Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(1): 100-110, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26924577

RESUMEN

The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals.


Asunto(s)
Sinapsis Inmunológicas , Linfocitos T Citotóxicos/fisiología , Animales , Fenómenos Biomecánicos , Degranulación de la Célula , Línea Celular Tumoral , Ratones , Perforina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/inmunología
3.
Nat Immunol ; 14(7): 723-31, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23666293

RESUMEN

The mechanisms by which Lat (a key adaptor in the T cell antigen receptor (TCR) signaling pathway) and the TCR come together after TCR triggering are not well understood. We investigate here the role of SNARE proteins, which are part of protein complexes involved in the docking, priming and fusion of vesicles with opposing membranes, in this process. Here we found, by silencing approaches and genetically modified mice, that the vesicular SNARE VAMP7 was required for the recruitment of Lat-containing vesicles to TCR-activation sites. Our results indicated that this did not involve fusion of Lat-containing vesicles with the plasma membrane. VAMP7, which localized together with Lat on the subsynaptic vesicles, controlled the phosphorylation of Lat, formation of the TCR-Lat-signaling complex and, ultimately, activation of T cells. Our findings suggest that the transport and docking of Lat-containing vesicles with target membranes containing TCRs regulates TCR-induced signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Activación de Linfocitos/inmunología , Proteínas de la Membrana/inmunología , Fosfoproteínas/inmunología , Proteínas R-SNARE/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , Animales , Citometría de Flujo , Humanos , Immunoblotting , Sinapsis Inmunológicas/inmunología , Células Jurkat , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Fosforilación
4.
J Cell Physiol ; 238(5): 976-991, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36852591

RESUMEN

Voltage-dependent potassium channel Kv1.3 plays a key role on T-cell activation; however, lack of reliable antibodies has prevented its accurate detection under endogenous circumstances. To overcome this limitation, we created a Jurkat T-cell line with endogenous Kv1.3 channel tagged, to determine the expression, location, and changes upon activation of the native Kv1.3 channels. CRISPR-Cas9 technique was used to insert a Flag-Myc peptide at the C terminus of the KCNA3 gene. Basal or activated channel expression was studied using western blot analysis and imaging techniques. We identified two isoforms of Kv1.3 other than the canonical channel (54 KDa) differing on their N terminus: a longer isoform (70 KDa) and a truncated isoform (43 KDa). All three isoforms were upregulated after T-cell activation. We focused on the functional characterization of the truncated isoform (short form, SF), because it has not been previously described and could be present in the available Kv1.3-/- mice models. Overexpression of SF in HEK cells elicited small amplitude Kv1.3-like currents, which, contrary to canonical Kv1.3, did not induce HEK proliferation. To explore the role of endogenous SF isoform in a native system, we generated both a knockout Jurkat clone and a clone expressing only the SF isoform. Although the canonical isoform (long form) localizes mainly at the plasma membrane, SF remains intracellular, accumulating perinuclearly. Accordingly, SF Jurkat cells did not show Kv1.3 currents and exhibited depolarized resting membrane potential (VM ), decreased Ca2+ influx, and a reduction in the [Ca2+ ]i increase upon stimulation. Functional characterization of these Kv1.3 channel isoforms showed their differential contribution to signaling pathways involved in formation of the immunological synapse. We conclude that alternative translation initiation generates at least three endogenous Kv1.3 channel isoforms in T cells that exhibit different functional roles. For some of these functions, Kv1.3 proteins do not need to form functional plasma membrane channels.


Asunto(s)
Canal de Potasio Kv1.3 , Animales , Humanos , Ratones , Línea Celular , Membrana Celular/metabolismo , Células Jurkat , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/metabolismo
5.
Immunol Rev ; 291(1): 57-74, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31402505

RESUMEN

T-lymphocyte activation relies on the cognate recognition by the TCR of the MHC-associated peptide ligand (pMHC) presented at the surface of an antigen-presenting cell (APC). This leads to the dynamic formation of a cognate contact between the T lymphocyte and the APC: the immune synapse (IS). Engagement of the TCR by the pMHC in the synaptic zone induces a cascade of signaling events leading to phosphorylation and dephosphorylation of proteins and lipids, which ultimately shapes the response of T lymphocytes. Although the engagement of the T-cell receptor (TCR) takes place at the plasma membrane, the TCR/CD3 complexes and the signaling molecules involved in transduction of the TCR signal are also present in intracellular membrane pools. These pools, which are both endocytic and exocytic, have tentatively been characterized by several groups including ours. We will herein summarize what is known on the intracellular pools of TCR signaling components. We will discuss their origin and the mechanisms involved in their mobility at the IS. Finally, we will propose several hypotheses concerning the functional role(s) that these intracellular pools might play in T-cell activation. We will also discuss the tools that could be used to test these hypotheses.


Asunto(s)
Activación de Linfocitos , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Endocitosis , Endosomas/metabolismo , Humanos , Espacio Intracelular/metabolismo , Ligandos , Metabolismo de los Lípidos , Fosforilación , Transporte de Proteínas
6.
Biol Cell ; 113(5): 250-263, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33471387

RESUMEN

BACKGROUND INFORMATION: We have previously observed that in response to antigenic activation, T cells produce actin-rich protrusions that generate forces involved in T cell activation. These forces are influenced by the mechanical properties of antigen-presenting cells (APCs). However, how external forces, which can be produced by APCs, influence the dynamic of the actin protrusion remains unknown. In this study, we quantitatively characterised the effects of external forces in the dynamic of the protrusion grown by activated T cells. RESULTS: Using a micropipette force probe, we applied controlled compressive or pulling forces on primary T lymphocytes activated by an antibody-covered microbead, and measured the effects of these forces on the protrusion generated by T lymphocytes. We found that the application of compressive forces slightly decreased the length, the time at which the protrusion stops growing and retracts and the velocity of the protrusion formation, whereas pulling forces strongly increased these parameters. In both cases, the applied forces did not alter the time required for the T cells to start growing the protrusion (delay). Exploring the molecular events controlling the dynamic of the protrusion, we showed that inhibition of the Arp2/3 complex impaired the dynamic of the protrusion by reducing both its maximum length and its growth speed and increasing the delay to start growing. Finally, T cells developed similar protrusions in more physiological conditions, that is, when activated by an APC instead of an activating microbead. CONCLUSIONS: Our results suggest that the formation of the force-generating protrusion by T cells is set by an intracellular constant time and that its dynamic is sensitive to external forces. They also show that actin assembly mediated by actin-related protein Arp2/3 complex is involved in the formation and dynamic of the protrusion. SIGNIFICANCE: Actin-rich protrusions developed by T cells are sensory organelles that serve as actuators of immune surveillance. Our study shows that forces experienced by this organelle modify their dynamic suggesting that they might modify immune responses. Moreover, the quantitative aspects of our analysis should help to get insight into the molecular mechanisms involved in the formation of the protrusion.


Asunto(s)
Proteína 2 Relacionada con la Actina/inmunología , Actinas/inmunología , Proteínas de Transporte de Membrana/inmunología , Linfocitos T , Adhesión Celular , Femenino , Células HEK293 , Humanos , Células K562 , Masculino , Cultivo Primario de Células , Linfocitos T/citología , Linfocitos T/inmunología
7.
Proc Natl Acad Sci U S A ; 116(51): 25839-25849, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31776254

RESUMEN

Naive CD4+ T lymphocytes differentiate into different effector types, including helper and regulatory cells (Th and Treg, respectively). Heritable gene expression programs that define these effector types are established during differentiation, but little is known about the epigenetic mechanisms that install and maintain these programs. Here, we use mice defective for different components of heterochromatin-dependent gene silencing to investigate the epigenetic control of CD4+ T cell plasticity. We show that, upon T cell receptor (TCR) engagement, naive and regulatory T cells defective for TRIM28 (an epigenetic adaptor for histone binding modules) or for heterochromatin protein 1 ß and γ isoforms (HP1ß/γ, 2 histone-binding factors involved in gene silencing) fail to effectively signal through the PI3K-AKT-mTOR axis and switch to glycolysis. While differentiation of naive TRIM28-/- T cells into cytokine-producing effector T cells is impaired, resulting in reduced induction of autoimmune colitis, TRIM28-/- regulatory T cells also fail to expand in vivo and to suppress autoimmunity effectively. Using a combination of transcriptome and chromatin immunoprecipitation-sequencing (ChIP-seq) analyses for H3K9me3, H3K9Ac, and RNA polymerase II, we show that reduced effector differentiation correlates with impaired transcriptional silencing at distal regulatory regions of a defined set of Treg-associated genes, including, for example, NRP1 or Snai3. We conclude that TRIM28 and HP1ß/γ control metabolic reprograming through epigenetic silencing of a defined set of Treg-characteristic genes, thus allowing effective T cell expansion and differentiation into helper and regulatory phenotypes.


Asunto(s)
Diferenciación Celular/fisiología , Reprogramación Celular/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética/fisiología , Linfocitos T/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Animales , Autoinmunidad/fisiología , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/genética , Plasticidad de la Célula/fisiología , Reprogramación Celular/genética , Homólogo de la Proteína Chromobox 5 , Colon/patología , Citocinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Silenciador del Gen , Histonas/metabolismo , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Transcriptoma , Proteína 28 que Contiene Motivos Tripartito/genética
8.
Biophys J ; 120(9): 1692-1704, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33730552

RESUMEN

To accomplish their critical task of removing infected cells and fighting pathogens, leukocytes activate by forming specialized interfaces with other cells. The physics of this key immunological process are poorly understood, but it is important to understand them because leukocytes have been shown to react to their mechanical environment. Using an innovative micropipette rheometer, we show in three different types of leukocytes that, when stimulated by microbeads mimicking target cells, leukocytes become up to 10 times stiffer and more viscous. These mechanical changes start within seconds after contact and evolve rapidly over minutes. Remarkably, leukocyte elastic and viscous properties evolve in parallel, preserving a well-defined ratio that constitutes a mechanical signature specific to each cell type. Our results indicate that simultaneously tracking both elastic and viscous properties during an active cell process provides a new, to our knowledge, way to investigate cell mechanical processes. Our findings also suggest that dynamic immunomechanical measurements can help discriminate between leukocyte subtypes during activation.


Asunto(s)
Leucocitos , Elasticidad , Viscosidad
9.
Biol Cell ; 112(7): 196-212, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32275779

RESUMEN

To mount an immune response, T cells must first find rare antigens present at the surface of antigen-presenting cells (APCs). They achieve this by migrating rapidly through the crowded space of tissues and constantly sampling the surface of APCs. Upon antigen recognition, T cells decelerate and polarise towards the APC, ultimately forming a specialised interface known as the immunological synapse. These conjugates form as the result of the interaction between pairs of receptors/ligands that are under mechanical stress due to the continuously reorganising cell cytoskeleton. In this review, we discuss the involvement of mechanical forces during antigen recognition by migrating T cells. We will explore this question from a conceptual and technical perspective, with the aim of providing new insights into the emerging field of mechanobiology.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Antígenos/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Fenómenos Biofísicos , Humanos
10.
Biophys J ; 119(6): 1157-1177, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32882187

RESUMEN

Mammalian cells developed two main migration modes. The slow mesenchymatous mode, like crawling of fibroblasts, relies on maturation of adhesion complexes and actin fiber traction, whereas the fast amoeboid mode, observed exclusively for leukocytes and cancer cells, is characterized by weak adhesion, highly dynamic cell shapes, and ubiquitous motility on two-dimensional and in three-dimensional solid matrix. In both cases, interactions with the substrate by adhesion or friction are widely accepted as a prerequisite for mammalian cell motility, which precludes swimming. We show here experimental and computational evidence that leukocytes do swim, and that efficient propulsion is not fueled by waves of cell deformation but by a rearward and inhomogeneous treadmilling of the cell external membrane. Our model consists of a molecular paddling by transmembrane proteins linked to and advected by the actin cortex, whereas freely diffusing transmembrane proteins hinder swimming. Furthermore, continuous paddling is enabled by a combination of external treadmilling and selective recycling by internal vesicular transport of cortex-bound transmembrane proteins. This mechanism explains observations that swimming is five times slower than the retrograde flow of cortex and also that lymphocytes are motile in nonadherent confined environments. Resultantly, the ubiquitous ability of mammalian amoeboid cells to migrate in two dimensions or three dimensions and with or without adhesion can be explained for lymphocytes by a single machinery of heterogeneous membrane treadmilling.


Asunto(s)
Amoeba , Natación , Actinas , Animales , Adhesión Celular , Movimiento Celular , Linfocitos
11.
Proc Natl Acad Sci U S A ; 113(2): 386-91, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26715756

RESUMEN

Biogenesis of the immune synapse at the interface between antigen-presenting cells and T cells assembles and organizes a large number of membrane proteins required for effective signaling through the T-cell receptor. We showed previously that the intraflagellar transport protein 20 (IFT20), a component of the intraflagellar transport system, controls polarized traffic during immune synapse assembly. To investigate the role of IFT20 in primary CD4(+) T cells in vitro and in vivo, we generated mice bearing a conditional defect of IFT20 expression in T cells. We show that in the absence of IFT20, although cell spreading and the polarization of the centrosome were unaffected, T-cell receptor (TCR)-mediated signaling and recruitment of the signaling adaptor LAT (linker for activation of T cells) at the immune synapse were reduced. As a consequence, CD4(+) T-cell activation and proliferation were also defective. In vivo, conditional IFT20-deficient mice failed to mount effective antigen-specific T-cell responses, and their T cells failed to induce colitis after adoptive transfer to Rag(-/-) mice. IFT20 is therefore required for the delivery of the intracellular pool of LAT to the immune synapse in naive primary T lymphocytes and for effective T-cell responses in vivo.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Sinapsis Inmunológicas/metabolismo , Activación de Linfocitos/inmunología , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Animales , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Técnicas de Silenciamiento del Gen , Humanos , Immunoblotting , Células Jurkat , Ratones , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Timocitos/metabolismo
12.
Immunity ; 28(3): 414-24, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18342010

RESUMEN

For several days after antigenic stimulation, human cytolytic T lymphocyte (CTL) clones exhibit a decrease in their effector activity and in their binding to human leukocyte antigen (HLA)-peptide tetramers. We observed that, when in this state, CTLs lose the colocalization of the T cell receptor (TCR) and CD8. Effector function and TCR-CD8 colocalization were restored with galectin disaccharide ligands, suggesting that the binding of TCR to galectin plays a role in the distancing of TCR from CD8. These findings appear to be applicable in vivo, as TCR was observed to be distant from CD8 on human tumor-infiltrating lymphocytes, which were anergic. These lymphocytes recovered effector functions and TCR-CD8 colocalization after ex vivo treatment with galectin disaccharide ligands. The separation of TCR and CD8 molecules could be one major mechanism of anergy in tumors and other chronic stimulation conditions.


Asunto(s)
Antígenos CD8/metabolismo , Anergia Clonal/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Citotóxicos/metabolismo , Antígenos CD8/inmunología , Línea Celular Tumoral , Citometría de Flujo , Galectinas/metabolismo , Antígenos HLA/inmunología , Humanos , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Microscopía Confocal , Microscopía Electrónica de Rastreo , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T Citotóxicos/inmunología
13.
J Allergy Clin Immunol ; 138(6): 1681-1689.e8, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27405666

RESUMEN

BACKGROUND: We investigated 7 male patients (from 5 different families) presenting with profound lymphopenia, hypogammaglobulinemia, fluctuating monocytopenia and neutropenia, a poor immune response to vaccine antigens, and increased susceptibility to bacterial and varicella zoster virus infections. OBJECTIVE: We sought to characterize the genetic defect involved in a new form of X-linked immunodeficiency. METHODS: We performed genetic analyses and an exhaustive phenotypic and functional characterization of the lymphocyte compartment. RESULTS: We observed hemizygous mutations in the moesin (MSN) gene (located on the X chromosome and coding for MSN) in all 7 patients. Six of the latter had the same missense mutation, which led to an amino acid substitution (R171W) in the MSN four-point-one, ezrin, radixin, moesin domain. The seventh patient had a nonsense mutation leading to a premature stop codon mutation (R533X). The naive T-cell counts were particularly low for age, and most CD8+ T cells expressed the senescence marker CD57. This phenotype was associated with impaired T-cell proliferation, which was rescued by expression of wild-type MSN. MSN-deficient T cells also displayed poor chemokine receptor expression, increased adhesion molecule expression, and altered migration and adhesion capacities. CONCLUSION: Our observations establish a causal link between an ezrin-radixin-moesin protein mutation and a primary immunodeficiency that could be referred to as X-linked moesin-associated immunodeficiency.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Cromosomas Humanos X/genética , Síndromes de Inmunodeficiencia/genética , Infecciones/genética , Proteínas de Microfilamentos/genética , Mutación/genética , Adolescente , Adulto , Anciano , Adhesión Celular , Movimiento Celular , Niño , Preescolar , Estudios de Asociación Genética , Humanos , Recuento de Linfocitos , Masculino , Linaje
14.
Biophys J ; 108(9): 2181-90, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25954876

RESUMEN

T lymphocytes are key modulators of the immune response. Their activation requires cell-cell interaction with different myeloid cell populations of the immune system called antigen-presenting cells (APCs). Although T lymphocytes have recently been shown to respond to mechanical cues, in particular to the stiffness of their environment, little is known about the rigidity of APCs. In this study, single-cell microplate assays were performed to measure the viscoelastic moduli of different human myeloid primary APCs, i.e., monocytes (Ms, storage modulus of 520 +90/-80 Pa), dendritic cells (DCs, 440 +110/-90 Pa), and macrophages (MPHs, 900 +110/-100 Pa). Inflammatory conditions modulated these properties, with storage moduli ranging from 190 Pa to 1450 Pa. The effect of inflammation on the mechanical properties was independent of the induction of expression of commonly used APC maturation markers, making myeloid APC rigidity an additional feature of inflammation. In addition, the rigidity of human T lymphocytes was lower than that of all myeloid cells tested and among the lowest reported (Young's modulus of 85 ± 5 Pa). Finally, the viscoelastic properties of myeloid cells were dependent on both their filamentous actin content and myosin IIA activity, although the relative contribution of these parameters varied within cell types. These results indicate that T lymphocytes face different cell rigidities when interacting with myeloid APCs in vivo and that this mechanical landscape changes under inflammation.


Asunto(s)
Células Presentadoras de Antígenos/citología , Elasticidad , Linfocitos T/citología , Viscosidad , Células Presentadoras de Antígenos/fisiología , Fenómenos Biomecánicos , Células Cultivadas , Humanos , Inflamación/patología , Linfocitos T/fisiología
15.
PLoS Pathog ; 9(10): e1003681, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24130485

RESUMEN

Mucosal associated invariant T cells (MAIT) are innate T lymphocytes that detect a large variety of bacteria and yeasts. This recognition depends on the detection of microbial compounds presented by the evolutionarily conserved major-histocompatibility-complex (MHC) class I molecule, MR1. Here we show that MAIT cells display cytotoxic activity towards MR1 overexpressing non-hematopoietic cells cocultured with bacteria. The NK receptor, CD161, highly expressed by MAIT cells, modulated the cytokine but not the cytotoxic response triggered by bacteria infected cells. MAIT cells are also activated by and kill epithelial cells expressing endogenous levels of MRI after infection with the invasive bacteria Shigella flexneri. In contrast, MAIT cells were not activated by epithelial cells infected by Salmonella enterica Typhimurium. Finally, MAIT cells are activated in human volunteers receiving an attenuated strain of Shigella dysenteriae-1 tested as a potential vaccine. Thus, in humans, MAIT cells are the most abundant T cell subset able to detect and kill bacteria infected cells.


Asunto(s)
Disentería Bacilar/inmunología , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Infecciones por Salmonella/inmunología , Salmonella typhimurium/inmunología , Shigella dysenteriae/inmunología , Linfocitos T/inmunología , Disentería Bacilar/patología , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Células Epiteliales/patología , Femenino , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Antígenos de Histocompatibilidad Menor , Subfamilia B de Receptores Similares a Lectina de Células NK/inmunología , Infecciones por Salmonella/patología , Linfocitos T/patología
16.
J Autoimmun ; 56: 23-33, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25277651

RESUMEN

CD31, a trans-homophilic inhibitory receptor expressed on both T- and B-lymphocytes, drives the mutual detachment of interacting leukocytes. Intriguingly, T cell CD31 molecules relocate to the immunological synapse (IS), where the T and B cells establish a stable interaction. Here, we show that intact CD31 molecules, which are able to drive an inhibitory signal, are concentrated at the periphery of the IS but are excluded from the center of the IS. At this site, were the cells establish the closest contact, the CD31 molecules are cleaved, and most of the extracellular portion of the protein, including the trans-homophilic binding sites, is shed from the cell surface. T cells lacking CD31 trans-homophilic binding sites easily establish stable interactions with B cells; at the opposite, CD31 signaling agonists inhibit T/B IS formation as well as the ensuing helper T cell activation and function. Confocal microscopy and flow cytometry analysis of experimental T/B IS shows that the T cell inhibitory effects of CD31 agonists depend on SHP-2 signaling, which reduces the phosphorylation of ZAP70. The analysis of synovial tissue biopsies from patients affected by rheumatoid arthritis showed that T cell CD31 molecules are excluded from the center of the T/B cell synapses in vivo. Interestingly, the administration of CD31 agonists in vivo significantly attenuated the development of the clinical signs of collagen-induced arthritis in DBA1/J mice. Altogether, our data indicate that the T cell co-inhibitory receptor CD31 prevents the formation of functional T/B immunological synapses and that therapeutic strategies aimed at sustaining CD31 signaling will attenuate the development of autoimmune responses in vivo.


Asunto(s)
Artritis Experimental/inmunología , Enfermedades Autoinmunes/inmunología , Linfocitos B/inmunología , Sinapsis Inmunológicas/inmunología , Sinapsis Inmunológicas/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Anciano , Animales , Artritis Experimental/metabolismo , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/metabolismo , Biopsia , Comunicación Celular/efectos de los fármacos , Comunicación Celular/inmunología , Línea Celular , Femenino , Humanos , Activación de Linfocitos/inmunología , Ratones , Persona de Mediana Edad , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Transducción de Señal , Membrana Sinovial/inmunología , Membrana Sinovial/patología , Subgrupos de Linfocitos T/efectos de los fármacos , Proteína Tirosina Quinasa ZAP-70/metabolismo
17.
J Immunol ; 189(5): 2159-68, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22821962

RESUMEN

Cytokine secretion by T lymphocytes plays a central role in mounting adaptive immune responses. However, little is known about how newly synthesized cytokines, once produced, are routed within T cells and about the mechanisms involved in regulating their secretions. In this study, we investigated the role of cytoskeleton remodeling at the immunological synapse (IS) in cytokine secretion. We show that a key regulator of cytoskeleton remodeling, the Rho GTPase Cdc42, controls IFN-γ secretion by primary human CD4+ T lymphocytes. Surprisingly, microtubule organizing center polarity at the IS, which does not depend on Cdc42, is not required for cytokine secretion by T lymphocytes, whereas microtubule polymerization is required. In contrast, actin remodeling at the IS, which depends on Cdc42, controls the formation of the polymerized actin ring at the IS, the dynamic concentration of IFN-γ-containing vesicles inside this ring, and the secretion of these vesicles. These results reveal a previously unidentified role of Cdc42-dependent actin remodeling in cytokine exocytosis at the IS.


Asunto(s)
Actinas/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Polaridad Celular/inmunología , Citocinas/metabolismo , Sinapsis Inmunológicas/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Proteína de Unión al GTP cdc42/fisiología , Actinas/antagonistas & inhibidores , Actinas/deficiencia , Linfocitos T CD4-Positivos/citología , Línea Celular Transformada , Técnicas de Cocultivo , Exocitosis/inmunología , Células HEK293 , Humanos , Sinapsis Inmunológicas/inmunología , Sinapsis Inmunológicas/fisiología , Células Jurkat , Centro Organizador de los Microtúbulos/inmunología , Polimerizacion , Cultivo Primario de Células
18.
Mol Biol Cell ; 35(1): ar11, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37971737

RESUMEN

T-cell activation induces a metabolic switch generating energy for proliferation, survival, and functions. We used noninvasive label-free two-photon fluorescence lifetime microscopy (2P-FLIM) to map the spatial and temporal dynamics of the metabolic NAD(P)H co-enzyme during T lymphocyte activation. This provides a readout of the OXPHOS and glycolysis rates at a single-cell level. Analyzes were performed in the CD4+ leukemic T cell line Jurkat, and in human CD4+ primary T cells. Cells were activated on glass surfaces coated with activating antibodies mimicking immune synapse formation. Comparing the fraction of bound NAD(P)H between resting and activated T cells, we show that T-cell activation induces a rapid switch toward glycolysis. This occurs after 10 min and remains stable for one hour. Three-dimensional analyzes revealed that the intracellular distribution of fraction of bound NAD(P)H increases at the immune synapse in activated cells. Finally, we show that fraction of bound NAD(P)H tends to negatively correlate with spreading of activated T cells, suggesting a link between actin remodeling and metabolic changes. This study highlights that 2P-FLIM measurement of fraction of bound NAD(P)H is well suited to follow a fast metabolic switch in three dimensions, in single T lymphocytes with subcellular resolution.


Asunto(s)
Glucólisis , NAD , Humanos , NAD/metabolismo , Microscopía Fluorescente , Fosforilación Oxidativa , NADP/metabolismo
19.
Nat Commun ; 15(1): 3749, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702311

RESUMEN

Regulatory T cells (Tregs) are plastic cells playing a pivotal role in the maintenance of immune homeostasis. Tregs actively adapt to the microenvironment where they reside; as a consequence, their molecular and functional profiles differ among tissues and pathologies. In tumors, the features acquired by Tregs remains poorly characterized. Here, we observe that human tumor-infiltrating Tregs selectively overexpress CD74, the MHC class II invariant chain. CD74 has been previously described as a regulator of antigen-presenting cell biology, however its function in Tregs remains unknown. CD74 genetic deletion in human primary Tregs reveals that CD74KO Tregs exhibit major defects in the organization of their actin cytoskeleton and intracellular organelles. Additionally, intratumoral CD74KO Tregs show a decreased activation, a drop in Foxp3 expression, a low accumulation in the tumor, and consistently, they are associated with accelerated tumor rejection in preclinical models in female mice. These observations are unique to tumor conditions as, at steady state, CD74KO-Treg phenotype, survival, and suppressive capacity are unaffected in vitro and in vivo. CD74 therefore emerges as a specific regulator of tumor-infiltrating Tregs and as a target to interfere with Treg anti-tumor activity.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B , Antígenos de Histocompatibilidad Clase II , Linfocitos T Reguladores , Linfocitos T Reguladores/inmunología , Animales , Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Diferenciación de Linfocitos B/genética , Antígenos de Diferenciación de Linfocitos B/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Femenino , Ratones , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Microambiente Tumoral/inmunología , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
20.
Crit Rev Immunol ; 32(2): 139-55, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23216612

RESUMEN

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) with the unique property of inducing priming and differentiation of naïve CD4+ and CD8+ T cells into helper and cytotoxic effectors. Their efficiency is due to their unique ability to process antigen, express costimulatory molecules, secrete cytokines, and migrate to tissues or lymphoid organs to prime T cells. DCs also play an important role in T-cell peripheral tolerance. There is ample evidence that the DC ability to present antigens is regulated by CD4+ helper T cells. Indeed, interactions between surface receptors and ligands expressed respectively by T cells and DCs, as well as T-cell-derived cytokines modify DC functions. This T-cell-induced modification of DCs has been called "education" or "licensing." This intimate crosstalk between DCs and T lymphocytes is key in establishing appropriate adaptive immune responses. It requires cognate interactions between T lymphocytes and DCs, which are organized in time and space by structures called immunological synapses. Here we discuss the particular aspects of immunological synapses formed between T cells and DCs and the role these organized interactions have in T-cell-DC crosstalk.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Comunicación Celular , Citoesqueleto/inmunología , Células Dendríticas/inmunología , Sinapsis Inmunológicas/inmunología , Animales , Presentación de Antígeno , Citocinas/inmunología , Humanos , Activación de Linfocitos , Tolerancia Periférica , Receptor Cross-Talk/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA