Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38985989

RESUMEN

The Exchange Protein directly Activated by cAMP (EPAC) has been implicated in cardiac pro-arrhythmic signalling pathways including spontaneous diastolic Ca2+ leak from sarcoplasmic reticulum and increased Action Potential Duration (APD) in isolated ventricular cardiomyocytes. The AP lengthening following acute EPAC activation is mainly due to a decrease of repolarizing steady state K+ current (IKSS) but the mechanisms involved remain unknown. This study aimed to assess the role of EPAC1 and 2 in the decrease of IKSS and to investigate the underlying signalling pathways. AP and K+ currents were recorded with the whole cell configuration of the patch-clamp technique in freshly isolated rat ventricular myocytes. EPAC1 and 2 were pharmacologically activated with 8-CPTAM (10 µmol/L) and inhibited with R-Ce3F4 and ESI-05, respectively. Inhibition of EPAC1 and EPAC2 significantly decreased the effect of 8-CPTAM on APD and IKSS showing that both EPAC isoforms are involved in these effects. Unexpectedly, CaMKII inhibition by AIP or KN-93, and Ca2+ chelation by intracellular BAPTA, did not impact the response to 8-CPTAM. However, inhibition of PLC/PKC and NOS/PKG pathways partially prevents the 8-CPTAM-dependent decrease of IKSS. Finally, the cumulative inhibition of PKC and PKG blocked the 8-CPTAM effect, suggesting that these two actors work along parallel pathways to regulate IKSS upon EPAC activation. On the basis of such findings, we propose that EPAC1 and 2 are involved in APD lengthening by inhibiting a K+ current via both PLC/PKC and NOS/PKG pathways. This may have pathological implications since EPAC is upregulated in diseases such as cardiac hypertrophy.

2.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36768669

RESUMEN

Cardiac excitation-contraction coupling can be different between regions of the heart. Little is known at the atria level, specifically in different regions of the left atrium. This is important given the role of cardiac myocytes from the pulmonary vein sleeves, which are responsible for ectopic activity during atrial fibrillation. In this study, we present a new method to isolate atrial cardiac myocytes from four different regions of the left atrium of a large animal model, sheep, highly relevant to humans. Using collagenase/protease we obtained calcium-tolerant atrial cardiac myocytes from the epicardium, endocardium, free wall and pulmonary vein regions. Calcium transients were slower (time to peak and time to decay) in free wall and pulmonary vein myocytes compared to the epicardium and endocardium. This is associated with lower t-tubule density. Overall, these results suggest regional differences in calcium transient and t-tubule density across left atria, which may play a major role in the genesis of atrial fibrillation.


Asunto(s)
Fibrilación Atrial , Humanos , Animales , Ovinos , Fibrilación Atrial/metabolismo , Señalización del Calcio , Calcio/metabolismo , Atrios Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Calcio de la Dieta/metabolismo , Modelos Animales de Enfermedad
3.
Am J Physiol Heart Circ Physiol ; 320(3): H1156-H1169, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33449852

RESUMEN

The TRPV4 channel is a calcium-permeable channel (PCa/PNa ∼ 10). Its expression has been reported in ventricular myocytes, where it is involved in several cardiac pathological mechanisms. In this study, we investigated the implication of TRPV4 in ventricular electrical activity. Left ventricular myocytes were isolated from trpv4+/+ and trpv4-/- mice. TRPV4 membrane expression and its colocalization with L-type calcium channels (Cav1.2) was confirmed using Western blot biotinylation, immunoprecipitation, and immunostaining experiments. Then, electrocardiograms (ECGs) and patch-clamp recordings showed shortened QTc and action potential (AP) duration in trpv4-/- compared with trpv4+/+ mice. Thus, TRPV4 activator GSK1016790A produced a transient and dose-dependent increase in AP duration at 90% of repolarization (APD90) in trpv4+/+ but not in trpv4-/- myocytes or when combined with TRPV4 inhibitor GSK2193874 (100 nM). Hence, GSK1016790A increased calcium transient (CaT) amplitude in trpv4+/+ but not in trpv4-/- myocytes, suggesting that TRPV4 carries an inward Ca2+ current in myocytes. Conversely, TRPV4 inhibitor GSK2193874 (100 nM) alone reduced APD90 in trpv4+/+ but not in trpv4-/- myocytes, suggesting that TRPV4 prolongs AP duration in basal condition. Finally, introducing TRPV4 parameters in a mathematical model predicted the development of an inward TRPV4 current during repolarization that increases AP duration and CaT amplitude, in accord with what was found experimentally. This study shows for the first time that TRPV4 modulates AP and QTc durations. It would be interesting to evaluate whether TRPV4 could be involved in long QT-mediated ventricular arrhythmias.NEW & NOTEWORTHY Transient receptor potential vanilloid 4 (TRPV4) is expressed at the membrane of mouse ventricular myocytes and colocalizes with non-T-tubular L-type calcium channels. Deletion of trpv4 gene in mice results in shortened QT interval on electrocardiogram and reduced action potential duration of ventricular myocytes. Pharmacological activation of TRPV4 channel leads to increased action potential duration and increased calcium transient amplitude in trpv4-/- but not in trpv4-/- ventricular myocytes. To the contrary, TRPV4 channel pharmacological inhibition reduces action potential duration in trpv4+/+ but not in trpv4-/- myocytes. Integration of TRPV4 channel in a computational model of mouse action potential shows that the channel carries an inward current contributing to slowing down action potential repolarization and to increase calcium transient amplitude, similarly to what is observed experimentally. This study highlights for the first time the involvement of TRPV4 channel in ventricular electrical activity.


Asunto(s)
Potenciales de Acción , Señalización del Calcio , Frecuencia Cardíaca , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPV/metabolismo , Función Ventricular Izquierda , Potenciales de Acción/efectos de los fármacos , Animales , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/efectos de los fármacos , Simulación por Computador , Células HEK293 , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Leucina/análogos & derivados , Leucina/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Cardiovasculares , Miocitos Cardíacos/efectos de los fármacos , Piperidinas/farmacología , Quinolinas/farmacología , Sulfonamidas/farmacología , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética , Factores de Tiempo , Función Ventricular Izquierda/efectos de los fármacos
4.
Biophys J ; 116(3): 469-476, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30598284

RESUMEN

Transient receptor potential melastatin member 4 (TRPM4) channels are nonselective monovalent cationic channels found in human atria and conduction system. Overexpression of TRPM4 channels has been found in families suffering from inherited cardiac arrhythmias, notably heart block. In this study, we integrate a mathematical formulation of the TRPM4 channel into a Purkinje cell model (Pan-Rudy model). Instead of simply adding the channel to the model, a combination of existing currents equivalent to the TRPM4 current was constructed, based on TRPM4 current dynamics. The equivalent current was then replaced by the TRPM4 current to preserve the model action potential. Single-cell behavior showed early afterdepolarizations for increases in TRPM4 channel expression above twofold. In a homogeneous strand of tissue, propagation conducted faithfully for lower expression levels but failed completely for more than a doubling of TRPM4 channel expression. Only with a heterogeneous distribution of channel expression was intermittent heart block seen. This study suggests that in Purkinje fibers, TRPM4 channels may account for sodium background current (INab), and that a heterogeneous expression of TRPM4 channels in the His/Purkinje system is required for type II heart block, as seen clinically.


Asunto(s)
Fenómenos Electrofisiológicos , Regulación de la Expresión Génica , Canales Catiónicos TRPM/metabolismo , Potenciales de Acción , Animales , Perros , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ramos Subendocárdicos/metabolismo , Sodio/metabolismo , Regulación hacia Arriba
5.
BMC Med Genet ; 18(1): 31, 2017 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-28315637

RESUMEN

BACKGROUND: Long QT syndrome (LQTS) is an inherited arrhythmic disorder characterized by prolongation of the QT interval, a risk of syncope, and sudden death. There are already a number of causal genes in LQTS, but not all LQTS patients have an identified mutation, which suggests LQTS unknown genes. METHODS: A cohort of 178 LQTS patients, with no mutations in the 3 major LQTS genes (KCNQ1, KCNH2, and SCN5A), was screened for mutations in the transient potential melastatin 4 gene (TRPM4). RESULTS: Four TRPM4 variants (2.2% of the cohort) were found to change highly conserved amino-acids and were either very rare or absent from control populations. Therefore, these four TRPM4 variants were predicted to be disease causing. Furthermore, no mutations were found in the DNA of these TRPM4 variant carriers in any of the 13 major long QT syndrome genes. Two of these variants were further studied by electrophysiology (p.Val441Met and p.Arg499Pro). Both variants showed a classical TRPM4 outward rectifying current, but the current was reduced by 61 and 90% respectively, compared to wild type TRPM4 current. CONCLUSIONS: This study supports the view that TRPM4 could account for a small percentage of LQTS patients. TRPM4 contribution to the QT interval might be multifactorial by modulating whole cell current but also, as shown in Trpm4-/- mice, by modulating cardiomyocyte proliferation. TRPM4 enlarges the subgroup of LQT genes (KCNJ2 in Andersen syndrome and CACNA1C in Timothy syndrome) known to increase the QT interval through a more complex pleiotropic effect than merely action potential alteration.


Asunto(s)
Sustitución de Aminoácidos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Canales Catiónicos TRPM/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven
6.
J Physiol ; 594(2): 295-306, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26548780

RESUMEN

KEY POINTS: The transient receptor potential melastatin 4 (TRPM4) inhibitor 9-phenanthrol reduces action potential duration in rabbit Purkinje fibres but not in ventricle. TRPM4-like single channel activity is observed in isolated rabbit Purkinje cells but not in ventricular cells. The TRPM4-like current develops during the notch and early repolarization phases of the action potential in Purkinje cells. ABSTRACT: Transient receptor potential melastatin 4 (TRPM4) Ca(2+)-activated non-selective cation channel activity has been recorded in cardiomyocytes and sinus node cells from mammals. In addition, TRPM4 gene mutations are associated with human diseases of cardiac conduction, suggesting that TRPM4 plays a role in this aspect of cardiac function. Here we evaluate the TRPM4 contribution to cardiac electrophysiology of Purkinje fibres. Ventricular strips with Purkinje fibres were isolated from rabbit hearts. Intracellular microelectrodes recorded Purkinje fibre activity and the TRPM4 inhibitor 9-phenanthrol was applied to unmask potential TRPM4 contributions to the action potential. 9-Phenanthrol reduced action potential duration measured at the point of 50 and 90% repolarization with an EC50 of 32.8 and 36.1×10(-6) mol l(-1), respectively, but did not modulate ventricular action potentials. Inside-out patch-clamp recordings were used to monitor TRPM4 activity in isolated Purkinje cells. TRPM4-like single channel activity (conductance = 23.8 pS; equal permeability for Na(+) and K(+); sensitivity to voltage, Ca(2+) and 9-phenanthrol) was observed in 43% of patches from Purkinje cells but not from ventricular cells (0/16). Action potential clamp experiments performed in the whole-cell configuration revealed a transient inward 9-phenanthrol-sensitive current (peak density = -0.65 ± 0.15 pA pF(-1); n = 5) during the plateau phases of the Purkinje fibre action potential. These results show that TRPM4 influences action potential characteristics in rabbit Purkinje fibres and thus could modulate cardiac conduction and be involved in triggering arrhythmias.


Asunto(s)
Potenciales de Acción , Miocitos Cardíacos/metabolismo , Ramos Subendocárdicos/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Femenino , Miocitos Cardíacos/fisiología , Potasio/metabolismo , Ramos Subendocárdicos/citología , Ramos Subendocárdicos/fisiología , Conejos , Sodio/metabolismo
7.
J Cardiovasc Pharmacol ; 64(2): 134-41, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24662493

RESUMEN

OBJECTIVE: To assess the electrophysiological impact of aldosterone during myocardial ischemia-reperfusion. METHODS: We used an in vitro model of "border zone" using rabbit right ventricle and standard microelectrodes. RESULTS: Aldosterone (10 and 100 nmol/L) shortened ischemic action potential [action potential duration at 90% of repolarization (APD90), from 55 ± 3 to 39 ± 1 ms and 36 ± 3 ms, respectively, P < 0.05] and induced resting membrane potential (RMP) hyperpolarization in the nonischemic zone (from -83 ± 1 to -93 ± 7 mV and -94 ± 3 mV, respectively, P < 0.05) and in the ischemic zone during reperfusion (from -81 ± 2 to -88 ± 2 mV and -91 ± 2 mV, respectively, P < 0.05). Bimakalim, an ATP-sensitive potassium (K(ATP)) channel opener, also induced RMP hyperpolarization and APD90 shortening. Aldosterone (10 and 100 nmol/L) increased APD90 dispersion between ischemic and nonischemic zones (from 96 ± 3 to 117 ± 5 ms and 131 ± 6 ms, respectively, P < 0.05) and reperfusion-induced severe premature ventricular contraction occurrence (from 18% to 67% and 75%, respectively, P < 0.05). Adding glibenclamide, a nonspecific K(ATP) antagonist, to aldosterone superfusion abolished these effects different to sodium 5-hydroxydecanoate, a mitochondrial-K(ATP) antagonist. CONCLUSIONS: In this in vitro rabbit model of border zone, aldosterone induced RMP hyperpolarization and decreased ischemic APD90 evoking the modulation of K currents. Glibenclamide prevented these effects different to 5-hydroxydecanoate, suggesting that sarcolemmal-K(ATP) channels may be involved in this context.


Asunto(s)
Aldosterona/metabolismo , Ventrículos Cardíacos/metabolismo , Canales KATP/metabolismo , Sarcolema/metabolismo , Potenciales de Acción/efectos de los fármacos , Aldosterona/farmacología , Animales , Benzopiranos/farmacología , Dihidropiridinas/farmacología , Modelos Animales de Enfermedad , Femenino , Gliburida/farmacología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Técnicas In Vitro , Canales KATP/agonistas , Canales KATP/antagonistas & inhibidores , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Perfusión , Conejos
8.
J Mol Cell Cardiol ; 59: 11-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23416167

RESUMEN

The TRPM4 calcium-activated non-selective monovalent cation channel has been reported in mammalian atrial cardiomyocytes, but its implication in this tissue remains unknown. We used a combination of pharmacological tools and disruption of the Trpm4 gene in mice to investigate the channel implication in atrial action potential (AP). To search for TRPM4 activity, single channel currents were recorded on freshly isolated atrial cardiomyocytes using the patch-clamp technique. To investigate TRPM4 implication in AP, the transmembrane potential was recorded on the multicellular preparation using intracellular microelectrodes after isolating the mouse atrium, under electrical stimulation (rate=5Hz). Isolated atrial cardiomyocytes from the Trpm4(+/+) mouse expressed a typical TRPM4 current while cardiomyocytes from Trpm4(-/-) mouse did not. The Trpm4(+/+) mouse atrium exhibited AP durations at 50, 70 and 90% repolarization of 8.9±0.5ms, 16.0±1.0ms, and 30.2±1.6ms, respectively. The non-selective cation channel inhibitor flufenamic acid (10(-6) and 10(-5)mol·L(-1)) produced a concentration-dependent decrease in AP duration. Similarly, the TRPM4-inhibitor 9-phenanthrol reversibly reduced the duration of AP with an EC50 at 21×10(-6)mol·L(-1), which is similar to that reported for TRPM4 current inhibition in HEK-293 cells. 9-Phenanthrol had no effect on other AP parameters. The effect of 9-phenanthrol is markedly reduced in the mouse ventricle, which displays only weak expression of the channel. Moreover, atria from Trpm4(-/-) mice exhibited an AP that was 20% shorter than that of atria from littermate control mice, and the effect of 9-phenanthrol on AP was abolished in the Trpm4(-/-) mice. Our results showed that TRPM4 is implicated in the waveform of the atrial action potential. It is thus a potential target for pharmacological approaches against atrial arrhythmias.


Asunto(s)
Potenciales de Acción/fisiología , Atrios Cardíacos/metabolismo , Canales Catiónicos TRPM/metabolismo , Potenciales de Acción/genética , Animales , Células Cultivadas , Femenino , Atrios Cardíacos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Canales Catiónicos TRPM/genética
9.
JACC Clin Electrophysiol ; 9(8 Pt 1): 1248-1261, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37227351

RESUMEN

BACKGROUND: Brugada syndrome is a significant cause of sudden cardiac death (SCD), but the underlying mechanisms remain hypothetical. OBJECTIVES: This study aimed to elucidate this knowledge gap through detailed ex vivo human heart studies. METHODS: A heart was obtained from a 15-year-old adolescent boy with normal electrocardiogram who experienced SCD. Postmortem genotyping was performed, and clinical examinations were done on first-degree relatives. The right ventricle was optically mapped, followed by high-field magnetic resonance imaging and histology. Connexin-43 and NaV1.5 were localized by immunofluorescence, and RNA and protein expression levels were studied. HEK-293 cell surface biotinylation assays were performed to examine NaV1.5 trafficking. RESULTS: A Brugada-related SCD diagnosis was established for the donor because of a SCN5A Brugada-related variant (p.D356N) inherited from his mother, together with a concomitant NKX2.5 variant of unknown significance. Optical mapping demonstrated a localized epicardial region of impaired conduction near the outflow tract, in the absence of repolarization alterations and microstructural defects, leading to conduction blocks and figure-of-8 patterns. NaV1.5 and connexin-43 localizations were normal in this region, consistent with the finding that the p.D356N variant does not affect the trafficking, nor the expression of NaV1.5. Trends of decreased NaV1.5, connexin-43, and desmoglein-2 protein levels were noted; however, the RT-qPCR results suggested that the NKX2-5 variant was unlikely to be involved. CONCLUSIONS: This study demonstrates for the first time that SCD associated with a Brugada-SCN5A variant can be caused by localized functionally, not structurally, impaired conduction.


Asunto(s)
Síndrome de Brugada , Masculino , Adolescente , Humanos , Células HEK293 , Electrocardiografía , Trastorno del Sistema de Conducción Cardíaco , Muerte Súbita Cardíaca , Conexinas
10.
Channels (Austin) ; 16(1): 173-184, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35949058

RESUMEN

The congenital long QT syndrome (LQTS), one of the most common cardiac channelopathies, is characterized by delayed ventricular repolarization underlying prolongation of the QT interval of the surface electrocardiogram. LQTS is caused by mutations in genes coding for cardiac ion channels or ion channel-associated proteins. The major therapeutic approach to LQTS management is beta blocker therapy which has been shown to be effective in treatment of LQTS variants caused by mutations in K+ channels. However, this approach has been questioned in the treatment of patients identified as LQTS variant 3(LQT3) patients who carry mutations in SCN5A, the gene coding for the principal cardiac Na+ channel. LQT3 mutations are gain of function mutations that disrupt spontaneous Na+ channel inactivation and promote persistent or late Na+ channel current (INaL) that delays repolarization and underlies QT prolongation. Clinical investigation of patients with the two most common LQT3 mutations, the ΔKPQ and the E1784K mutations, found beta blocker treatment a useful therapeutic approach for managing arrhythmias in this patient population. However, there is little experimental data that reveals the mechanisms underlying these antiarrhythmic actions. Here, we have investigated the effects of the beta blocker propranolol on INaL expressed by ΔKPQ and E1784K channels in induced pluripotent stem cells derived from patients carrying these mutations. Our results indicate that propranolol preferentially inhibits INaL expressed by these channels suggesting that the protective effects of propranolol in treating LQT3 patients is due in part to modulation of INaL.


Asunto(s)
Síndrome de QT Prolongado , Células Madre Pluripotentes , Arritmias Cardíacas/genética , Humanos , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Células Musculares/metabolismo , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Células Madre Pluripotentes/metabolismo , Propranolol/farmacología , Propranolol/uso terapéutico , Canales de Sodio
11.
Artículo en Inglés | MEDLINE | ID: mdl-19234709

RESUMEN

The winter immunoenhancement hypothesis associates long nights and increased exposure to melatonin with enhanced immune function in winter when resource availability is low and the chances of becoming ill are high. Thus, increased exposure to melatonin in the winter could be adaptive for species facing difficult winter conditions. This idea has found some support in studies of resident mammals. In birds, the link between day length and melatonin over the annual cycle is weaker, and contributions of melatonin to seasonal timing are unclear. Furthermore, many species, especially migrants, do not experience the most difficult conditions of their annual cycle in winter. In this study, we tested whether the winter immunoenhancement hypothesis holds in an avian species, the red knot Calidris canutus. We found that melatonin duration and amplitude varied significantly over the annual cycle with the highest values occurring in winter. However, peaks did not correspond to the winter solstice or with annual variation in immune function. Our findings do not support the winter immunoenhancement hypothesis in knots and question whether the idea that immune function should be bolstered in winter can be generalized to systems where winter is not the most difficult time of the year.


Asunto(s)
Charadriiformes/fisiología , Ritmo Circadiano/fisiología , Melatonina/fisiología , Fotoperiodo , Estaciones del Año , Animales , Actividad Bactericida de la Sangre , Candida albicans , Charadriiformes/inmunología , Plumas/fisiología , Melatonina/sangre , Fagocitosis , Staphylococcus aureus
12.
Horm Behav ; 55(3): 425-33, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19171149

RESUMEN

Long-distance migratory passerines initiate testicular recrudescence during spring migration to meet the demands of timely reproduction upon immediate arrival on the breeding grounds. The degree of testicular development is known to depend on environmental factors like stopover habitat quality; reproductive performance may be strongly impacted by testicular maturation upon arrival on the breeding grounds. We investigated the effect of stopover food availability on subsequent reproductive performance in garden warblers (Sylvia borin). Spring migration was simulated by repeated food deprivation and re-feeding to imitate the alternation of flight and stopover periods. During the two final stopover periods, males were either kept under ad libitum food (ad libitum males) or under limited food conditions (limited males). After simulated arrival in the breeding area, manipulation of previous stopover food availability resulted in significantly slower testicular recrudescence (p<0.001) and decreased plasma testosterone (p<0.01) in limited males compared to ad libitum males. Body mass change was not significantly different between the two groups (p=0.38). Limited males also exhibited reduced performance in reproductive behaviours employed in territorial and sexual contexts. Limited males had a longer 'freezing' interval (p<0.05) and decreased activity (p<0.01) when challenged with a live male decoy. In direct confrontation between limited and ad libitum males in the presence of a female, limited males exhibited significantly fewer behavioural traits in sexual context, i.e. directed to the female (p<0.001). Therefore, we suggest that conditions encountered during previous migratory stopover may affect subsequent annual reproductive success by influencing key reproductive behaviours.


Asunto(s)
Migración Animal/fisiología , Abastecimiento de Alimentos , Passeriformes/fisiología , Reproducción/fisiología , Conducta Sexual Animal/fisiología , Testículo/crecimiento & desarrollo , Agresión/fisiología , Animales , Ingestión de Alimentos/fisiología , Ambiente , Femenino , Privación de Alimentos/fisiología , Hormonas Esteroides Gonadales/sangre , Masculino , Tamaño de los Órganos , Fotoperiodo , Estaciones del Año , Territorialidad , Hormonas Testiculares/sangre , Testículo/fisiología
13.
Horm Behav ; 56(1): 163-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19374903

RESUMEN

Arctic environments are challenging for circadian systems. Around the solstices, the most important zeitgeber, the change between night and day, is reduced to minor fluctuations in light intensities. However, many species including songbirds nonetheless show clear diel activity patterns. Here we examine the possible physiological basis underlying diel rhythmicity under continuous Arctic summer light. Rhythmic secretion of the hormone melatonin constitutes an important part of the songbird circadian system and its experimental suppression, e.g., by constant light, usually leads to behavioral arrhythmia. We therefore studied melatonin patterns in a free-living migratory songbird, the willow warbler (Phylloscopus trochilus), that maintains diel activity during the Arctic summer. We compared melatonin profiles during late spring and summer solstice in two Swedish populations from the south (58 degrees N) and near the Arctic circle (66 degrees N). We found the northern Swedish population maintained clear diel changes in melatonin secretion during the summer solstice, although peak concentrations were lower than in southern Sweden. Melatonin levels were highest before midnight and in good accordance with periods of reduced activity. The maintenance of diel melatonin rhythmicity under conditions of continuous light may be one of the physiological mechanisms that enables continued functioning of the circadian system.


Asunto(s)
Ritmo Circadiano/fisiología , Melatonina/sangre , Estaciones del Año , Pájaros Cantores/fisiología , Animales , Animales Salvajes , Regiones Árticas , Actividad Motora/fisiología , Periodicidad , Fotoperiodo , Radioinmunoensayo
14.
Nat Rev Cardiol ; 16(6): 344-360, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30664669

RESUMEN

Transient receptor potential (TRP) channels are nonselective cationic channels that are generally Ca2+ permeable and have a heterogeneous expression in the heart. In the myocardium, TRP channels participate in several physiological functions, such as modulation of action potential waveform, pacemaking, conduction, inotropy, lusitropy, Ca2+ and Mg2+ handling, store-operated Ca2+ entry, embryonic development, mitochondrial function and adaptive remodelling. Moreover, TRP channels are also involved in various pathological mechanisms, such as arrhythmias, ischaemia-reperfusion injuries, Ca2+-handling defects, fibrosis, maladaptive remodelling, inherited cardiopathies and cell death. In this Review, we present the current knowledge of the roles of TRP channels in different cardiac regions (sinus node, atria, ventricles and Purkinje fibres) and cells types (cardiomyocytes and fibroblasts) and discuss their contribution to pathophysiological mechanisms, which will help to identify the best candidates for new therapeutic targets among the cardiac TRP family.


Asunto(s)
Fibroblastos/metabolismo , Cardiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Ramos Subendocárdicos/metabolismo , Nodo Sinoatrial/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Potenciales de Acción , Animales , Fármacos Cardiovasculares/uso terapéutico , Fibroblastos/efectos de los fármacos , Cardiopatías/tratamiento farmacológico , Cardiopatías/fisiopatología , Humanos , Terapia Molecular Dirigida , Miocitos Cardíacos/efectos de los fármacos , Ramos Subendocárdicos/efectos de los fármacos , Ramos Subendocárdicos/fisiopatología , Transducción de Señal , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/fisiopatología , Canales de Potencial de Receptor Transitorio/efectos de los fármacos
15.
Cells ; 8(9)2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461851

RESUMEN

The subunits KCNQ1 and KCNE1 generate the slowly activating, delayed rectifier potassium current, IKs, that responds to sympathetic stimulation and is critical for human cardiac repolarization. The A-kinase anchoring protein Yotiao facilitates macromolecular complex formation between IKs and protein kinase A (PKA) to regulate phosphorylation of KCNQ1 and IKs currents following beta-adrenergic stimulation. We have previously shown that adenylyl cyclase Type 9 (AC9) is associated with a KCNQ1-Yotiao-PKA complex and facilitates isoproterenol-stimulated phosphorylation of KCNQ1 in an immortalized cell line. However, requirement for AC9 in sympathetic control of IKs in the heart was unknown. Using a transgenic mouse strain expressing the KCNQ1-KCNE1 subunits of IKs, we show that AC9 is the only adenylyl cyclase (AC) isoform associated with the KCNQ1-KCNE1-Yotiao complex in the heart. Deletion of AC9 resulted in the loss of isoproterenol-stimulated KCNQ1 phosphorylation in vivo, even though AC9 represents less than 3% of total cardiac AC activity. Importantly, a significant reduction of isoproterenol-stimulated IKs currents was also observed in adult cardiomyocytes from IKs-expressing AC9KO mice. AC9 and Yotiao co-localize with N-cadherin, a marker of intercalated disks and cell-cell junctions, in neonatal and adult cardiomyocytes, respectively. In conclusion, AC9 is necessary for sympathetic regulation of PKA phosphorylation of KCNQ1 in vivo and for functional regulation of IKs in adult cardiomyocytes.


Asunto(s)
Adenilil Ciclasas/metabolismo , Isoproterenol/farmacología , Canal de Potasio KCNQ1/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Adenilil Ciclasas/deficiencia , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Fosforilación/efectos de los fármacos
16.
Horm Behav ; 54(2): 312-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18471816

RESUMEN

Long-distance migrants face the challenge of a short window for reproduction that requires optimal timing and full functional gonads. Male garden warblers (Sylvia borin) meet these demands by initiating testicular recrudescence during spring migration, enabling them to reproduce immediately after arrival at the breeding grounds. In a combined field and laboratory study, we investigated testicular size, plasma levels of luteinizing hormone (LH), androstenedione (AE), 5alpha-dihydrotestosterone (DHT), testosterone and nocturnal migratory restlessness (Zugunruhe) under different stopover conditions. We manipulated food availability, the duration of stopover and simulated migration by food deprivation. Garden warblers showed significantly retarded testicular development after nine days of stopover under limited food conditions compared to birds that had ad libitum access to food. However, there was no significant difference in Zugunruhe between the two groups. Thus, the degree of Zugunruhe was unaffected by the quality of the stopover site and migration continued independent of the developmental state of the testis. We suggest that male garden warblers face the necessity to either compensate for slowed testicular recrudescence during the subsequent leg of migration and delay arrival at the breeding grounds, or arrive with less developed testes. Either of these may reduce annual reproductive success.


Asunto(s)
Migración Animal/fisiología , Vuelo Animal/fisiología , Pájaros Cantores/fisiología , Testículo/crecimiento & desarrollo , Animales , Peso Corporal/fisiología , Ingestión de Alimentos/fisiología , Privación de Alimentos/fisiología , Geografía , Hormona Luteinizante/sangre , Masculino , Tamaño de los Órganos , Periodicidad , Reproducción/fisiología , Estaciones del Año , Pájaros Cantores/sangre , Pájaros Cantores/crecimiento & desarrollo , Testículo/fisiología , Testosterona/sangre
18.
J Biol Rhythms ; 17(3): 259-65, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12054197

RESUMEN

Photoperiodic manipulation of young European starlings suggests that their reproductive physiology is incapable of responding to a short photoperiod until they are fully grown. This study aimed to determine whether the lack of response to a short photoperiod is reflected in the daily profile of plasma melatonin concentrations. Five-day-old starlings taken from nest boxes showed a significant (p < 0.0001) rhythm in plasma melatonin concentrations, with high values during night. In nestlings hand-reared from 5 days of age on a long photoperiod (LD 16:8), equivalent to natural photoperiod at the time, the amplitude of the daily rhythm in melatonin increased significantly (p < 0.01) with age until birds were fully grown (20 days old). In nestlings reared on a short photoperiod (LD 8:16), the daily melatonin profile remained almost identical to that of long photoperiod birds until they were fully grown. However, after 20 days old, the duration of elevated nighttime melatonin began to extend to encompass the entire period of darkness. In contrast, fully grown starlings transferred from a long to a short photoperiod had partially adapted to the short photoperiod after 5 days; by 10 days, the daily melatonin profile was identical to that of birds held chronically on a short photoperiod. Thus, consistent with responses of reproductive physiology, the pineal of young birds appears to be incapable of perceiving, or adapting to, a short photoperiod.


Asunto(s)
Ritmo Circadiano , Melatonina/sangre , Fotoperiodo , Pájaros Cantores/fisiología , Animales , Animales Recién Nacidos/sangre , Animales Recién Nacidos/crecimiento & desarrollo , Concentración Osmolar
19.
Physiol Behav ; 142: 14-9, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25619949

RESUMEN

Despite urban ecology being an established field of research, there is still surprisingly little information about the relative contribution of specific environmental factors driving the observed changes in the behavior and physiology of city dwellers. One of the most reported effects of urbanization is the advanced phenology observed in birds. Many factors have been suggested to underline such effect, including warmer microclimate, anthropogenic food supply and light pollution. Since social stimuli are known to affect reproductive timing and breeding density is usually higher in urban populations compared to rural ones, we experimentally tested whether social interactions could advance the onset of reproduction in European blackbirds (Turdus merula). We housed male blackbirds of rural and urban origins with or without a conspecific female, and recorded their seasonal variation in gonadal size and production of luteinizing hormone (LH). Paired and unpaired males of both urban and rural origins did not significantly differ in their timing of gonadal growth. Moreover, rural and urban birds did not differ in their response to the social stimuli, rather they became reproductively active at the same time, a result that confirms previous studies that attributed the difference in reproductive timing observed in the field to phenotypic plasticity. We conclude that social stimuli do not contribute substantially to the observed early onset of reproductive physiology in urban bird species, rather other factors such as light pollution are likely to be stronger drivers of these physiological changes.


Asunto(s)
Ambiente , Passeriformes/fisiología , Reproducción/fisiología , Conducta Social , Animales , Ciudades , Señales (Psicología) , Femenino , Bosques , Luz , Hormona Luteinizante/sangre , Masculino , Tamaño de los Órganos , Passeriformes/anatomía & histología , Fotoperiodo , Testículo/anatomía & histología , Testículo/fisiología , Factores de Tiempo
20.
Cardiovasc Res ; 108(1): 21-30, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26272755

RESUMEN

TRPM4 forms a non-selective cation channel activated by internal Ca(2+). Its functional expression was demonstrated in cardiomyocytes of several mammalian species including humans, but the channel is also present in many other tissues. The recent characterization of the TRPM4 inhibitor 9-phenanthrol, and the availability of transgenic mice have helped to clarify the role of TRPM4 in cardiac electrical activity, including diastolic depolarization from the sino-atrial node cells in mouse, rat, and rabbit, as well as action potential duration in mouse cardiomyocytes. In rat and mouse, pharmacological inhibition of TRPM4 prevents cardiac ischaemia-reperfusion injuries and decreases the occurrence of arrhythmias. Several studies have identified TRPM4 mutations in patients with inherited cardiac diseases including conduction blocks and Brugada syndrome. This review identifies TRPM4 as a significant actor in cardiac electrophysiology.


Asunto(s)
Corazón/fisiología , Canales Catiónicos TRPM/fisiología , Potenciales de Acción , Animales , Calcio/metabolismo , Diástole/fisiología , Humanos , ARN Mensajero/análisis , Canales Catiónicos TRPM/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA