Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 598(7879): 111-119, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616062

RESUMEN

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.


Asunto(s)
Corteza Motora/citología , Neuronas/clasificación , Análisis de la Célula Individual , Animales , Atlas como Asunto , Callithrix/genética , Epigénesis Genética , Epigenómica , Femenino , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Perfilación de la Expresión Génica , Glutamatos/metabolismo , Humanos , Hibridación Fluorescente in Situ , Masculino , Ratones , Persona de Mediana Edad , Corteza Motora/anatomía & histología , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos , Filogenia , Especificidad de la Especie , Transcriptoma
2.
Nature ; 598(7879): 151-158, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616067

RESUMEN

The neocortex is disproportionately expanded in human compared with mouse1,2, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers composed of neurons that selectively make connections within the neocortex and with other telencephalic structures. Single-cell transcriptomic analyses of human and mouse neocortex show an increased diversity of glutamatergic neuron types in supragranular layers in human neocortex and pronounced gradients as a function of cortical depth3. Here, to probe the functional and anatomical correlates of this transcriptomic diversity, we developed a robust platform combining patch clamp recording, biocytin staining and single-cell RNA-sequencing (Patch-seq) to examine neurosurgically resected human tissues. We demonstrate a strong correspondence between morphological, physiological and transcriptomic phenotypes of five human glutamatergic supragranular neuron types. These were enriched in but not restricted to layers, with one type varying continuously in all phenotypes across layers 2 and 3. The deep portion of layer 3 contained highly distinctive cell types, two of which express a neurofilament protein that labels long-range projection neurons in primates that are selectively depleted in Alzheimer's disease4,5. Together, these results demonstrate the explanatory power of transcriptomic cell-type classification, provide a structural underpinning for increased complexity of cortical function in humans, and implicate discrete transcriptomic neuron types as selectively vulnerable in disease.


Asunto(s)
Ácido Glutámico/metabolismo , Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Neuronas/citología , Neuronas/metabolismo , Enfermedad de Alzheimer , Animales , Forma de la Célula , Colágeno/metabolismo , Electrofisiología , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Humanos , Lisina/análogos & derivados , Masculino , Ratones , Neocórtex/anatomía & histología , Neuronas/clasificación , Técnicas de Placa-Clamp , Transcriptoma
3.
Nature ; 573(7772): 61-68, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31435019

RESUMEN

Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.


Asunto(s)
Astrocitos/clasificación , Evolución Biológica , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Neuronas/clasificación , Adolescente , Adulto , Anciano , Animales , Astrocitos/citología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Inhibición Neural , Neuronas/citología , Análisis de Componente Principal , RNA-Seq , Análisis de la Célula Individual , Especificidad de la Especie , Transcriptoma/genética , Adulto Joven
4.
Proc Natl Acad Sci U S A ; 119(48): e2202580119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36417438

RESUMEN

Neurons in the developing brain undergo extensive structural refinement as nascent circuits adopt their mature form. This physical transformation of neurons is facilitated by the engulfment and degradation of axonal branches and synapses by surrounding glial cells, including microglia and astrocytes. However, the small size of phagocytic organelles and the complex, highly ramified morphology of glia have made it difficult to define the contribution of these and other glial cell types to this crucial process. Here, we used large-scale, serial section transmission electron microscopy (TEM) with computational volume segmentation to reconstruct the complete 3D morphologies of distinct glial types in the mouse visual cortex, providing unprecedented resolution of their morphology and composition. Unexpectedly, we discovered that the fine processes of oligodendrocyte precursor cells (OPCs), a population of abundant, highly dynamic glial progenitors, frequently surrounded small branches of axons. Numerous phagosomes and phagolysosomes (PLs) containing fragments of axons and vesicular structures were present inside their processes, suggesting that OPCs engage in axon pruning. Single-nucleus RNA sequencing from the developing mouse cortex revealed that OPCs express key phagocytic genes at this stage, as well as neuronal transcripts, consistent with active axon engulfment. Although microglia are thought to be responsible for the majority of synaptic pruning and structural refinement, PLs were ten times more abundant in OPCs than in microglia at this stage, and these structures were markedly less abundant in newly generated oligodendrocytes, suggesting that OPCs contribute substantially to the refinement of neuronal circuits during cortical development.


Asunto(s)
Neocórtex , Células Precursoras de Oligodendrocitos , Animales , Ratones , Axones/metabolismo , Oligodendroglía/metabolismo , Neuronas/metabolismo
5.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33249453

RESUMEN

Single cell/nucleus RNA sequencing (scRNAseq) is emerging as an essential tool to unravel the phenotypic heterogeneity of cells in complex biological systems. While computational methods for scRNAseq cell type clustering have advanced, the ability to integrate datasets to identify common and novel cell types across experiments remains a challenge. Here, we introduce a cluster-to-cluster cell type matching method-FR-Match-that utilizes supervised feature selection for dimensionality reduction and incorporates shared information among cells to determine whether two cell type clusters share the same underlying multivariate gene expression distribution. FR-Match is benchmarked with existing cell-to-cell and cell-to-cluster cell type matching methods using both simulated and real scRNAseq data. FR-Match proved to be a stringent method that produced fewer erroneous matches of distinct cell subtypes and had the unique ability to identify novel cell phenotypes in new datasets. In silico validation demonstrated that the proposed workflow is the only self-contained algorithm that was robust to increasing numbers of true negatives (i.e. non-represented cell types). FR-Match was applied to two human brain scRNAseq datasets sampled from cortical layer 1 and full thickness middle temporal gyrus. When mapping cell types identified in specimens isolated from these overlapping human brain regions, FR-Match precisely recapitulated the laminar characteristics of matched cell type clusters, reflecting their distinct neuroanatomical distributions. An R package and Shiny application are provided at https://github.com/JCVenterInstitute/FRmatch for users to interactively explore and match scRNAseq cell type clusters with complementary visualization tools.


Asunto(s)
Algoritmos , Corteza Cerebral/metabolismo , Bases de Datos de Ácidos Nucleicos , RNA-Seq , ARN , Humanos , ARN/biosíntesis , ARN/genética , Análisis de la Célula Individual
8.
Proc Natl Acad Sci U S A ; 117(25): 13886-13895, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32522880

RESUMEN

Elucidating the lineage relationships among different cell types is key to understanding human brain development. Here we developed parallel RNA and DNA analysis after deep sequencing (PRDD-seq), which combines RNA analysis of neuronal cell types with analysis of nested spontaneous DNA somatic mutations as cell lineage markers, identified from joint analysis of single-cell and bulk DNA sequencing by single-cell MosaicHunter (scMH). PRDD-seq enables simultaneous reconstruction of neuronal cell type, cell lineage, and sequential neuronal formation ("birthdate") in postmortem human cerebral cortex. Analysis of two human brains showed remarkable quantitative details that relate mutation mosaic frequency to clonal patterns, confirming an early divergence of precursors for excitatory and inhibitory neurons, and an "inside-out" layer formation of excitatory neurons as seen in other species. In addition our analysis allows an estimate of excitatory neuron-restricted precursors (about 10) that generate the excitatory neurons within a cortical column. Inhibitory neurons showed complex, subtype-specific patterns of neurogenesis, including some patterns of development conserved relative to mouse, but also some aspects of primate cortical interneuron development not seen in mouse. PRDD-seq can be broadly applied to characterize cell identity and lineage from diverse archival samples with single-cell resolution and in potentially any developmental or disease condition.


Asunto(s)
Linaje de la Célula , Corteza Cerebral/citología , Neurogénesis , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Acumulación de Mutaciones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Análisis de Secuencia de ADN , Análisis de la Célula Individual
9.
J Neurosci ; 39(7): 1320-1331, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30587544

RESUMEN

Individuals with sleep apnea often exhibit changes in cognitive behaviors consistent with alterations in the hippocampus. It is hypothesized that adult neurogenesis in the dentate gyrus is an ongoing process that maintains normal hippocampal function in many mammalian species, including humans. However, the impact of chronic intermittent hypoxia (IH), a principal consequence of sleep apnea, on hippocampal adult neurogenesis remains unclear. Using a murine model, we examined the impact of 30 d of IH (IH30) on adult neurogenesis and synaptic plasticity in the dentate gyrus. Although IH30 did not affect paired-pulse facilitation, IH30 suppressed long-term potentiation (LTP). Immunohistochemical experiments also indicate that IH perturbs multiple aspects of adult neurogenesis. IH30 increased the number of proliferating Sox2+ neural progenitor cells in the subgranular zone yet reduced the number of doublecortin-positive neurons. Consistent with these findings, cell lineage tracing revealed that IH30 increased the proportion of radial glial cells in the subgranular zone, yet decreased the proportion of adult-born neurons in the dentate gyrus. While administration of a superoxide anion scavenger during IH did not prevent neural progenitor cell proliferation, it mitigated the IH-dependent suppression of LTP and prevented adult-born neuron loss. These data demonstrate that IH causes both reactive oxygen species-dependent and reactive oxygen species-independent effects on adult neurogenesis and synaptic plasticity in the dentate gyrus. Our findings identify cellular and neurophysiological changes in the hippocampus that may contribute to cognitive and behavioral deficits occurring in sleep apnea.SIGNIFICANCE STATEMENT Individuals with sleep apnea experience periods of intermittent hypoxia (IH) that can negatively impact many aspects of brain function. Neurons are continually generated throughout adulthood to support hippocampal physiology and behavior. This study demonstrates that IH exposure attenuates hippocampal long-term potentiation and reduces adult neurogenesis. Antioxidant treatment mitigates these effects indicating that oxidative signaling caused by IH is a significant factor that impairs synaptic plasticity and reduces adult neurogenesis in the hippocampus.


Asunto(s)
Giro Dentado/patología , Hipoxia Encefálica/patología , Neurogénesis , Plasticidad Neuronal , Animales , Linaje de la Célula , Proliferación Celular , Proteínas de Dominio Doblecortina , Potenciales Postsinápticos Excitadores , Femenino , Depuradores de Radicales Libres/farmacología , Hipoxia Encefálica/etiología , Potenciación a Largo Plazo , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/patología , Neuroglía/patología , Neuropéptidos/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Factores de Transcripción SOXB1/biosíntesis , Factores de Transcripción SOXB1/genética , Síndromes de la Apnea del Sueño/complicaciones , Síndromes de la Apnea del Sueño/fisiopatología
10.
Nat Methods ; 13(1): 87-93, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26524239

RESUMEN

The diverse progenitors that give rise to the human neocortex have been difficult to characterize because progenitors, particularly radial glia (RG), are rare and are defined by a combination of intracellular markers, position and morphology. To circumvent these problems, we developed Fixed and Recovered Intact Single-cell RNA (FRISCR), a method for profiling the transcriptomes of individual fixed, stained and sorted cells. Using FRISCR, we profiled primary human RG that constitute only 1% of the midgestation cortex and classified them as ventricular zone-enriched RG (vRG) that express ANXA1 and CRYAB, and outer subventricular zone-localized RG (oRG) that express HOPX. Our study identified vRG and oRG markers and molecular profiles, an essential step for understanding human neocortical progenitor development. FRISCR allows targeted single-cell profiling of any tissues that lack live-cell markers.


Asunto(s)
Encéfalo/citología , Neuroglía/citología , Transcriptoma , Humanos , Análisis de la Célula Individual
11.
Proc Natl Acad Sci U S A ; 110(10): 4081-6, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431145

RESUMEN

The cortical area map is initially patterned by transcription factor (TF) gradients in the neocortical primordium, which define a "protomap" in the embryonic ventricular zone (VZ). However, mechanisms that propagate regional identity from VZ progenitors to cortical plate (CP) neurons are unknown. Here we show that the VZ, subventricular zone (SVZ), and CP contain distinct molecular maps of regional identity, reflecting different gene expression gradients in radial glia progenitors, intermediate progenitors, and projection neurons, respectively. The "intermediate map" in the SVZ is modulated by Eomes (also known as Tbr2), a T-box TF. Eomes inactivation caused rostrocaudal shifts in SVZ and CP gene expression, with loss of corticospinal axons and gain of corticotectal projections. These findings suggest that cortical areas and connections are shaped by sequential maps of regional identity, propagated by the Pax6 → Eomes → Tbr1 TF cascade. In humans, PAX6, EOMES, and TBR1 have been linked to intellectual disability and autism.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Tipificación del Cuerpo , Mapeo Encefálico , Corteza Cerebral/crecimiento & desarrollo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Embarazo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética
12.
Dev Dyn ; 243(3): 440-50, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24550175

RESUMEN

BACKGROUND: Development of the olfactory bulb (OB) is a complex process that requires contributions from several progenitor cell niches to generate neuronal diversity. Previous studies showed that Tbr2 is expressed during the generation of glutamatergic OB neurons in rodents. However, relatively little is known about the role of Tbr2 in the developing OB or in the subventricular zone-rostral migratory stream (SVZ-RMS) germinal niche that gives rise to many OB neurons. RESULTS: Here, we use conditional gene ablation strategies to knockout Tbr2 during embryonic mouse olfactory bulb morphogenesis, as well as during perinatal and adult neurogenesis from the SVZ-RMS niche, and describe the resulting phenotypes. We find that Tbr2 is important for the generation of mitral cells in the OB, and that the olfactory bulbs themselves are hypoplastic and disorganized in Tbr2 mutant mice. Furthermore, we show that the SVZ-RMS niche is expanded and disordered following loss of Tbr2, which leads to ectopic accumulation of neuroblasts in the RMS. Lastly, we show that adult glutamatergic neurogenesis from the SVZ is impaired by loss of Tbr2. CONCLUSIONS: Tbr2 is essential for proper morphogenesis of the OB and SVZ-RMS, and is important for the generation of multiple lineages of glutamatergic olfactory bulb neurons.


Asunto(s)
Morfogénesis/fisiología , Células-Madre Neurales/metabolismo , Bulbo Olfatorio/embriología , Neuronas Receptoras Olfatorias/embriología , Proteínas de Dominio T Box/metabolismo , Animales , Eliminación de Gen , Ratones , Ratones Mutantes , Células-Madre Neurales/citología , Bulbo Olfatorio/citología , Neuronas Receptoras Olfatorias/citología , Proteínas de Dominio T Box/genética
13.
J Neurosci ; 33(21): 9122-39, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23699523

RESUMEN

The mammalian neocortical progenitor cell niche is composed of a diverse repertoire of neuroepithelial cells, radial glia (RG), and intermediate neurogenic progenitors (INPs). Previously, live-cell imaging experiments have proved crucial in identifying these distinct progenitor populations, especially INPs, which amplify neural output by undergoing additional rounds of proliferation before differentiating into new neurons. INPs also provide feedback to the RG pool by serving as a source of Delta-like 1 (Dll1), a key ligand for activating Notch signaling in neighboring cells, a well-known mechanism for maintaining RG identity. While much is known about Dll1-Notch signaling at the molecular level, little is known about how this cell-cell contact dependent feedback is transmitted at the cellular level. To investigate how RG and INPs might interact to convey Notch signals, we used high-resolution live-cell multiphoton microscopy (MPM) to directly observe cellular interactions and dynamics, in conjunction with Notch-pathway specific reporters in the neocortical neural stem cell niche in organotypic brain slices from embryonic mice. We found that INPs and RG interact via dynamic and transient elongate processes, some apparently long-range (extending from the subventricular zone to the ventricular zone), and some short-range (filopodia-like). Gene expression profiling of RG and INPs revealed further progenitor cell diversification, including different subpopulations of Hes1+ and/or Hes5+ RG, and Dll1+ and/or Dll3+ INPs. Thus, the embryonic progenitor niche includes a network of dynamic cell-cell interactions, using different combinations of Notch signaling molecules to maintain and likely diversify progenitor pools.


Asunto(s)
Comunicación Celular/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neocórtex/citología , Células-Madre Neurales/fisiología , Neuroglía/fisiología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas de Unión al Calcio , Comunicación Celular/genética , Ventrículos Cerebrales/citología , Ventrículos Cerebrales/embriología , Embrión de Mamíferos , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neocórtex/embriología , Red Nerviosa/fisiología , Células-Madre Neurales/citología , Dinámicas no Lineales , Técnicas de Cultivo de Órganos , Seudópodos/fisiología , Transducción de Señal/genética , Proteínas de Dominio T Box/genética , Transfección
14.
J Neurosci ; 33(9): 4165-80, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23447624

RESUMEN

The dentate gyrus (DG) is a unique cortical region whose protracted development spans the embryonic and early postnatal periods. DG development involves large-scale reorganization of progenitor cell populations, ultimately leading to the establishment of the subgranular zone neurogenic niche. In the developing DG, the T-box transcription factor Tbr2 is expressed in both Cajal-Retzius cells derived from the cortical hem that guide migration of progenitors and neurons to the DG, and intermediate neuronal progenitors born in the dentate neuroepithelium that give rise to granule neurons. Here we show that in mice Tbr2 is required for proper migration of Cajal-Retzius cells to the DG; and, in the absence of Tbr2, formation of the hippocampal fissure is abnormal, leading to aberrant development of the transhilar radial glial scaffold and impaired migration of progenitors and neuroblasts to the developing DG. Furthermore, loss of Tbr2 results in decreased expression of Cxcr4 in migrating cells, leading to a premature burst of granule neurogenesis during early embryonic development accompanied by increased cell death in mutant animals. Formation of the transient subpial neurogenic zone was abnormal in Tbr2 conditional knock-outs, and the stem cell population in the DG was depleted before proper establishment of the subgranular zone. These studies indicate that Tbr2 is explicitly required for morphogenesis of the DG and participates in multiple aspects of the intricate developmental process of this structure.


Asunto(s)
Giro Dentado/citología , Regulación del Desarrollo de la Expresión Génica/genética , Células-Madre Neurales/metabolismo , Neuronas/fisiología , Proteínas de Dominio T Box/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Bromodesoxiuridina , Diferenciación Celular/genética , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Giro Dentado/embriología , Embrión de Mamíferos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neurogénesis/genética , Neuronas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Nicho de Células Madre/fisiología , Proteínas de Dominio T Box/genética , Tamoxifeno/farmacología , Proteínas Supresoras de Tumor/metabolismo
15.
J Neurosci ; 32(18): 6275-87, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22553033

RESUMEN

Neurogenesis in the dentate gyrus has been implicated in cognitive functions, including learning and memory, and may be abnormal in major neuropsychiatric disorders, such as depression. Dentate neurogenesis is regulated by interactions between extrinsic factors and intrinsic transcriptional cascades that are currently not well understood. Here we show that Tbr2 (also known as Eomes), a T-box transcription factor expressed by intermediate neuronal progenitors (INPs), is critically required for neurogenesis in the dentate gyrus of developing and adult mice. In the absence of Tbr2, INPs are depleted despite augmented neural stem cell (NSC) proliferation, and neurogenesis is halted as the result of failed neuronal differentiation. Interestingly, we find that Tbr2 likely promotes lineage progression from NSC to neuronal-specified INP in part by repression of Sox2, a key determinant of NSC identity. These findings suggest that Tbr2 expression in INPs is critical for neuronal differentiation in the dentate gyrus and that INPs are an essential stage in the lineage from NSCs to new granule neurons in the dentate gyrus.


Asunto(s)
Envejecimiento/metabolismo , Envejecimiento/patología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Diferenciación Celular/fisiología , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/fisiología
16.
Cell Mol Life Sci ; 69(13): 2125-34, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22249196

RESUMEN

Neurogenesis, the production of new neurons, occurs in two specialized niches in the adult brain, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) adjacent to the lateral ventricles. In the SGZ, neural stem cells (NSCs) give rise to glutamatergic granule neurons that integrate into the granule cell layer. In the SVZ, NSCs generate a more diverse cohort of new neurons, including GABAergic, dopaminergic, and glutamatergic neurons, all of which migrate to the olfactory bulb through the rostral migratory stream. In both adult neurogenic niches, specific transcription factors have been shown to direct fate specification and lineage commitment. This review summarizes current progress on the transcriptional control of glutamatergic neurogenesis in the SGZ and SVZ, highlighting commonalities as well as differences in their transcriptional programs. In particular, we focus on work from our laboratory and others indicating that precise, sequential expression of transcription factors regulates the progression from NSC to lineage-committed progenitor, and ultimately regulates the production and differentiation of adult-born glutamatergic neurons.


Asunto(s)
Diferenciación Celular/fisiología , Giro Dentado/fisiología , Regulación de la Expresión Génica/fisiología , Modelos Biológicos , Células-Madre Neurales/citología , Neurogénesis/fisiología , Receptores de Glutamato/metabolismo , Factores de Transcripción/metabolismo , Adulto , Regulación de la Expresión Génica/genética , Humanos , Células-Madre Neurales/metabolismo
17.
Proc Natl Acad Sci U S A ; 107(29): 13129-34, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20615956

RESUMEN

Areas and layers of the cerebral cortex are specified by genetic programs that are initiated in progenitor cells and then, implemented in postmitotic neurons. Here, we report that Tbr1, a transcription factor expressed in postmitotic projection neurons, exerts positive and negative control over both regional (areal) and laminar identity. Tbr1 null mice exhibited profound defects of frontal cortex and layer 6 differentiation, as indicated by down-regulation of gene-expression markers such as Bcl6 and Cdh9. Conversely, genes that implement caudal cortex and layer 5 identity, such as Bhlhb5 and Fezf2, were up-regulated in Tbr1 mutants. Tbr1 implements frontal identity in part by direct promoter binding and activation of Auts2, a frontal cortex gene implicated in autism. Tbr1 regulates laminar identity in part by downstream activation or maintenance of Sox5, an important transcription factor controlling neuronal migration and corticofugal axon projections. Similar to Sox5 mutants, Tbr1 mutants exhibit ectopic axon projections to the hypothalamus and cerebral peduncle. Together, our findings show that Tbr1 coordinately regulates regional and laminar identity of postmitotic cortical neurons.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Mitosis , Neocórtex/citología , Neocórtex/embriología , Neuronas/citología , Animales , Biomarcadores/metabolismo , Proteínas del Citoesqueleto , Proteínas de Unión al ADN/genética , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Mutación/genética , Neocórtex/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , Unión Proteica , Proteínas de Dominio T Box , Factores de Transcripción , Activación Transcripcional , Regulación hacia Arriba/genética
18.
Science ; 382(6667): eadf7044, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824643

RESUMEN

Recent advances in single-cell transcriptomics have illuminated the diverse neuronal and glial cell types within the human brain. However, the regulatory programs governing cell identity and function remain unclear. Using a single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq), we explored open chromatin landscapes across 1.1 million cells in 42 brain regions from three adults. Integrating this data unveiled 107 distinct cell types and their specific utilization of 544,735 candidate cis-regulatory DNA elements (cCREs) in the human genome. Nearly a third of the cCREs demonstrated conservation and chromatin accessibility in the mouse brain cells. We reveal strong links between specific brain cell types and neuropsychiatric disorders including schizophrenia, bipolar disorder, Alzheimer's disease (AD), and major depression, and have developed deep learning models to predict the regulatory roles of noncoding risk variants in these disorders.


Asunto(s)
Atlas como Asunto , Encéfalo , Cromatina , Animales , Humanos , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Cromatina/metabolismo , ADN/metabolismo , Neuronas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de la Célula Individual
19.
Science ; 382(6667): eadf2359, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824649

RESUMEN

Single-cell transcriptomic studies have identified a conserved set of neocortical cell types from small postmortem cohorts. We extended these efforts by assessing cell type variation across 75 adult individuals undergoing epilepsy and tumor surgeries. Nearly all nuclei map to one of 125 robust cell types identified in the middle temporal gyrus. However, we found interindividual variance in abundances and gene expression signatures, particularly in deep-layer glutamatergic neurons and microglia. A minority of donor variance is explainable by age, sex, ancestry, disease state, and cell state. Genomic variation was associated with expression of 150 to 250 genes for most cell types. This characterization of cellular variation provides a baseline for cell typing in health and disease.


Asunto(s)
Lóbulo Temporal , Transcriptoma , Adulto , Humanos , Epilepsia/metabolismo , Perfilación de la Expresión Génica , Neuronas/metabolismo , Lóbulo Temporal/citología , Lóbulo Temporal/metabolismo , Enfermedades del Sistema Nervioso/genética , Trastornos Mentales/genética
20.
Science ; 382(6667): eade9516, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824638

RESUMEN

The cognitive abilities of humans are distinctive among primates, but their molecular and cellular substrates are poorly understood. We used comparative single-nucleus transcriptomics to analyze samples of the middle temporal gyrus (MTG) from adult humans, chimpanzees, gorillas, rhesus macaques, and common marmosets to understand human-specific features of the neocortex. Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG. Microglia, astrocytes, and oligodendrocytes had more-divergent expression across species compared with neurons or oligodendrocyte precursor cells, and neuronal expression diverged more rapidly on the human lineage. Only a few hundred genes showed human-specific patterning, suggesting that relatively few cellular and molecular changes distinctively define adult human cortical structure.


Asunto(s)
Cognición , Hominidae , Neocórtex , Lóbulo Temporal , Animales , Humanos , Perfilación de la Expresión Génica , Gorilla gorilla/genética , Hominidae/genética , Hominidae/fisiología , Macaca mulatta/genética , Pan troglodytes/genética , Filogenia , Transcriptoma , Neocórtex/fisiología , Especificidad de la Especie , Lóbulo Temporal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA