Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Anal Chem ; 84(21): 9520-8, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-22991947

RESUMEN

A high-throughput method for the production of solid-phase microextraction (SPME) sorbent coatings via ultraviolet (UV) photoinitiated copolymerization of ionic liquid (IL) monomers on a fused silica support is described. The copolymerization of monocationic and dicationic IL cross-linkers was performed "on-fiber" using UV initiated free radical polymerization. Mixtures composed of various amounts of the IL cross-linker, UV initiator (DAROCUR 1173), and IL monomer were dip-coated onto an etched and derivatized fused silica support and placed in a high-capacity UV reactor. The method requires no organic dispersive solvent and is much more rapid compared to traditional methods in which polymeric ionic liquid (PIL) sorbent coatings are prepared by 2,2'-azobis(2-methylpropionitrile) (AIBN)-initiated polymerization. Two ionic liquid-based cross-linkers, namely, 1,8-di (3-vinylimidazolium) octane dibromide ([(VIM)(2)C(8)] 2[Br]) and 1,12-di (3-vinylimidazolium) dodecane dibromide ([(VIM)(2)C(12)] 2[Br]), were copolymerized with an ionic liquid monomer, 1-vinyl-3-hexylimidazolium chloride ([VHIM][Cl]), to produce polar cross-linked PIL-based SPME sorbent coatings. The cross-linking and immobilization of these coatings make them particularly applicable in direct immersion SPME. The coatings were applied in the extraction of polar analytes, including alcohols, aldehydes, and esters, from aqueous solutions using headspace and direct immersion SPME gas chromatography mass spectrometry (GC/MS). Compared to linear PIL-based sorbent coatings containing the same anions, the cross-linked PIL-based coatings exhibited higher thermal stability and lower bleed, making them ideal for GC/MS. Recovery experiments were performed in deionized, well, and river water. The structural integrity of the sorbent coatings, as well as their analytical precision, was not diminished after 90 extractions from complex samples using headspace and direct immersion SPME.

3.
Talanta ; 188: 522-530, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30029408

RESUMEN

In this work, the performances of polymeric ionic liquid (PIL) based solid-phase microextraction (SPME) coatings were assessed for applications concerning food safety and quality. Two different polymeric ionic liquid coatings, namely poly(1-4-vinylbenzyl-3-hexadecylimidazolium) bis[(trifluoromethyl)sulfonyl] imide (poly([VBHDIM][NTf2]), PIL 1, and N,N-didecyl-N-methyl-d-glucaminium poly(2-methyl-acrylic acid 2-[1-(3-{2-[2-(3-trifluoromethanesulfonylamino-propoxy)-ethoxy]-ethoxy}-propylamino)-vinylamino]-ethyl ester) (poly([DDMGlu][MTFSI]), PIL 2, were evaluated. The PIL-based coatings were compared to commercially available SPME coatings in terms of their performance toward extraction of pesticides and fruit metabolites. The partition coefficients (Kfs) of the tested coatings were calculated, with PIL 1 demonstrating similar or better performance compared to the commercial coatings. Design of experiment (DoE) was applied to optimize the parameters that most influenced SPME extraction, and a quantitative method for determination of 5 organophosphorus pesticides was developed by using PIL-based coatings and commercial SPME fibers. Despite the thin layer of the sorbent coating, PIL 1 achieved limits of quantitation at the low part-per-billion level. Moreover, in a comparative investigation of analyte coverage carried out via HS-SPME-GCxGC-ToF/MS with grape homogenate as model matrix, excellent performances were observed for the PIL-based coatings toward the determination of fruit metabolites, demonstrating their capability towards broad extractive coverage of analytes characterized by various physicochemical properties.

4.
J Pharm Biomed Anal ; 145: 879-886, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29843206

RESUMEN

In this study, two ionic liquids (ILs), 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([BMIM][NTf2]) and trihexyltetradecylphosphonium bis[(trifluoromethyl)sulfonyl]imide ([P66614][NTf2]) were examined as contemporary diluents for residual solvent analysis using static headspace gas chromatography (SHS-GC) coupled with flame ionization detection (FID). ILs are a class of non-molecular solvents featuring negligible vapor pressure and high thermal stabilities. Owing to these favorable properties, ILs have potential to enable superior sensitivity and reduced interference, compared to conventional organic diluents, at high headspace incubation temperatures. By employing the [BMIM][NTf2] IL as a diluent, a 25-fold improvement in limit of detection (LOD) was observed with respect to traditional HS-GC diluents, such as N-methylpyrrolidone (NMP). The established IL-based method demonstrated LODs ranging from 5.8 parts-per-million (ppm) to 20ppm of residual solvents in drug substances. The optimization of headspace extraction conditions was performed prior to method validation. An incubation temperature of 140°C and a 15min incubation time provided the best sensitivity for the analysis. Under optimized experimental conditions, the mass of residual solvents partitioned in the headspace was higher when using [BMIM][NTf2] than NMP as a diluent. The analytical performance was demonstrated by determining the repeatability, accuracy, and linearity of the method. Linear ranges of up to two orders of magnitude were obtained for class 3 solvents. Excellent analyte recoveries were obtained in the presence of three different active pharmaceutical ingredients. Owing to its robustness, high throughput, and superior sensitivity, the HS-GC IL-based method can be used as an alternative to existing residual solvent methods.


Asunto(s)
Cromatografía de Gases/métodos , Contaminación de Medicamentos , Imidazoles/química , Líquidos Iónicos/química , Preparaciones Farmacéuticas/química , Solventes/análisis , Sulfonamidas/química , Ionización de Llama , Indometacina/química , Límite de Detección , Pirrolidinonas/química , Quinidina/química
5.
J Chromatogr A ; 1449: 2-7, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27157428

RESUMEN

This study describes a simple and rapid sampling method employing a polymeric ionic liquid (PIL) sorbent coating in direct immersion solid-phase microextraction (SPME) for the trace-level analysis of acrylamide in brewed coffee and coffee powder. The crosslinked PIL sorbent coating demonstrated superior sensitivity in the extraction of acrylamide compared to all commercially available SPME coatings. A spin coating method was developed to evenly distribute the PIL coating on the SPME support and reproducibly produce fibers with a large film thickness. Ninhydrin was employed as a quenching reagent during extraction to inhibit the production of interfering acrylamide. The PIL fiber produced a limit of quantitation for acrylamide of 10µgL(-1) and achieved comparable results to the ISO method in the analysis of six coffee powder samples.


Asunto(s)
Acrilamida/análisis , Coffea/química , Café/química , Líquidos Iónicos/química , Polímeros/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Polvos , Microextracción en Fase Sólida/métodos
6.
J Chromatogr A ; 1361: 217-28, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25151038

RESUMEN

Ionic liquids (ILs) were used as a new class of diluents for the analysis of two classes of genotoxic impurities (GTIs), namely, alkyl/aryl halides and nitro-aromatics, in small molecule drug substances by headspace gas chromatography (HS-GC) coupled with electron capture detection (ECD). This novel approach using ILs as contemporary diluents greatly broadens the applicability of HS-GC for the determination of high boiling (≥ 130°C) analytes including GTIs with limits of detection (LOD) ranging from 5 to 500 parts-per-billion (ppb) of analytes in a drug substance. This represents up to tens of thousands-fold improvement compared to traditional HS-GC diluents such as dimethyl sulfoxide (DMSO) and dimethylacetamide (DMAC). Various ILs were screened to determine their suitability as diluents for the HS-GC/ECD analysis. Increasing the HS oven temperatures resulted in varying responses for alkyl/aryl halides and a significant increase in response for all nitroaromatic GTIs. Linear ranges of up to five orders of magnitude were found for a number of analytes. The technique was validated on two active pharmaceutical ingredients with excellent recovery. This simple and robust methodology offers a key advantage in the ease of method transfer from development laboratories to quality control environments since conventional validated chromatographic data systems and GC instruments can be used. For many analytes, it is a cost effective alternative to more complex trace analytical methodologies like LC/MS and GC/MS, and significantly reduces the training needed for operation.


Asunto(s)
Cromatografía de Gases/métodos , Electrones , Líquidos Iónicos/química , Mutágenos/análisis , Bibliotecas de Moléculas Pequeñas/química , Cromatografía de Gases/instrumentación , Límite de Detección , Temperatura
7.
Talanta ; 118: 172-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24274285

RESUMEN

Crosslinked polymeric ionic liquid (PIL)-based sorbent coatings were employed in the extraction of 21 polychlorinated biphenyls (PCBs) from ocean water and bovine milk using solid-phase microextraction (SPME). The extraction temperature, time, and concentration of sodium chloride added to the matrix were optimized in order to determine the best extraction conditions for the extraction of PCBs. The analytical performance of the crosslinked PIL-based SPME fibers was compared with a commercial 7 µm polydimethylsiloxane (PDMS) fiber using gas chromatography (GC) employing an electron capture detector (ECD) and mass spectrometric detection (MS). Higher sensitivities for PCBs were achieved using PIL-based fibers when compared to PDMS fiber due to the incorporation of benzyl moieties into the PIL structures. The limits of detection (LOD) for all PCBs were determined to be in the low ng L(-1) range using the three studied coatings. Recovery studies were performed for PCBs in ocean water and bovine milk to validate the applicability of the current SPME method.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Leche/química , Océanos y Mares , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/química , Polímeros/química , Microextracción en Fase Sólida , Agua/química , Animales , Bovinos , Cromatografía de Gases y Espectrometría de Masas , Líquidos Iónicos , Límite de Detección , Bifenilos Policlorados/aislamiento & purificación
8.
Anal Chim Acta ; 843: 18-26, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25150693

RESUMEN

Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30%w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix.

9.
J Chromatogr A ; 1346: 1-7, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24786655

RESUMEN

Solid-phase microextraction (SPME) using cross-linked polymeric ionic liquid (PIL)-based sorbent coatings was used to extract volatile aroma-related compounds from coffee samples. Several PIL-based coatings were screened alongside a commercial poly(acrylate) (PA) SPME coating. The best performing PIL-based SPME fiber, poly(1-vinyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonylimide]) with 50% (w/w) 1,12-di(3-vinylbenzylimidazolium)dodecane dibis[(trifluoromethyl)sulfonyl]imide incorporated cross-linker, was used to isolate the volatile fraction of Arabica coffee. To illustrate the importance of trace analyte isolation, a method for the detection and quantification of coffee adulteration is described. Chromatographic profiles obtained by gas chromatography/mass spectrometry (GC/MS) were used to create the chemometric model. Partial least squares (PLS) regression was employed to correlate the aroma-related chemical fingerprint to the degree of adulteration. The proposed method successfully detected fraud down to 1% (w/w) of adulterant and accurately determined the degree of coffee adulteration (i.e, root mean square error of calibration and prediction of 0.54% and 0.83% (w/w), respectively). Finally, important aroma-related compounds including furans, methoxyphenols, pyrazines, and ketones were identified.


Asunto(s)
Coffea/química , Tecnología de Alimentos/métodos , Cromatografía de Gases y Espectrometría de Masas , Líquidos Iónicos/química , Microextracción en Fase Sólida , Calidad de los Alimentos , Polímeros/química , Análisis de Regresión
10.
Talanta ; 121: 153-62, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24607122

RESUMEN

The extraction performance of four polymeric ionic liquid (PIL)-based solid-phase microextraction (SPME) coatings has been studied and compared to that of commercial SPME coatings for the extraction of 16 volatile compounds in cheeses. The analytes include 2 free fatty acids, 2 aldehydes, 2 ketones and 10 phenols and were determined by headspace (HS)-SPME coupled to gas chromatography (GC) with flame-ionization detection (FID). The PIL-based coatings produced by UV co-polymerization were more efficient than PIL-based coatings produced by thermal AIBN polymerization. Partition coefficients of analytes between the sample and the coating (Kfs) were estimated for all PIL-based coatings and the commercial SPME fiber showing the best performance among the commercial fibers tested: carboxen-polydimethylsyloxane (CAR-PDMS). For the PIL-based fibers, the highest K(fs) value (1.96 ± 0.03) was obtained for eugenol. The normalized calibration slope, which takes into account the SPME coating thickness, was also used as a simpler approximate tool to compare the nature of the coating within the determinations, with results entirely comparable to those obtained with estimated K(fs) values. The PIL-based materials obtained by UV co-polymerization containing the 1-vinyl-3-hexylimidazolium chloride IL monomer and 1,12-di(3-vinylimiazolium)dodecane dibromide IL crosslinker exhibited the best performance in the extraction of the select analytes from cheeses. Despite a coating thickness of only 7 µm, this copolymeric sorbent coating was capable of quantitating analytes in HS-SPME in a 30 to 2000 µg L(-1) concentration range, with correlation coefficient (R) values higher than 0.9938, inter-day precision values (as relative standard deviation in %) varying from 6.1 to 20%, and detection limits down to 1.6 µg L(-1).


Asunto(s)
Queso/análisis , Líquidos Iónicos , Polímeros/química , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis
11.
J Chromatogr A ; 1298: 146-51, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23746645

RESUMEN

An investigation into the mechanism of extraction for polymeric ionic liquid (PIL)-based solid phase microextraction sorbent coatings is described. Four PIL-based coatings, namely, a poly(1-4-vinylbenzyl)-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl] imide (poly([VBHDIM][NTf2])) PIL produced through 2,2'-azo-bis(isobutyronitrile) (AIBN) initiated free-radical polymerization, a UV-initiated poly(1-vinyl-3-hexylimidazolium) chloride (poly([VHIM][Cl])) PIL, and two crosslinked PILs containing the same IL monomers copolymerized with dicationic IL crosslinkers, were investigated. Calibration curves of 1-octanol were plotted in the presence of naphthalene, a model interfering compound, to observe changes in the linear range, sensitivity, and amount of analytes extracted. Results were compared with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) coating and a polyacrylate (PA) coating which are known to extract analytes primarily through adsorption and partitioning mechanisms, respectively. All PIL-based coatings extracted analytes via a non-competitive partitioning mechanism regardless of the extent of crosslinking.


Asunto(s)
Líquidos Iónicos/química , Polímeros/química , Microextracción en Fase Sólida/métodos , Adsorción
12.
J Chromatogr A ; 1240: 29-44, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22537606

RESUMEN

A series of polymeric ionic liquids (PILs) possessing varied chemical makeup and composition were applied as selective solid-phase microextraction (SPME) sorbent coatings for the analysis of genotoxic impurities (GTIs) and related structurally alerting compounds, namely, alkyl halides and aromatics. In addition to exploiting two previously synthesized PILs as selective coatings, two new PILs, namely, N,N-didecyl-N-methyl-D-glucaminium poly(2-methyl-acrylic acid 2-[1-(3-{2-[2-(3-trifluoromethanesulfonylamino-propoxy)-ethoxy]-ethoxy}-propylamino)-vinylamino]-ethyl ester) (poly([DDMGlu][MTFSI])), and poly(1-vinyl-3-propylphenylimidazolium) chloride (poly([VPPIM][Cl])), were designed, synthesized, and their selectivity examined in the extraction of the selected analytes. The glucaminium-based coating was developed to exploit the hydrogen bond-acidic hydroxyl groups within the carbohydrate moiety of the PIL in addition to dispersive capabilities resulting from the cation and anion. The poly([VPPIM][Cl]) coating was tailored to possess π-π interaction capabilities through the phenyl functionality while also containing the hydrogen bond-basic chloride anion. Calibration studies were performed via headspace extraction to determine the sensitivity and limit of detection (LOD) for all analytes with respect to each PIL-based sorbent coating and compared to the polyacrylate (PA) and polydimethylsiloxane (PDMS) sorbent coatings. PILs containing the chloride anion exhibited high selectivity for aniline-based compounds. The glucaminium-based PIL exhibited good sensitivity for larger aliphatic alkyl halides. The poly(1-4-vinylbenzyl-3-hexadecylimidazolium) bis[(trifluoromethyl)sulfonyl] imide (poly([VBHDIM][NTf2])) PIL coating demonstrated superior selectivity for larger aliphatic/aromatic analytes. The LODs of both commercial and PIL-based coatings for the two classes of GTIs ranged from low part-per-billion (ppb) to mid part-per-trillion (ppt) levels. Recovery studies were performed at two concentration levels within the linear range in order to validate the accuracy of the technique. Scanning electron micrographs were obtained for three PIL-based coatings following approximately 70 extraction/desorption steps, wherein the fiber coatings were observed to be largely smooth and intact.


Asunto(s)
Hidrocarburos Halogenados/aislamiento & purificación , Líquidos Iónicos/química , Mutágenos/aislamiento & purificación , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Microextracción en Fase Sólida/instrumentación , Contaminación de Medicamentos , Imidazoles/química , Límite de Detección , Ácidos Polimetacrílicos/química , Reproducibilidad de los Resultados , Cloruro de Sodio , Microextracción en Fase Sólida/métodos
13.
Anal Chim Acta ; 695(1-2): 18-43, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21601027

RESUMEN

Solid-phase microextraction (SPME) has undergone a surge in popularity within the field of analytical chemistry in the past two decades since its introduction. Owing to its nature of extraction, SPME has become widely known as a quick and cost-effective sample preparation technique. Although SPME has demonstrated extraordinary versatility in sampling capabilities, the technique continues to experience a tremendous growth in innovation. Presently, increasing efforts have been directed towards the engineering of novel sorbent material in order to expand the applicability of SPME for a wider range of analytes and matrices. This review highlights the application of ionic liquids (ILs) and polymeric ionic liquids (PILs) as innovative sorbent materials for SPME. Characterized by their unique physico-chemical properties, these compounds can be structurally-designed to selectively extract target analytes based on unique molecular interactions. To examine the advantages of IL and PIL-based sorbent coatings in SPME, the field is reviewed by gathering available experimental data and exploring the sensitivity, linear calibration range, as well as detection limits for a variety of target analytes in the methods that have been developed.


Asunto(s)
Líquidos Iónicos/química , Microextracción en Fase Sólida/métodos , Polímeros/química , Solventes/química , Temperatura , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA