Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Vet Res Commun ; 33(3): 227-40, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18780155

RESUMEN

In most mammals, glucokinase (GK) acts as a hepatic "glucose sensor" that permits hepatic metabolism to respond appropriately to changes in plasma glucose concentrations. GK activity is potently regulated by the glucokinase regulatory protein (GKRP), which is encoded by the GCKR gene. GKRP binds GK in the nucleus and inhibits its activity. GK becomes active when it is released from GKRP and translocates to the cytosol. Low glucokinase (GK) activity is reported to be a principal feature of feline hepatic carbohydrate metabolism but the molecular pathways that regulate GK activity are not known. This study examined the hypothesis that species-specific differences in GKRP expression parallel the low GK activity observed in feline liver. Hepatic GKRP expression was examined using RT-PCR, immunoblot, and confocal immunomicroscopy. The results show that the GCKR gene is present in the feline genome but GCKR mRNA and the GKRP protein were absent in feline liver. The lack of GKRP expression in feline liver indicates that the low GK activity cannot be the result of GKRP-mediated inhibition of the GK enzyme. However, the absence of the permissive effects of GCKR expression on GK expression and activity may contribute to reduced GK enzyme activity in feline liver. The study results show that the cat is a natural model for GCKR knockout and may be useful to study regulation of GCKR expression and its role in hepatic glucose-sensing and carbohydrate metabolism.


Asunto(s)
Proteínas Portadoras/biosíntesis , Gatos/metabolismo , Glucoquinasa/metabolismo , Hígado/metabolismo , Animales , Proteínas Portadoras/genética , Hepatocitos/enzimología , Hepatocitos/metabolismo , Immunoblotting/veterinaria , Hígado/enzimología , Microscopía Confocal/veterinaria , ARN/química , ARN/genética , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria
2.
BMC Vet Res ; 1: 8, 2005 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-16266437

RESUMEN

BACKGROUND: Pancreatic beta cells express ATP-sensitive potassium (KATP) channels that are needed for normal insulin secretion and are targets for drugs that modulate insulin secretion. The KATP channel is composed of two subunits: a sulfonylurea receptor (SUR 1) and an inward rectifying potassium channel (Kir6.2). KATP channel activity is influenced by the metabolic state of the cell and initiates the ionic events that precede insulin exocytosis. Although drugs that target the KATP channel have the expected effects on insulin secretion in dogs, little is known about molecular aspects of this potassium channel. To learn more about canine beta cell KATP channels, we studied KATP channel expression by the normal canine pancreas and by insulin-secreting tumors of dogs. RESULTS: Pancreatic tissue from normal dogs and tumor tissue from three dogs with histologically-confirmed insulinomas was examined for expression of KATP channel subunits (SUR1 and Kir6.2) using RT-PCR. Normal canine pancreas expressed SUR1 and Kir6.2 subunits of the KATP channel. The partial nucleotide sequences for SUR1 and Kir6.2 obtained from the normal pancreas showed a high degree of homology to published sequences for other mammalian species. SUR1 and Kir6.2 expression was observed in each of the three canine insulinomas examined. Comparison of short sequences from insulinomas with those obtained from normal pancreas did not reveal any mutations in either SUR1 or Kir6.2 in any of the insulinomas. CONCLUSION: Canine pancreatic KATP channels have the same subunit composition as those found in the endocrine pancreases of humans, rats, and mice, suggesting that the canine channel is regulated in a similar fashion as in other species. SUR1 and Kir6.2 expression was found in the three insulinomas examined indicating that unregulated insulin secretion by these tumors does not result from failure to express one or both KATP channel subunits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA