RESUMEN
While the unique symbiotic relationship between anemonefishes and sea anemones is iconic, it is still not fully understood how anemonefishes can withstand and thrive within the venomous environment of their host sea anemone. In this study, we used a proteotranscriptomics approach to elucidate the proteinaceous toxin repertoire from the most common host sea anemone, Entacmaea quadricolor. Although 1251 different toxin or toxin-like RNA transcripts were expressed in E. quadricolor tentacles (0.05% of gene clusters, 1.8% of expression) and 5375 proteins were detected in milked venom, only 4% of proteins detected in venom were putative toxins (230), and they only represent on average 14% of the normalised protein expression in the milked venom samples. Thus, most proteins in milked venom do not appear to have a toxin function. This work raises the perils of defining a dominant venom phenotype based on transcriptomics data alone in sea anemones, as we found that the dominant venom phenotype differs between the transcriptome and proteome abundance data. E. quadricolor venom contains a mixture of toxin-like proteins of unknown and known function. A newly identified toxin protein family, Z3, rich in conserved cysteines of unknown function, was the most abundant at the RNA transcript and protein levels. The venom was also rich in toxins from the Protease S1, Kunitz-type and PLA2 toxin protein families and contains toxins from eight venom categories. Exploring the intricate venom toxin components in other host sea anemones will be crucial for improving our understanding of how anemonefish adapt to the venomous environment.
Asunto(s)
Anémonas de Mar , Toxinas Biológicas , Animales , Anémonas de Mar/genética , Ponzoñas/genética , Toxinas Biológicas/genética , Transcriptoma , ARNRESUMEN
Cnidarians are amongst the most venomous animals on the planet. They are also under significant threat due to the impacts of climate change. Corals and anemones undergo climate-induced bleaching during extreme environmental conditions, where a loss of symbiotic photosynthetic algae (zooxanthellae) causes whitening in colour, loss of internal food supply, and reduction in health, which can ultimately lead to death. What has yet to be determined is whether bleaching causes a reduction in the production or quality of venom. In this study, the sea anemone Entacmaea quadricolor was exposed to long-term light-induced bleaching to examine the effect that bleaching has on venom. Venom quality and quantity, as determined through lethality and haemolysis measures and nematocyst production was highly preserved over the five-month imposed bleaching event. Maintenance of venom and nematocyst production, despite a loss of an internal food source provided by endosymbiotic algae, indicates both the ecological importance of maintaining toxicity and a remarkable resilience that anemones have to major environmental stressors.