K4me3 modification at term when the genes are upregulated. Bivalent epigenetic regulation by histone modifying enzymes may control the timing of labour.


Asunto(s)
Amnios/metabolismo , Epigénesis Genética , Histona Demetilasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Procesamiento Proteico-Postraduccional , Amnios/citología , Amnios/crecimiento & desarrollo , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Edad Gestacional , Histona Demetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Células Madre Mesenquimatosas , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Parto/genética , Embarazo , Tercer Trimestre del Embarazo/genética , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Pediatr Res ; 85(1): 86-96, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30237570

RESUMEN

BACKGROUND: Children born preterm, especially boys, are at increased risk of developing attention deficit hyperactivity disorder (ADHD) and learning difficulties. We propose that neurosteroid-replacement therapy with ganaxolone (GNX) following preterm birth may mitigate preterm-associated neurodevelopmental impairment. METHODS: Time-mated sows were delivered preterm (d62) or at term (d69). Male preterm pups were randomized to ganaxolone (Prem-GNX; 2.5 mg/kg subcutaneously twice daily until term equivalence), or preterm control (Prem-CON). Surviving male juvenile pups underwent behavioural testing at d25-corrected postnatal age (CPNA). Brain tissue was collected at CPNA28 and mature myelinating oligodendrocytes of the hippocampus and subcortical white matter were quantified by immunostaining of myelin basic protein (MBP). RESULTS: Ganaxolone treatment returned the hyperactive behavioural phenotype of preterm-born juvenile males to a term-born phenotype. Deficits in MBP immunostaining of the preterm hippocampus and subcortical white matter were also ameliorated in animals receiving ganaxolone. However, during the treatment period weight gain was poor, and pups were sedated, ultimately increasing the neonatal mortality rate. CONCLUSION: Ganaxolone improved neurobehavioural outcomes in males suggesting that neonatal treatment may be an option for reducing preterm-associated neurodevelopmental impairment. However, dosing studies are required to reduce the burden of unwanted side effects.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/prevención & control , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Moduladores del GABA/farmacología , Locomoción/efectos de los fármacos , Neuroesteroides/farmacología , Pregnanolona/análogos & derivados , Nacimiento Prematuro , Animales , Animales Recién Nacidos , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno por Déficit de Atención con Hiperactividad/psicología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Moduladores del GABA/toxicidad , Cobayas , Masculino , Proteína Básica de Mielina/metabolismo , Neuroesteroides/toxicidad , Pregnanolona/farmacología , Pregnanolona/toxicidad , Prueba de Estudio Conceptual , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/metabolismo , Conducta Social
6.
J Physiol ; 596(23): 5535-5569, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29633280

RESUMEN

Over 30 years ago Professor David Barker first proposed the theory that events in early life could explain an individual's risk of non-communicable disease in later life: the developmental origins of health and disease (DOHaD) hypothesis. During the 1990s the validity of the DOHaD hypothesis was extensively tested in a number of human populations and the mechanisms underpinning it characterised in a range of experimental animal models. Over the past decade, researchers have sought to use this mechanistic understanding of DOHaD to develop therapeutic interventions during pregnancy and early life to improve adult health. A variety of animal models have been used to develop and evaluate interventions, each with strengths and limitations. It is becoming apparent that effective translational research requires that the animal paradigm selected mirrors the tempo of human fetal growth and development as closely as possible so that the effect of a perinatal insult and/or therapeutic intervention can be fully assessed. The guinea pig is one such animal model that over the past two decades has demonstrated itself to be a very useful platform for these important reproductive studies. This review highlights similarities in the in utero development between humans and guinea pigs, the strengths and limitations of the guinea pig as an experimental model of DOHaD and the guinea pig's potential to enhance clinical therapeutic innovation to improve human health.


Asunto(s)
Desarrollo Fetal , Modelos Animales , Investigación Biomédica Traslacional , Animales , Femenino , Cobayas , Embarazo
7.
Cerebellum ; 16(2): 306-313, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27255705

RESUMEN

Elevated gestational concentrations of allopregnanolone are essential for the development and neuroprotection of the foetal brain. Preterm birth deprives the foetus of these high levels of allopregnanolone, which may contribute to the associated adverse effects on cerebellar development. Preterm birth alters expression of GABAA receptor subunit composition, which may further limit neurosteroid action. The objective of this study was to determine the effects of suppression of allopregnanolone levels on the markers of development and functional outcome. Pregnant guinea pigs were treated with finasteride at a dose (25 mg/kg maternal weight) shown to suppress allopregnanolone between 60 days of gestation until delivery (term ∼71 days). The cerebella from neonates, whose mothers were treated with finasteride or vehicle during pregnancy, were collected at postnatal age 8. Pups that received finasteride displayed significantly greater glial fibrillary acid protein area coverage and reduced GABAA receptor α6-subunit messenger RNA within the cerebellum than pups that were exposed to vehicle. These findings indicate that loss of neurosteroid action on the foetal brain in late gestation produces prolonged astrocyte activation and reductions in GABAA receptor α6-subunit expression. These changes may contribute to the long-term changes in function associated with preterm birth.


Asunto(s)
Cerebelo/embriología , Pregnanolona/deficiencia , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Astrocitos/patología , Western Blotting , Cerebelo/metabolismo , Cerebelo/patología , Femenino , Finasterida , Cobayas , Inmunohistoquímica , Masculino , Modelos Animales , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Embarazo , Complicaciones del Embarazo , Pregnanolona/sangre , ARN Mensajero/metabolismo , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de GABA-A/metabolismo
8.
Stress ; 20(6): 580-588, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28969480

RESUMEN

Prenatal stress predisposes offspring to behavioral pathologies. These may be attributed to effects on cerebellar neurosteroids and GABAergic inhibitory signaling, which can be linked to hyperactivity disorders. The aims were to determine the effect of prenatal stress on markers of cerebellar development, a key enzyme in neurosteroid synthesis and the expression of GABAA receptor (GABAAR) subunits involved in neurosteroid signaling. We used a model of prenatal stress (strobe light exposure, 2 h on gestational day 50, 55, 60 and 65) in guinea pigs, in which we have characterized anxiety and neophobic behavioral outcomes. The cerebellum and plasma were collected from control and prenatally stressed offspring at term (control fetus: n = 9 male, n = 7 female; stressed fetus: n = 7 male, n = 8 female) and postnatal day (PND) 21 (control: n = 8 male, n = 8 female; stressed: n = 9 male, n = 6 female). We found that term female offspring exposed to prenatal stress showed decreased expression of mature oligodendrocytes (∼40% reduction) and these deficits improved to control levels by PND21. Reactive astrocyte expression was lower (∼40% reduction) following prenatal stress. GABAAR subunit (δ and α6) expression and circulating allopregnanolone concentrations were not affected by prenatal stress. Prenatal stress increased expression (∼150-250% increase) of 5α-reductase type-1 mRNA in the cerebellum, which may be a neuroprotective response to promote GABAergic inhibition and aid in repair. These observations indicate that prenatal stress exposure has marked effects on the development of the cerebellum. These findings suggest cerebellar changes after prenatal stress may contribute to adverse behavioral outcomes after exposure to these stresses.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Astrocitos/citología , Cerebelo/metabolismo , Oligodendroglía/citología , Complicaciones del Embarazo , Pregnanolona/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores de GABA-A/metabolismo , Estrés Psicológico , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Animales , Ansiedad , Conducta Animal , Femenino , Feto , Cobayas , Masculino , Neurotransmisores/metabolismo , Embarazo , ARN Mensajero/metabolismo
9.
Pediatr Res ; 80(2): 275-83, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27055188

RESUMEN

BACKGROUND: Ex-preterm children and adolescents are at risk of developing late-onset neurodevelopmental and behavioral disorders. The mechanisms by which this happens are poorly understood and relevant animal models are required. METHODS: Ex-preterm (delivered at 62 d gestation) and term (spontaneously delivered) juvenile guinea pigs underwent behavioral testing at 25 d corrected postnatal age, with tissues collected at 28 d. Neurodevelopmental markers (myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP)) were analyzed in the hippocampus and subcortical white matter by immunohistochemistry. Gamma-aminobutyric acid A (GABAA) receptor subunit mRNA levels were quantified by reverse transcription polymerase chain reaction (RT-PCR), and salivary cortisol measured by enzyme-linked immunosorbent assay. RESULTS: Preterm males travelled greater distances, were mobile for longer, spent more time investigating objects, and approached or interacted with familiar animals more than controls. Myelination and reactive astrocyte coverage was lower in the hippocampus and the subcortical white matter in preterm males. Hippocampal levels of the α5 subunit were also lower in the preterm male brain. Baseline salivary cortisol was higher for preterm males compared to controls. CONCLUSION: We conclude that juvenile ex-preterm male guinea pigs exhibit a hyperactive phenotype and feature impaired neurodevelopment, making this a suitable model for future therapeutic studies.


Asunto(s)
Nacimiento Prematuro , Esteroides/uso terapéutico , Animales , Astrocitos/citología , Conducta Animal , Encéfalo/crecimiento & desarrollo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Cobayas , Hipocampo/metabolismo , Hidrocortisona/metabolismo , Inmunohistoquímica , Masculino , Proteína Básica de Mielina/metabolismo , Fenotipo , Receptores de GABA-A/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saliva/metabolismo , Factores de Tiempo
10.
Dev Neurosci ; 37(6): 533-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26279160

RESUMEN

Prenatal stress has been associated with detrimental outcomes of pregnancy, including altered brain development leading to behavioural pathologies. The neurosteroid allopregnanolone has been implicated in mediating some of these adverse outcomes following prenatal stress due to its potent inhibitory and anxiolytic effects on the brain. The aims of the current study were to characterise key markers for brain development as well as behavioural parameters, adrenocortical responses to handling and possible neurosteroid influences towards outcomes in guinea pig offspring in childhood. Pregnant guinea pig dams were exposed to strobe light for 2 h (9-11 a.m.) on gestational days 50, 55, 60, and 65 and were left to deliver spontaneously at term and care for their litter. Behavioural testing (open-field test, object exploration test) of the offspring was performed at postnatal day 18 (with salivary cortisol and DHEA measured), and brains were collected at post-mortem on day 21. Markers of brain development myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) were assessed via immunohistochemistry, and the neurosteroid allopregnanolone and its rate-limiting enzymes 5α-reductase types 1 and 2 (5αR1/2) were measured in neonatal brains by radioimmunoassay, reverse transcriptase polymerase chain reaction (RT-PCR), and Western blot, respectively. Brain-derived neurotrophic factor protein was measured as a marker of synaptic plasticity, and GABAA receptor subunit expression was also assessed using RT-PCR. Neonates born from mothers stressed during late pregnancy showed a reduction in both MBP (p < 0.01) and GFAP (p < 0.05) expression in the CA1 region of the hippocampus at 21 days of age. Pups of prenatally stressed pregnancies also showed higher levels of anxiety and neophobic behaviours at the equivalent of childhood (p < 0.05). There were no significant changes observed in allopregnanolone levels, 5αR1/2 expression, or GABAA receptor subunit expression in prenatally stressed neonates compared to controls. This study shows alterations in markers of myelination and reactive astrocytes in the hippocampus of offspring exposed to prenatal stress. These changes are also observed in offspring that show increased anxiety behaviours at the equivalent of childhood, which indicates ongoing structural and functional postnatal changes after prenatal stress exposure.


Asunto(s)
Hipocampo/fisiopatología , Neuroglía/patología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Estrés Psicológico/fisiopatología , Animales , Ansiedad/etiología , Western Blotting , Modelos Animales de Enfermedad , Femenino , Cobayas , Inmunohistoquímica , Neuroglía/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/psicología , Radioinmunoensayo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Dev Neurosci ; 35(5): 416-26, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24051896

RESUMEN

BACKGROUND: Maternal psychosocial stress during pregnancy is associated with adverse neonatal outcomes. These outcomes result from changes in fetal brain development and lead to disrupted cognitive, behavioural and emotional development. The neurosteroid allopregnanolone has been shown to reduce neural excitability and aid in protecting the fetal brain from excitotoxic insults. The objectives of this study were to assess the effect of prenatal maternal stress on fetal brain development with and without maternal allopregnanolone treatment. METHODS: Pregnant guinea pigs were subjected to stress induced by exposure to a strobe light at 50, 55, 60 and 65 days gestation. Salivary cortisol levels were measured before and after each exposure. Fetal brains were assessed for markers of brain development using immunohistochemistry and plasma allopregnanolone was measured by radioimmunoassay. RESULTS: Female, but not male prenatal stress-exposed fetuses demonstrated higher brain-to-liver ratios (BLR). Male fetuses showed significantly reduced expression of myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and both males and females showed reduced expression of microtubule-associated protein 2 (MAP2). These markers were not affected by maternal allopregnanolone treatment. However, maternal allopregnanolone treatment resulted in an increase in fetal plasma allopregnanolone concentrations in control pregnancies but concentrations were not raised after prenatal stress exposure. CONCLUSIONS: These findings indicate that the effects of prenatal stress on fetal brain development are sexually dimorphic with more pronounced negative effects seen on male neurodevelopment. Allopregnanolone treatment was not effective in raising fetal plasma concentrations after prenatal stress suggesting a stress-induced dysregulation of neurosteroid pathways during gestation. Interestingly, this study directly implicates prenatal stress in the disruption of fetal neurosteroid levels, such that it may mediate some of the deleterious effects on fetal neurodevelopment by facilitating a deficit in normal endogenous neuroprotective mechanisms.


Asunto(s)
Encéfalo/embriología , Desarrollo Fetal/efectos de los fármacos , Pregnanolona/farmacología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Estrés Psicológico/fisiopatología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Cobayas , Hidrocortisona/metabolismo , Masculino , Proteína Básica de Mielina/metabolismo , Embarazo , Pregnanolona/sangre , Efectos Tardíos de la Exposición Prenatal/metabolismo , Factores Sexuales , Estrés Psicológico/metabolismo
12.
PLoS One ; 18(3): e0280645, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36897880

RESUMEN

The decidua undergoes proinflammatory activation in late pregnancy, promoting labor. Bromodomain and Extra-Terminal (BET) family proteins interact with acetylated histones and may control gene expression in inflammation. Here, we assessed whether BETs are involved in inflammatory gene regulation in human decidual cells. We have treated primary cultures of decidual stromal cells (DSCs) from term pregnancies with endotoxin (LPS) and measured the expression of a panel of pro-and anti-inflammatory genes. BET involvement was assessed using the selective BET inhibitors (+)-JQ1 and I-BET-762 or the negative control compound (-)-JQ1. Histone 3 and -4 acetylation and BETs binding at the target gene promoters were determined to assess whether these processes are involved in the actions of LPS, BETs, and BET inhibitors. LPS increased the expression of the proinflammatory (PTGS2, IL6, CXCL8/IL8, TNF) and the anti-inflammatory (IL10, IDO1) genes of the panel. The constitutively expressed inflammatory genes (PTGS1, PTGES) were unaffected. The BET inhibitors, but not the control compound, reduced the basal and LPS-induced expression of PTGS1, PTGS2, IL6, CXCL8/IL8, IL10, and IDO1. TNF expression was not changed by BET inhibition. The dominant BETs were Bromodomain-containing protein -2 (BRD2) and -4L (BRD4L) in DSCs. LPS increased histone 4 acetylation at the CXCL8/IL8 and TNF promoters and histone 3 and -4 acetylation at the IDO1 promoter, while (+)-JQ1 abrogated histone acetylation at several promoters. Overall, histone acetylation and promoter binding of BETs showed no consistent relationship with gene expression across the gene panel and the treatments. BET proteins, predominantly BRD2 and BRD4L, control critical pro- and anti-inflammatory genes in DSCs. TNF induction exemplifies a BET-independent pathway. Changing histone acetylation at the promoters is not a general obligatory requirement for inflammatory gene expression in response to LPS. BETs likely act at chromatin loci separate from the examined promoters. BET inhibitors may block decidual activation at labor.


Asunto(s)
Histonas , Interleucina-8 , Femenino , Humanos , Embarazo , Histonas/metabolismo , Interleucina-8/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos , Ciclooxigenasa 2/metabolismo , Interleucina-10/metabolismo , Factores de Transcripción/genética , Antiinflamatorios , Azepinas/farmacología
13.
BMJ Open ; 13(7): e072205, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37451724

RESUMEN

INTRODUCTION: Multiple cohort studies have been established to investigate the impact of early life factors on development and health outcomes. In Australia the majority of these studies were established more than 20 years ago and, although longitudinal in nature, are inherently susceptible to socioeconomic, environmental and cultural influences which change over time. Additionally, rapid leaps in technology have increased our understanding of the complex role of gene-environment interactions in life course health, highlighting the need for new cohort studies with repeated biological sampling and in-depth phenotype data across the first 1000 days of life from conception. METHODS AND ANALYSIS: The Newcastle 1000 (NEW1000) Study, based in the regional city of Newcastle, New South Wales, was developed after an extensive consultation process involving 3 years of discussion with key stakeholders and healthcare consumer organisations and seven healthcare consumer workshops. This prospective population-based pregnancy cohort study will recruit 500 families per year for 5 years, providing detailed, longitudinal, multisystem phenotyping, repeated ultrasound measures and serial sample collection to investigate healthcare consumer identified health outcomes of priority. Stage 1 will involve recruitment of pregnant participants and their partners at 14 weeks gestation, with dense phenotype data and biological samples collected at 14, 20, 28 and 36 weeks gestation and serial ultrasound measures at 20, 28, 36 and 40 weeks, with postpartum follow-up at 6 weeks and 6 months. Biological samples will be used for biomarker discovery and sequencing of the genome, transcriptome, epigenome, microbiome and metabolome. ETHICS AND DISSEMINATION: Ethics approval was obtained from Hunter New England Local Health District Ethics Committee (2020/ETH02881). Outcomes will be published in peer-reviewed journals, disseminated to participants through the NEW1000 website, presented at scientific conferences, and written reports to local, state and national government bodies and key stakeholders in the healthcare system to inform policy and evidence-based practice.


Asunto(s)
Proyectos de Investigación , Embarazo , Femenino , Humanos , Estudios de Cohortes , Australia , Estudios Prospectivos , Nueva Gales del Sur/epidemiología
14.
Pediatr Res ; 71(1): 20-4, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22289846

RESUMEN

INTRODUCTION: Microvascular dysfunction, characterized by inappropriate vasodilatation and high blood flow in the peripheral microcirculation, is linked to physiologic instability and poor outcome in neonates. Specifically, preterm neonates have significantly higher levels of baseline microvascular blood flow than term neonates at 24 h postnatal age. Because of similarities between human and guinea pig endocrine profiles and maturity at birth, we hypothesized that preterm guinea pig neonates would provide a suitable model for studying the mechanisms underlying transitional microvascular function. RESULTS: Guinea pigs that were delivered preterm showed immaturity and had markedly reduced viability. Baseline microvascular blood flow was significantly higher in preterm animals than in term animals. No effect of intrauterine growth restriction or birth weight on baseline microvascular blood flow was observed in either preterm or term animals. DISCUSSION: These results are consistent with recent clinical findings and support the use of the guinea pig as a suitable model for future studies of the mechanisms underlying perinatal microvascular behavior. METHODS: Guinea pigs were delivered either prematurely or at term. Laser Doppler flowmetry was used to study microvascular blood flow at 23 h postnatal age.


Asunto(s)
Microcirculación/fisiología , Modelos Animales , Animales , Animales Recién Nacidos , Femenino , Retardo del Crecimiento Fetal , Cobayas , Humanos , Flujometría por Láser-Doppler , Embarazo
15.
Psychoneuroendocrinology ; 139: 105705, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35276552

RESUMEN

BACKGROUND: A correct balance of activity of the GABA and glutamate systems is vital for optimal neurodevelopment and general CNS function, and the dysregulation of this balance has been implicated in a number of neurological conditions. Maternal exposure to stressors is known to have long lasting, deleterious impacts on neurobehaviour, and similarly, results in dysregulation of inhibitory and excitatory pathways in the offspring. The current study aimed to examine effects on these pathways in a guinea pig model of prenatal stress and to elucidate whether increased neuroprotective support by postnatal neurosteroid supplementation would ameliorate adverse outcomes. METHODS: Prenatal stress was achieved by exposing pregnant guinea pigs dams to a strobe light for 2hrs/day on gestational age (GA) 50, 55, 60 and 65. Dams were allowed to spontaneously deliver (~GA70) and pups were orally administered either allopregnanolone analogue, ganaxolone (5 mg/kg/day in 45% cyclodextrin), the translocator protein (TSPO) agonist, emapunil (XBD173; 0.3 mg/kg/day in 1% tragacanth gum) or vehicle on postnatal days (PND) 1-7. Hippocampal samples were collected at PND30 to measure relative mRNA expression of components involved in the inhibitory GABAergic pathway and exctitatory glutamatergic pathway by real-time PCR. GABAergic interneurons were quantified by assessing immunohistochemical protein expression of markers parvalbumin, calbindin and calretinin. RESULTS: mRNA expression of GABAergic pathway components at one week of age indicated immature expression profiles of the GABAA receptors as well as decreased GABA synthesis and transport suggesting reduced extrasynaptically-mediated tonic inhibition. Expression profiles of the pathways examined evolved between one week and one month of age but an imbalance in inhibitory/excitatory components persisted. The allopregnanolone analogue ganaxolone offered some protection against excitotoxicity in female hippocampus, however neurosteroid supplementation with ganaxolone or emapunil were unable to fully correct the GABAergic/glutamatergic imbalance observed following prenatal stress. CONCLUSION: Prenatal stress leads to programmed lasting effects on the major inhibitory and excitatory pathways in the guinea pig brain that continue evolving between the equivalent of early and late childhood. Neurosteroid therapies particularly improved outcomes in females. Further studies are required to identify additional therapeutic targets that are able to fully restore imbalances in the excitatory and inhibitory systems, which may act to prevent development of childhood behavioural disorders.


Asunto(s)
Neuroesteroides , Efectos Tardíos de la Exposición Prenatal , Animales , Niño , Suplementos Dietéticos , Femenino , Cobayas , Hipocampo/metabolismo , Humanos , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo
16.
Front Physiol ; 13: 871265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35514343

RESUMEN

Background: Preterm birth can lead to brain injury and currently there are no targeted therapies to promote postnatal brain development and protect these vulnerable neonates. We have previously shown that the neurosteroid-analogue ganaxolone promotes white matter development and improves behavioural outcomes in male juvenile guinea pigs born preterm. Adverse side effects in this previous study necessitated this current follow-up dosing study, where a focus was placed upon physical wellbeing during the treatment administration and markers of neurodevelopment at the completion of the treatment period. Methods: Time-mated guinea pigs delivered preterm (d62) by induction of labour or spontaneously at term (d69). Preterm pups were randomized to receive no treatment (Prem-CON) or ganaxolone at one of three doses [0.5 mg/kg ganaxolone (low dose; LOW-GNX), 1.0 mg/kg ganaxolone (mid dose; MID-GNX), or 2.5 mg/kg ganaxolone (high dose; HIGH-GNX) in vehicle (45% ß-cyclodextrin)] daily until term equivalence age. Physical parameters including weight gain, ponderal index, supplemental feeding, and wellbeing (a score based on respiration, activity, and posture) were recorded throughout the preterm period. At term equivalence, brain tissue was collected, and analysis of hippocampal neurodevelopment was undertaken by immunohistochemistry and RT-PCR. Results: Low and mid dose ganaxolone had some impacts on early weight gain, supplemental feeding, and wellbeing, whereas high dose ganaxolone significantly affected all physical parameters for multiple days during the postnatal period when compared to the preterm control neonates. Deficits in the preterm hippocampus were identified using neurodevelopmental markers including mRNA expression of oligodendrocyte lineage cells (CSPG4, MBP), neuronal growth (INA, VEGFA), and the GABAergic/glutamatergic system (SLC32A1, SLC1A2, GRIN1, GRIN2C, DLG4). These deficits were not affected by ganaxolone at the doses used at the equivalent of normal term. Conclusion: This is the first study to investigate the effects of a range of doses of ganaxolone to improve preterm brain development. We found that of the three doses, only the highest dose of ganaxolone (2.5 mg/kg) impaired key indicators of physical health and wellbeing over extended periods of time. Whilst it may be too early to see improvements in markers of neurodevelopment, further long-term study utilising the lower doses are warranted to assess functional outcomes at ages when preterm birth associated behavioural disorders are observed.

17.
Stress ; 14(1): 13-22, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20828337

RESUMEN

Allopregnanolone and related steroids are potent γ-aminobutyric acid receptor-A receptor agonistic allosteric modulators that suppress central nervous system (CNS) activity; in some species, these neurosteroids regulate normal CNS activity before birth. The aims of this study were to determine the effect of suppressing allopregnanolone production on behavioral responses to transient asphyxia in late gestation fetal sheep using the 5α-reductase (R)-2 inhibitor, finasteride. Specificity of the effects of finasteride was assessed by co-infusion of alfaxalone, a synthetic analog of allopregnanolone. Fetal catheters and electrodes for measurement of the electrocorticogram (ECoG) and nuchal electromyogram were implanted at 125 days of gestation, and an inflatable occluder was placed to allow umbilical cord occlusion (UCO). At approximately 130 days of gestation, fetuses received carotid arterial infusion of vehicle (2-hydroxypropyl-ß-cyclodextrin; 40% w/vol), finasteride (40 mg/kg/h), alfaxalone (5 mg/kg/h), or finasteride + alfaxalone. A further three groups of fetuses were subjected to 5 min UCO at 30 min after the start of each infusion regime. Finasteride treatment alone increased the incidence of arousal-like activity; this was reduced by co-infusion of alfaxalone. After UCO, finasteride treatment caused a prolongation of sub-low voltage (LV) ECoG activity and increase in aberrant ECoG spike activity when compared to vehicle-treated UCO fetuses. After UCO, alfaxalone treatment reduced the incidence of sub-LV, reduced the number of aberrant EEG spikes, and restored ECoG activity to the pattern observed after UCO in vehicle-treated fetuses. These results confirm that neurosteroids significantly modulate normal CNS activity in the late gestation fetus, modify, and limit the effects of asphyxia on the brain.


Asunto(s)
Asfixia/fisiopatología , Feto/efectos de los fármacos , Finasterida/farmacología , Pregnanodionas/farmacología , Animales , Nivel de Alerta/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Electroencefalografía/efectos de los fármacos , Electroencefalografía/veterinaria , Electromiografía , Frecuencia Cardíaca Fetal/efectos de los fármacos , Receptores de GABA-A/fisiología , Oveja Doméstica , Sueño/fisiología
18.
Stress ; 14(1): 1-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21166559

RESUMEN

Steroid hormones play a critical role in the initiation and maintenance of pregnancy. In particular, the important role that the progesterone metabolite, and neurosteroid, allopregnanolone, may play in fetal and adolescent development is becoming increasingly evident. Unlike steroid hormones, neurosteroids act at nontraditional targets in the central and peripheral nervous systems, including GABA(A) receptor complexes. This commentary discusses the three works in this issue that elucidate the important role of allopregnanolone in the mechanisms that regulate stress hypo-sensitivity of rodents in late pregnancy, neuroprotective effects in fetal sheep exposed to a hypoxic insult, and the continuing role that prefrontal cortex formation of allopregnanolone may play on the cognitive development of gestationally stressed rat offspring, grown to adolescence. The narrative that these works comprise was facilitated by the 5(th) International Meeting on Steroids and the Nervous System (Torino, Italy), which is organized to update our knowledge on the relationships between steroid hormones synthesized in different organs and the nervous system. Topics covered in this most recent meeting included sex differences in, and hormonal influences on, cannabinoid-regulated biology; steroids and pain; the importance of co-regulatory factors for steroid receptor action in the brain; mechanism and role of estrogen-induced nonclassical signaling in the brain; vitamin D as the forgotten neurosteroid; neurosteroids and GABA(A) receptors; and pathogenic mechanisms mediated by glucocorticoid receptors in psychiatric disorders. The 6(th) International Meeting on Steroids and the Nervous System will be held in Torino, Italy in February 2011.


Asunto(s)
Neurotransmisores/fisiología , Embarazo/fisiología , Pregnanolona/fisiología , Animales , Sistema Nervioso Central/crecimiento & desarrollo , Femenino , Humanos , Progesterona/sangre
19.
Front Pediatr ; 9: 618052, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33634057

RESUMEN

Preterm birth is associated with poor long-term neurodevelopmental and behavioral outcomes, even in the absence of obvious brain injury at the time of birth. In particular, behavioral disorders characterized by inattention, social difficulties and anxiety are common among children and adolescents who were born moderately to late preterm (32-37 weeks' gestation). Diffuse deficits in white matter microstructure are thought to play a role in these poor outcomes with evidence suggesting that a failure of oligodendrocytes to mature and myelinate axons is responsible. However, there remains a major knowledge gap over the mechanisms by which preterm birth interrupts normal oligodendrocyte development. In utero neurodevelopment occurs in an inhibitory-dominant environment due to the action of placentally derived neurosteroids on the GABAA receptor, thus promoting GABAergic inhibitory activity and maintaining the fetal behavioral state. Following preterm birth, and the subsequent premature exposure to the ex utero environment, this action of neurosteroids on GABAA receptors is greatly reduced. Coinciding with a reduction in GABAergic inhibition, the preterm neonatal brain is also exposed to ex utero environmental insults such as periods of hypoxia and excessive glucocorticoid concentrations. Together, these insults may increase levels of the excitatory neurotransmitter glutamate in the developing brain and result in a shift in the balance of inhibitory: excitatory activity toward excitatory. This review will outline the normal development of oligodendrocytes, how it is disrupted under excitation-dominated conditions and highlight how shifting the balance back toward an inhibitory-dominated environment may improve outcomes.

20.
Psychoneuroendocrinology ; 124: 105060, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33333379

RESUMEN

BACKGROUND: Chronic psychosocial stress during pregnancy and/or after birth, and the associated elevation in cortisol, is linked with the onset of behavioural disorders in childhood. Previously, prenatal stress has been shown to reduce neurosteroid pathways in the fetus and the levels of the neurosteroid and GABAA receptor agonist, allopregnanolone. In late gestation, elevated levels of GABAergic activity increases inhibitory tone and protects against excessive excitation. These levels of allopregnanolone may also contribute to promoting myelination, thus stress-induced suppression of protective neurosteroid levels may disrupt neurodevelopmental processes and can result in reduced myelination. The objective of this study was to examine whether prenatal and postnatal stress reduces levels of inhibitory pathways to result in behavioural, myelin, and GABAergic/glutamatergic pathway deficits in the hippocampus at a postnatal time point in the guinea pig equivalent to childhood in humans. METHODS: Pregnant guinea pig dams were exposed to prenatal stress (PRE) with strobe light exposure for 2 h/day on gestational age (GA) 50, 55, 60 and 65 (term is ∼GA70), with postnatal stress (POST) caused by maternal separation for 2 h/day from postnatal day (PND) 1-7), or a double-hit of both stressors (PRE + POST). Control dams and offspring groups (CON) were handled at the same time each day without causing stress. Behavioural outcomes were assessed using open field and elevated plus maze testing on PND27. After euthanasia on PND30, plasma samples were collected for steroid quantification of cortisol, allopregnanolone and progesterone by ELISA. Hippocampal samples were collected to assess markers of oligodendrocyte development and mature cells by myelin basic protein (MBP) immunostaining and GABAergic and glutamatergic pathway component gene expression by real time PCR. RESULTS: Male guinea pig offspring exposed to prenatal stress exhibited hyperactive-like behaviour at childhood equivalence, while female offspring displayed anxious-like behaviour, to a lesser extent. In both sexes, MBP immunostaining was significantly decreased in the hippocampal region following prenatal stress, despite normal levels of MBP mRNA, which suggests a disruption to the MBP protein translation pathway. Many components of the GABAergic and glutamatergic pathways were disrupted following prenatal stress, notably GABAA receptor subunits, GABA production and uptake, glutamate ionotropic and metabotropic receptor subunits and glutamate transport. Following prenatal + postnatal stress, many of the behavioural and neurodevelopmental deficits were improved compared to the prenatal stress only group. CONCLUSION: We conclude that prenatal stress disrupts GABAergic and glutamatergic pathways that may contribute to reduced myelination and subsequent behavioural deficits in the offspring. The deficits seen following prenatal stress are ameliorated when paired with subsequent postnatal stress, which highlights the early postnatal period as an important treatment window.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Glutamatos , Cobayas , Hipocampo/metabolismo , Hidrocortisona , Masculino , Privación Materna , Neuroesteroides , Embarazo , Pregnanolona , Receptores de GABA-A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA