Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 45(15): 9193-9205, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28911120

RESUMEN

Highly regulated induction systems enabling dose-dependent and reversible fine-tuning of protein expression output are beneficial for engineering complex biosynthetic pathways. To address this, we developed PhiReX, a novel red/far-red light-regulated protein expression system for use in Saccharomyces cerevisiae. PhiReX is based on the combination of a customizable synTALE DNA-binding domain, the VP64 activation domain and the light-sensitive dimerization of the photoreceptor PhyB and its interacting partner PIF3 from Arabidopsis thaliana. Robust gene expression and high protein levels are achieved by combining genome integrated red light-sensing components with an episomal high-copy reporter construct. The gene of interest as well as the synTALE DNA-binding domain can be easily exchanged, allowing the flexible regulation of any desired gene by targeting endogenous or heterologous promoter regions. To allow low-cost induction of gene expression for industrial fermentation processes, we engineered yeast to endogenously produce the chromophore required for the effective dimerization of PhyB and PIF3. Time course experiments demonstrate high-level induction over a period of at least 48 h.


Asunto(s)
Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN/genética , Ingeniería Genética/métodos , Proteínas de Homeodominio/genética , Fitocromo B/genética , Saccharomyces cerevisiae/genética , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Luz , Fototransducción , Ficobilinas/biosíntesis , Ficobilinas/genética , Ficocianina/biosíntesis , Ficocianina/genética , Fitocromo B/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Multimerización de Proteína , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de la radiación
2.
Nucleic Acids Res ; 45(10): e80, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28130422

RESUMEN

The assembly of large DNA constructs coding for entire pathways poses a major challenge in the field of synthetic biology. Here, we present AssemblX, a novel, user-friendly and highly efficient multi-gene assembly strategy. The software-assisted AssemblX process allows even unexperienced users to rapidly design, build and test DNA constructs with currently up to 25 functional units, from 75 or more subunits. At the gene level, AssemblX uses scar-free, overlap-based and sequence-independent methods, allowing the unrestricted design of transcriptional units without laborious parts domestication. The assembly into multi-gene modules is enabled via a standardized, highly efficient, polymerase chain reaction-free and virtually sequence-independent scheme, which relies on rare cutting restriction enzymes and optimized adapter sequences. Selection and marker switching strategies render the whole process reliable, rapid and very effective. The assembly product can be easily transferred to any desired expression host, making AssemblX useful for researchers from various fields.


Asunto(s)
Biología Computacional/métodos , Mapeo Contig/métodos , Enzimas de Restricción del ADN/genética , Genoma , Programas Informáticos , Clonación Molecular , ADN/genética , ADN/metabolismo , Enzimas de Restricción del ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Marcadores Genéticos , Plásmidos/química , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Anal Biochem ; 509: 24-32, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27311554

RESUMEN

Synthetic biology aims at designing and engineering organisms. The engineering process typically requires the establishment of suitable DNA constructs generated through fusion of multiple protein coding and regulatory sequences. Conventional cloning techniques, including those involving restriction enzymes and ligases, are often of limited scope, in particular when many DNA fragments must be joined or scar-free fusions are mandatory. Overlap-based-cloning methods have the potential to overcome such limitations. One such method uses seamless ligation cloning extract (SLiCE) prepared from Escherichia coli cells for straightforward and efficient in vitro fusion of DNA fragments. Here, we systematically characterized extracts prepared from the unmodified E. coli strain DH10B for SLiCE-mediated cloning and determined DNA sequence-associated parameters that affect cloning efficiency. Our data revealed the virtual absence of length restrictions for vector backbone (up to 13.5 kbp) and insert (90 bp to 1.6 kbp). Furthermore, differences in GC content in homology regions are easily tolerated and the deletion of unwanted vector sequences concomitant with targeted fragment insertion is straightforward. Thus, SLiCE represents a highly versatile DNA fusion method suitable for cloning projects in virtually all molecular and synthetic biology projects.


Asunto(s)
Clonación Molecular/métodos , ADN Ligasas/química , ADN/química , Escherichia coli/genética , Vectores Genéticos/química , ADN/genética , Vectores Genéticos/genética
4.
ACS Synth Biol ; 13(4): 1116-1127, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38597458

RESUMEN

Synthetic Sc2.0 yeast strains contain hundreds to thousands of loxPsym recombination sites that allow restructuring of the Saccharomyces cerevisiae genome by SCRaMbLE. Thus, a highly diverse yeast population can arise from a single genotype. The selection of genetically diverse candidates with rearranged synthetic chromosomes for downstream analysis requires an efficient and straightforward workflow. Here we present loxTags, a set of qPCR primers for genotyping across loxPsym sites to detect not only deletions but also inversions and translocations after SCRaMbLE. To cope with the large number of amplicons, we generated qTagGer, a qPCR genotyping primer prediction tool. Using loxTag-based genotyping and long-read sequencing, we show that light-inducible Cre recombinase L-SCRaMbLE can efficiently generate diverse recombination events when applied to Sc2.0 strains containing a linear or a circular version of synthetic chromosome III.


Asunto(s)
Cromosomas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Genotipo , Flujo de Trabajo , Reordenamiento Génico , Genoma Fúngico/genética
5.
ACS Synth Biol ; 12(4): 1046-1057, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37014634

RESUMEN

Metabolic engineering approaches do not exclusively require fine-tuning of heterologous genes but oftentimes also modulation or even induction of host gene expression, e.g., in order to rewire metabolic fluxes. Here, we introduce the programmable red light switch PhiReX 2.0, which can rewire metabolic fluxes by targeting endogenous promoter sequences through single-guide RNAs (sgRNAs) and activate gene expression in Saccharomyces cerevisiae upon red light stimulation. The split transcription factor is built from the plant-derived optical dimer PhyB and PIF3, which is fused to a DNA-binding domain based on the catalytically dead Cas9 protein (dCas9) and a transactivation domain. This design combines at least two major advantages: first, the sgRNAs, guiding dCas9 to the promoter of interest, can be exchanged in an efficient and straightforward Golden Gate-based cloning approach, which allows for rational or randomized combination of up to four sgRNAs in a single expression array. Second, target gene expression can be rapidly upregulated by short red light pulses in a light dose-dependent manner and returned to the native expression level by applying far-red light without interfering with the cell culture. Using the native yeast gene CYC1 as an example, we demonstrated that PhiReX 2.0 can upregulate CYC1 gene expression by up to 6-fold in a light intensity-dependent and reversible manner using a single sgRNA.


Asunto(s)
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Sistemas CRISPR-Cas/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Activación Transcripcional/genética , ARN Guía de Sistemas CRISPR-Cas
6.
Methods Mol Biol ; 2205: 49-67, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32809192

RESUMEN

The implementation of complex cloning projects covering the assembly of entire biological pathways or large genetic circuits poses a major challenge in the field of biotechnology and synthetic biology, as such projects can be costly and time-consuming. To overcome these difficulties, we developed the software-assisted AssemblX toolkit, which allows even unexperienced users to design, build, and subsequently test large DNA constructs. Currently, AssemblX allows the assembly of up to 25 functional units (e.g., genes), from 75 or more subunits (e.g., promoters, coding sequences, terminators). At the first assembly level, AssemblX uses overlap-based, scar-free, and sequence-independent cloning methods. This allows the unrestricted design at the gene level without the need for laborious parts domestication. The standardized, polymerase chain reaction-free, and virtually sequence-independent assembly into multigene modules relies on rare cutting homing endonucleases and computationally optimized overlap sequences. Selection and marker switching strategies ensure an effective process, and the assembly product can be transferred to any desired expression host.


Asunto(s)
Clonación Molecular/métodos , Biología Sintética/métodos , ADN/genética , Escherichia coli/genética , Ingeniería Genética/métodos , Reacción en Cadena de la Polimerasa/métodos , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Programas Informáticos
7.
Nat Commun ; 9(1): 1931, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789561

RESUMEN

The synthetic yeast genome constructed by the International Synthetic Yeast Sc2.0 consortium adds thousands of loxPsym recombination sites to all 16 redesigned chromosomes, allowing the shuffling of Sc2.0 chromosome parts by the Cre-loxP recombination system thereby enabling genome evolution experiments. Here, we present L-SCRaMbLE, a light-controlled Cre recombinase for use in the yeast Saccharomyces cerevisiae. L-SCRaMbLE allows tight regulation of recombinase activity with up to 179-fold induction upon exposure to red light. The extent of recombination depends on induction time and concentration of the chromophore phycocyanobilin (PCB), which can be easily adjusted. The tool presented here provides improved recombination control over the previously reported estradiol-dependent SCRaMbLE induction system, mediating a larger variety of possible recombination events in SCRaMbLE-ing a reporter plasmid. Thereby, L-SCRaMbLE boosts the potential for further customization and provides a facile application for use in the S. cerevisiae genome re-engineering project Sc2.0 or in other recombination-based systems.


Asunto(s)
Edición Génica/métodos , Genoma Fúngico , Integrasas/genética , Ficobilinas/metabolismo , Ficocianina/metabolismo , Recombinación Genética/efectos de la radiación , Saccharomyces cerevisiae/genética , Células Clonales , Expresión Génica , Genes Sintéticos , Ingeniería Genética/métodos , Integrasas/metabolismo , Luz , Plásmidos/química , Plásmidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de la radiación , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA