Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Haematologica ; 108(6): 1652-1666, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36700397

RESUMEN

Gain-of-function mutations in the EPAS1/HIF2A gene have been identified in patients with hereditary erythrocytosis that can be associated with the development of paraganglioma, pheochromocytoma and somatostatinoma. In the present study, we describe a unique European collection of 41 patients and 28 relatives diagnosed with an erythrocytosis associated with a germline genetic variant in EPAS1. In addition we identified two infants with severe erythrocytosis associated with a mosaic mutation present in less than 2% of the blood, one of whom later developed a paraganglioma. The aim of this study was to determine the causal role of these genetic variants, to establish pathogenicity, and to identify potential candidates eligible for the new hypoxia-inducible factor-2 α (HIF-2α) inhibitor treatment. Pathogenicity was predicted with in silico tools and the impact of 13 HIF-2b variants has been studied by using canonical and real-time reporter luciferase assays. These functional assays consisted of a novel edited vector containing an expanded region of the erythropoietin promoter combined with distal regulatory elements which substantially enhanced the HIF-2α-dependent induction. Altogether, our studies allowed the classification of 11 mutations as pathogenic in 17 patients and 23 relatives. We described four new mutations (D525G, L526F, G527K, A530S) close to the key proline P531, which broadens the spectrum of mutations involved in erythrocytosis. Notably, we identified patients with only erythrocytosis associated with germline mutations A530S and Y532C previously identified at somatic state in tumors, thereby raising the complexity of the genotype/phenotype correlations. Altogether, this study allows accurate clinical follow-up of patients and opens the possibility of benefiting from HIF-2α inhibitor treatment, so far the only targeted treatment in hypoxia-related erythrocytosis disease.


Asunto(s)
Paraganglioma , Policitemia , Humanos , Policitemia/diagnóstico , Policitemia/genética , Mutación , Paraganglioma/complicaciones , Paraganglioma/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hipoxia
2.
Haematologica ; 108(11): 3068-3085, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37317877

RESUMEN

Hereditary erythrocytosis is a rare hematologic disorder characterized by an excess of red blood cell production. Here we describe a European collaborative study involving a collection of 2,160 patients with erythrocytosis sequenced in ten different laboratories. We focused our study on the EGLN1 gene and identified 39 germline missense variants including one gene deletion in 47 probands. EGLN1 encodes the PHD2 prolyl 4-hydroxylase, a major inhibitor of hypoxia-inducible factor. We performed a comprehensive study to evaluate the causal role of the identified PHD2 variants: (i) in silico studies of localization, conservation, and deleterious effects; (ii) analysis of hematologic parameters of carriers identified in the UK Biobank; (iii) functional studies of the protein activity and stability; and (iv) a comprehensive study of PHD2 splicing. Altogether, these studies allowed the classification of 16 pathogenic or likely pathogenic mutants in a total of 48 patients and relatives. The in silico studies extended to the variants described in the literature showed that a minority of PHD2 variants can be classified as pathogenic (36/96), without any differences from the variants of unknown significance regarding the severity of the developed disease (hematologic parameters and complications). Here, we demonstrated the great value of federating laboratories working on such rare disorders in order to implement the criteria required for genetic classification, a strategy that should be extended to all hereditary hematologic diseases.


Asunto(s)
Policitemia , Humanos , Policitemia/diagnóstico , Policitemia/genética , Policitemia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Mutación de Línea Germinal , Secuencia de Bases
3.
J Biol Chem ; 296: 100291, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33453283

RESUMEN

Androglobin (ADGB) represents the latest addition to the globin superfamily in metazoans. The chimeric protein comprises a calpain domain and a unique circularly permutated globin domain. ADGB expression levels are most abundant in mammalian testis, but its cell-type-specific expression, regulation, and function have remained unexplored. Analyzing bulk and single-cell mRNA-Seq data from mammalian tissues, we found that-in addition to the testes-ADGB is prominently expressed in the female reproductive tract, lungs, and brain, specifically being associated with cell types forming motile cilia. Correlation analysis suggested coregulation of ADGB with FOXJ1, a crucial transcription factor of ciliogenesis. Investigating the transcriptional regulation of the ADGB gene, we characterized its promoter using epigenomic datasets, exogenous promoter-dependent luciferase assays, and CRISPR/dCas9-VPR-mediated activation approaches. Reporter gene assays revealed that FOXJ1 indeed substantially enhanced luciferase activity driven by the ADGB promoter. ChIP assays confirmed binding of FOXJ1 to the endogenous ADGB promoter region. We dissected the minimal sequence required for FOXJ1-dependent regulation and fine mapped the FOXJ1 binding site to two evolutionarily conserved regions within the ADGB promoter. FOXJ1 overexpression significantly increased endogenous ADGB mRNA levels in HEK293 and MCF-7 cells. Similar results were observed upon RFX2 overexpression, another key transcription factor in ciliogenesis. The complex transcriptional regulation of the ADGB locus was illustrated by identifying a distal enhancer, responsible for synergistic regulation by RFX2 and FOXJ1. Finally, cell culture studies indicated an ADGB-dependent increase in the number of ciliated cells upon overexpression of the full-length protein, confirming a ciliogenesis-associated role of ADGB in mammals.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Cilios/genética , Factores de Transcripción Forkhead/genética , Globinas/genética , Factores de Transcripción del Factor Regulador X/genética , Transcriptoma , Animales , Sitios de Unión , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Bovinos , Cilios/metabolismo , Elementos de Facilitación Genéticos , Femenino , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Globinas/metabolismo , Células HEK293 , Células HeLa , Humanos , Pulmón/citología , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Células MCF-7 , Masculino , Anotación de Secuencia Molecular , Ovario/citología , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción del Factor Regulador X/metabolismo , Análisis de Secuencia de ARN , Testículo/citología , Testículo/crecimiento & desarrollo , Testículo/metabolismo
4.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806266

RESUMEN

The kidney is strongly dependent on a continuous oxygen supply, and is conversely highly sensitive to hypoxia. Controlled oxygen gradients are essential for renal control of solutes and urine-concentrating mechanisms, which also depend on various hormones including aldosterone. The cortical collecting duct (CCD) is part of the aldosterone-sensitive distal nephron and possesses a key function in fine-tuned distal salt handling. It is well known that aldosterone is consistently decreased upon hypoxia. Furthermore, a recent study reported a hypoxia-dependent down-regulation of sodium currents within CCD cells. We thus investigated the possibility that cells from the cortical collecting duct are responsive to hypoxia, using the mouse cortical collecting duct cell line mCCDcl1 as a model. By analyzing the hypoxia-dependent transcriptome of mCCDcl1 cells, we found a large number of differentially-expressed genes (3086 in total logFC< −1 or >1) following 24 h of hypoxic conditions (0.2% O2). A gene ontology analysis of the differentially-regulated pathways revealed a strong decrease in oxygen-linked processes such as ATP metabolic functions, oxidative phosphorylation, and cellular and aerobic respiration, while pathways associated with hypoxic responses were robustly increased. The most pronounced regulated genes were confirmed by RT-qPCR. The low expression levels of Epas1 under both normoxic and hypoxic conditions suggest that Hif-1α, rather than Hif-2α, mediates the hypoxic response in mCCDcl1 cells. Accordingly, we generated shRNA-mediated Hif-1α knockdown cells and found Hif-1α to be responsible for the hypoxic induction of established hypoxically-induced genes. Interestingly, we could show that following shRNA-mediated knockdown of Esrra, Hif-1α protein levels were unaffected, but the gene expression levels of Egln3 and Serpine1 were significantly reduced, indicating that Esrra might contribute to the hypoxia-mediated expression of these and possibly other genes. Collectively, mCCDcl1 cells display a broad response to hypoxia and represent an adequate cellular model to study additional factors regulating the response to hypoxia.


Asunto(s)
Aldosterona , Subunidad alfa del Factor 1 Inducible por Hipoxia , Hipoxia , Corteza Renal , Receptores de Estrógenos , Animales , Hipoxia de la Célula , Línea Celular , Regulación de la Expresión Génica , Hipoxia/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Corteza Renal/metabolismo , Corteza Renal/fisiología , Ratones , Oxígeno/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Estrógenos/metabolismo , Receptor Relacionado con Estrógeno ERRalfa
5.
Blood ; 132(5): 469-483, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-29891534

RESUMEN

Chuvash polycythemia is an autosomal recessive form of erythrocytosis associated with a homozygous p.Arg200Trp mutation in the von Hippel-Lindau (VHL) gene. Since this discovery, additional VHL mutations have been identified in patients with congenital erythrocytosis, in a homozygous or compound-heterozygous state. VHL is a major tumor suppressor gene, mutations in which were first described in patients presenting with VHL disease, which is characterized by the development of highly vascularized tumors. Here, we identify a new VHL cryptic exon (termed E1') deep in intron 1 that is naturally expressed in many tissues. More importantly, we identify mutations in E1' in 7 families with erythrocytosis (1 homozygous case and 6 compound-heterozygous cases with a mutation in E1' in addition to a mutation in VHL coding sequences) and in 1 large family with typical VHL disease but without any alteration in the other VHL exons. In this study, we show that the mutations induced a dysregulation of VHL splicing with excessive retention of E1' and were associated with a downregulation of VHL protein expression. In addition, we demonstrate a pathogenic role for synonymous mutations in VHL exon 2 that altered splicing through E2-skipping in 5 families with erythrocytosis or VHL disease. In all the studied cases, the mutations differentially affected splicing, correlating with phenotype severity. This study demonstrates that cryptic exon retention and exon skipping are new VHL alterations and reveals a novel complex splicing regulation of the VHL gene. These findings open new avenues for diagnosis and research regarding the VHL-related hypoxia-signaling pathway.


Asunto(s)
Exones , Predisposición Genética a la Enfermedad , Mutación , Policitemia/genética , Empalme del ARN , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/genética , Adolescente , Adulto , Niño , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Linaje , Policitemia/clasificación , Policitemia/patología , Adulto Joven , Enfermedad de von Hippel-Lindau/patología
6.
Haematologica ; 105(12): 2774-2784, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33256376

RESUMEN

While it is well-established that distal hypoxia response elements (HREs) regulate hypoxia-inducible factor (HIF) target genes such as erythropoietin (Epo), an interplay between multiple distal and proximal (promoter) HREs has not been described so far. Hepatic Epo expression is regulated by a HRE located downstream of the EPO gene, but this 3' HRE is dispensable for renal EPO gene expression. We previously identified a 5' HRE and could show that both HREs direct exogenous reporter gene expression. Here, we show that whereas in hepatic cells the 3' but not the 5' HRE is required, in neuronal cells both the 5' and 3' HREs contribute to endogenous Epo induction. Moreover, two novel putative HREs were identified in the EPO promoter. In hepatoma cells HIF interacted mainly with the distal 3' HRE, but in neuronal cells HIF most strongly bound the promoter, to a lesser extent the 3' HRE, and not at all the 5' HRE. Interestingly, mutation of either of the two distal HREs abrogated HIF binding to the 3' and promoter HREs. These results suggest that a canonical functional HRE can recruit multiple, not necessarily HIF, transcription factors to mediate HIF binding to different distant HREs in an organ-specific manner.


Asunto(s)
Eritropoyetina , Elementos de Respuesta , Hipoxia de la Célula , Eritropoyetina/genética , Expresión Génica , Humanos , Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia
7.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143240

RESUMEN

Erythropoiesis is a complex process driving the production of red blood cells. During homeostasis, adult erythropoiesis takes place in the bone marrow and is tightly controlled by erythropoietin (EPO), a central hormone mainly produced in renal EPO-producing cells. The expression of EPO is strictly regulated by local changes in oxygen partial pressure (pO2) as under-deprived oxygen (hypoxia); the transcription factor hypoxia-inducible factor-2 induces EPO. However, erythropoiesis regulation extends beyond the well-established hypoxia-inducible factor (HIF)-EPO axis and involves processes modulated by other hypoxia pathway proteins (HPPs), including proteins involved in iron metabolism. The importance of a number of these factors is evident as their altered expression has been associated with various anemia-related disorders, including chronic kidney disease. Eventually, our emerging understanding of HPPs and their regulatory feedback will be instrumental in developing specific therapies for anemic patients and beyond.


Asunto(s)
Anemia/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Eritropoyesis , Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/fisiopatología , Anemia/etiología , Anemia/metabolismo , Animales , Humanos
8.
Kidney Int ; 95(2): 375-387, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30502050

RESUMEN

Erythropoietin (Epo) is essential for erythropoiesis and is mainly produced by the fetal liver and the adult kidney following hypoxic stimulation. Epo regulation is commonly studied in hepatoma cell lines, but differences in Epo regulation between kidney and liver limit the understanding of Epo dysregulation in polycythaemia and anaemia. To overcome this limitation, we have generated a novel transgenic mouse model expressing Cre recombinase specifically in the active fraction of renal Epo-producing (REP) cells. Crossing with reporter mice confirmed the inducible and highly specific tagging of REP cells, located in the corticomedullary border region where there is a steep drop in oxygen bioavailability. A novel method was developed to selectively grow primary REP cells in culture and to generate immortalized clonal cell lines, called fibroblastoid atypical interstitial kidney (FAIK) cells. FAIK cells show very early hypoxia-inducible factor (HIF)-2α induction, which precedes Epo transcription. Epo induction in FAIK cells reverses rapidly despite ongoing hypoxia, suggesting a cell autonomous feedback mechanism. In contrast, HIF stabilizing drugs resulted in chronic Epo induction in FAIK cells. RNA sequencing of three FAIK cell lines derived from independent kidneys revealed a high degree of overlap and suggests that REP cells represent a unique cell type with properties of pericytes, fibroblasts, and neurons, known as telocytes. These novel cell lines may be helpful to investigate myofibroblast differentiation in chronic kidney disease and to elucidate the molecular mechanisms of HIF stabilizing drugs currently in phase III studies to treat anemia in end-stage kidney disease.


Asunto(s)
Eritropoyetina/metabolismo , Telocitos/patología , Factores de Transcripción/metabolismo , Anemia/etiología , Anemia/patología , Animales , Hipoxia de la Célula , Línea Celular , Eritropoyetina/genética , Retroalimentación Fisiológica , Riñón/citología , Riñón/patología , Ratones , Ratones Transgénicos , Cultivo Primario de Células , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/patología , Telocitos/metabolismo
9.
Kidney Int ; 96(4): 890-905, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31301888

RESUMEN

Fibroblast growth factor 23 (FGF23) regulates phosphate homeostasis, and its early rise in patients with chronic kidney disease is independently associated with all-cause mortality. Since inflammation is characteristic of chronic kidney disease and associates with increased plasma FGF23 we examined whether inflammation directly stimulates FGF23. In a population-based cohort, plasma tumor necrosis factor (TNF) was the only inflammatory cytokine that independently and positively correlated with plasma FGF23. Mouse models of chronic kidney disease showed signs of renal inflammation, renal FGF23 expression and elevated systemic FGF23 levels. Renal FGF23 expression coincided with expression of the orphan nuclear receptor Nurr1 regulating FGF23 in other organs. Antibody-mediated neutralization of TNF normalized plasma FGF23 and suppressed ectopic renal Fgf23 expression. Conversely, TNF administration to control mice increased plasma FGF23 without altering plasma phosphate. Moreover, in Il10-deficient mice with inflammatory bowel disease and normal kidney function, plasma FGF23 was elevated and normalized upon TNF neutralization. Thus, the inflammatory cytokine TNF contributes to elevated systemic FGF23 levels and also triggers ectopic renal Fgf23 expression in animal models of chronic kidney disease.


Asunto(s)
Factores de Crecimiento de Fibroblastos/sangre , Enfermedades Inflamatorias del Intestino/inmunología , Insuficiencia Renal Crónica/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Animales , Línea Celular , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/inmunología , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/sangre , Interleucina-10/deficiencia , Interleucina-10/genética , Riñón/inmunología , Riñón/patología , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Cultivo Primario de Células , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/patología , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/inmunología
10.
Anal Biochem ; 543: 62-70, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29203135

RESUMEN

Globins are among the best investigated proteins in biological and medical sciences and represent a prime tool for the study of the evolution of genes and the structure-function relationship of proteins. Here, we explore the recombinant expression of globins in three different expression systems: Escherichia coli, Pichia pastoris and the baculovirus infected Spodoptera frugiperda. We expressed two different human globin types in these three expression systems: I) the well-characterized neuroglobin and II) the uncharacterized, circular permutated globin domain of the large chimeric globin androglobin. It is clear from the literature that E.coli is the most used expression system for expression and purification of recombinant globins. However, the major disadvantage of E. coli is the formation of insoluble aggregates. We experienced that, for more complex multi-domain globins, like the chimeric globin androglobin, it is recommended to switch to a higher eukaryotic expression system.


Asunto(s)
Escherichia coli/genética , Globinas/genética , Pichia/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Spodoptera/genética , Animales , Perfilación de la Expresión Génica , Humanos , Proteínas Recombinantes/genética
11.
Reprod Biomed Online ; 36(3): 327-339, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29336995

RESUMEN

Infertility affects approximately 15% of the couples wanting to conceive. In 30 - 40% of the cases the aetiology of male infertility remains unknown and is called idiopathic male infertility. When assisted reproductive technologies are used to obtain pregnancy, an adequate (epi)genetic diagnosis of male infertility is of major importance to evaluate if a genetic abnormality will be transmitted to the offspring. In addition, there is need for better diagnostic seminal biomarkers to assess the success rates of these assisted reproductive technologies. This review investigated the possible causes and molecular mechanisms underlying male idiopathic infertility by extensive literature searches of: (i) causal gene mutations; (ii) proteome studies of spermatozoa from idiopathic infertile men;(iii) the role of epigenetics; (iv) post-translational modifications; and (v) sperm DNA fragmentation in infertile men. In conclusion, male infertility is a complex, multi-factorial disorder and the underlying causes often remain unknown. Further research on the (epi)genetic and molecular defects in spermatogenesis and sperm function is necessary to improve the diagnosis and to develop more personalized treatments of men with idiopathic infertility.


Asunto(s)
Epigenómica , Infertilidad Masculina/fisiopatología , Mutación , Proteoma/análisis , Espermatogénesis , Animales , Humanos , Masculino
12.
Nucleic Acids Res ; 43(12): 5810-23, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26007655

RESUMEN

A crucial step in the cellular adaptation to oxygen deficiency is the binding of hypoxia-inducible factors (HIFs) to hypoxia response elements (HREs) of oxygen-regulated genes. Genome-wide HIF-1α/2α/ß DNA-binding studies revealed that the majority of HREs reside distant to the promoter regions, but the function of these distal HREs has only been marginally studied in the genomic context. We used chromatin immunoprecipitation (ChIP), gene editing (TALEN) and chromosome conformation capture (3C) to localize and functionally characterize a 82 kb upstream HRE that solely drives oxygen-regulated expression of the newly identified HIF target gene PAG1. PAG1, a transmembrane adaptor protein involved in Src signalling, was hypoxically induced in various cell lines and mouse tissues. ChIP and reporter gene assays demonstrated that the -82 kb HRE regulates PAG1, but not an equally distant gene further upstream, by direct interaction with HIF. Ablation of the consensus HRE motif abolished the hypoxic induction of PAG1 but not general oxygen signalling. 3C assays revealed that the -82 kb HRE physically associates with the PAG1 promoter region, independent of HIF-DNA interaction. These results demonstrate a constitutive interaction between the -82 kb HRE and the PAG1 promoter, suggesting a physiologically important rapid response to hypoxia.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cromatina/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Proteínas de la Membrana/genética , Elementos de Respuesta , Activación Transcripcional , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Animales , Hipoxia de la Célula , Línea Celular , Cromatina/química , Células HeLa , Humanos , Proteínas de la Membrana/biosíntesis , Ratones , Ratones Endogámicos C57BL , Fosfoproteínas/biosíntesis , Fosfoproteínas/genética , Regiones Promotoras Genéticas , Transducción de Señal , Familia-src Quinasas/metabolismo
13.
J Biol Chem ; 290(16): 10336-52, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25666609

RESUMEN

We report the structural and biochemical characterization of GLB-33, a putative neuropeptide receptor that is exclusively expressed in the nervous system of the nematode Caenorhabditis elegans. This unique chimeric protein is composed of a 7-transmembrane domain (7TM), GLB-33 7TM, typical of a G-protein-coupled receptor, and of a globin domain (GD), GLB-33 GD. Comprehensive sequence similarity searches in the genome of the parasitic nematode, Ascaris suum, revealed a chimeric protein that is similar to a Phe-Met-Arg-Phe-amide neuropeptide receptor. The three-dimensional structures of the separate domains of both species and of the full-length proteins were modeled. The 7TM domains of both proteins appeared very similar, but the globin domain of the A. suum receptor surprisingly seemed to lack several helices, suggesting a novel truncated globin fold. The globin domain of C. elegans GLB-33, however, was very similar to a genuine myoglobin-type molecule. Spectroscopic analysis of the recombinant GLB-33 GD showed that the heme is pentacoordinate when ferrous and in the hydroxide-ligated form when ferric, even at neutral pH. Flash-photolysis experiments showed overall fast biphasic CO rebinding kinetics. In its ferrous deoxy form, GLB-33 GD is capable of reversibly binding O2 with a very high affinity and of reducing nitrite to nitric oxide faster than other globins. Collectively, these properties suggest that the globin domain of GLB-33 may serve as a highly sensitive oxygen sensor and/or as a nitrite reductase. Both properties are potentially able to modulate the neuropeptide sensitivity of the neuronal transmembrane receptor.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Globinas/química , Mioglobina/química , Nitrito Reductasas/química , Oxígeno/metabolismo , Receptores de Neuropéptido/química , Secuencia de Aminoácidos , Animales , Ascaris suum/genética , Ascaris suum/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Expresión Génica , Globinas/genética , Globinas/metabolismo , Hemo/química , Hemo/metabolismo , Concentración de Iones de Hidrógeno , Hierro/química , Hierro/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mioglobina/genética , Mioglobina/metabolismo , Nitrito Reductasas/genética , Nitrito Reductasas/metabolismo , Oxidación-Reducción , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
14.
Pflugers Arch ; 468(8): 1433-48, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27228995

RESUMEN

Acute kidney injury (AKI) is common in hospitalized patients and has a poor prognosis, the severity of AKI being linked to progression to chronic kidney disease. This stresses the need to search for protective mechanisms during the acute phase. We investigated kidney repair after hypoxic injury using a rat model of renal artery branch ligation, which led to an oxygen gradient vertical to the corticomedullary axis. Three distinct zones were observed: tubular necrosis, infarction border zone and preserved normal tissue. EphA2 is a receptor tyrosine kinase with pivotal roles in cell architecture, migration and survival, upon juxtacrine contact with its membrane-bound ligand EphrinA1. Following hypoxia, EphA2 was up-regulated in cortical and medullary tubular cells, while EphrinA1 was up-regulated in interstitial cells adjacent to peritubular capillaries. Moreover, erythropoietin (EPO) messenger RNA (mRNA) was strongly expressed in the border zone of infarcted kidney within the first 6 h. To gain more insight into the biological impact of EphA2 and EphrinA1 up-regulation, we activated the signalling pathways in vitro using recombinant EphrinA1/Fc or EphA2/Fc proteins. Stimulation of EphA2 forward signalling in the proximal tubular cell line HK2 increased cell attachment and laminin secretion at the baso-lateral side. Conversely, activation of reverse signalling through EphrinA1 expressed by Hep3B cells promoted EPO production at both the transcriptional and protein level. Strikingly, in co-culture experiments, juxtacrine contact between EphA2 expressing MDCK and EphrinA1 expressing Hep3B was sufficient to induce a significant up-regulation of EPO mRNA production in the latter cells, even in the absence of hypoxic conditions. The synergistic effects of EphA2 and hypoxia led to a 15-20-fold increase of EPO expression. Collectively, our results suggest an important role of EphA2/EphrinA1 signalling in kidney repair after hypoxic injury through stimulation of (i) tubular cell attachment, (ii) secretion of basal membrane proteins and (iii) EPO production. These findings could thus pave the way to new therapeutic approaches.


Asunto(s)
Lesión Renal Aguda/metabolismo , Eritropoyetina/metabolismo , Hipoxia/metabolismo , Laminina/metabolismo , Receptor EphA2/metabolismo , Transducción de Señal/fisiología , Animales , Línea Celular Tumoral , Células Cultivadas , Técnicas de Cocultivo/métodos , Efrina-A1/metabolismo , Humanos , Masculino , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba/fisiología
15.
Mol Cancer ; 15: 26, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27001172

RESUMEN

BACKGROUND: Hypoxia-inducible factors (HIFs) are well-established mediators of tumor growth, the epithelial to mesenchymal transition (EMT) and metastasis. In several types of solid tumors, including breast cancers, the HIFs play a critical role in maintaining cancer stem cell (CSC) activity. Thus, we hypothesized that HIFs may also regulate transcription of markers of breast CSC activity. One approach to enrich for breast cells with stem-like phenotypes is FACS sorting, in which sub-populations of live cells are gated based on the expression of cell surface antigens, including various integrin subunits. Integrin alpha 6 (ITGA6; CD49f) is routinely used in combination with other integrin subunits to enrich for breast stem cells by FACS. Integrins not only mediate interactions with the extracellular matrix (ECM), but also drive intracellular signaling events that communicate from the tumor microenvironment to inside of the tumor cell to alter phenotypes including migration and invasion. METHODS: We used two models of metastatic breast cancer (MBC), polyoma middle T (MMTV-PyMT) and MDA-MB-231 cells, to compare the expression of ITGA6 in wild type and knockout (KO) or knockdown cells. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays verified that ITGA6 is a direct HIF transcriptional target. We also used FACS sorting to enrich for CD49f (+) cells to compare tumorsphere formation, tumor initiating cell activity, invasion and HIF activity relative to CD49f(neg or low) cells. Knockdown of ITGA6 significantly reduced invasion, whereas re-expression of ITGA6 in the context of HIF knockdown partially rescued invasion. A search of public databases also revealed that ITGA6 expression is an independent prognostic factor of survival in breast cancer patients. RESULTS: We report that ITGA6 is a HIF-dependent target gene and that high ITGA6 expression enhances invasion and tumor-initiating cell activities in models of MBC. Moreover, cells that express high levels of ITGA6 are enriched for HIF-1α expression and the expression of HIF-dependent target genes. CONCLUSIONS: Our data suggest that HIF-dependent regulation of ITGA6 is one mechanism by which sorting for CD49f (+) cells enhances CSC and metastatic phenotypes in breast cancers. Our results are particularly relevant to basal-like breast cancers which express higher levels of the HIFα subunits, core HIF-dependent target genes and ITGA6 relative to other molecular subtypes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Integrina alfa6/genética , Modelos Biológicos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Línea Celular Tumoral , Supervivencia sin Enfermedad , Regulación hacia Abajo/genética , Femenino , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Integrina alfa6/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Transcripción Genética
16.
Biochim Biophys Acta ; 1834(9): 1789-800, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23541529

RESUMEN

A bioinformatics survey of putative globins in over 2200 bacterial and some 140 archaeal genomes revealed that over half the bacterial and approximately one fifth of archaeal genomes contain genes encoding globins that were classified into three families: the M (myoglobin-like), and S (sensor) families all exhibiting the canonical 3/3 myoglobin fold, and the T family (truncated myoglobin fold). Although the M family comprises 2 subfamilies, flavohemoglobins (FHbs) and single domain globins (SDgbs), the S family encompasses chimeric globin-coupled sensors (GCSs), single domain Pgbs (protoglobins) and SSDgbs (sensor single domain globins). The T family comprises three classes TrHb1s, TrHb2s and TrHb3s, characterized by the abbreviated 2/2 myoglobin fold. The Archaea contain only Pgbs, GCSs and TrHb1s. The smallest globin-bearing genomes are the streamlined genomes (~1.3Mbp) of the SAR11 clade of alphaproteobacteria and the slightly larger (ca. 1.7Mbp) genomes of Aquificae. The smallest genome with members of all three families is the 2.3Mbp genome of the extremophile Methylacidiphilum infernorum (Verrumicrobia). Of the 147 possible combinations of the eight globin subfamilies, only 83 are observed. Although binary combinations are infrequent and ternary combinations are rare, the FHb+TrHb2 combination is the most commonly observed. Of the possible functions of bacterial globins we discuss the two principal ones - nitric oxide detoxification via the NO dioxygenase or denitrosylase activities and the sensing of oxygen concentration in the environmental niche. In only few cases has a physiological role been demonstrated in vivo. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.


Asunto(s)
Archaea/genética , Bacterias/genética , Evolución Molecular , Genoma Arqueal/genética , Genoma Bacteriano/genética , Globinas/genética , Filogenia
17.
Cells ; 13(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38786048

RESUMEN

Androglobin (ADGB) is a highly conserved and recently identified member of the globin superfamily. Although previous studies revealed a link to ciliogenesis and an involvement in murine spermatogenesis, its physiological function remains mostly unknown. Apart from FOXJ1-dependent regulation, the transcriptional landscape of the ADGB gene remains unexplored. We, therefore, aimed to obtain further insights into regulatory mechanisms governing ADGB expression. To this end, changes in ADGB promoter activity were examined using luciferase reporter gene assays in the presence of a set of more than 475 different exogenous transcription factors. MYBL2 and PITX2 resulted in the most pronounced increase in ADGB promoter-dependent luciferase activity. Subsequent truncation strategies of the ADGB promoter fragment narrowed down the potential MYBL2 and PITX2 binding sites within the proximal ADGB promoter. Furthermore, MYBL2 binding sites on the ADGB promoter were further validated via a guide RNA-mediated interference strategy using reporter assays. Chromatin immunoprecipitation (ChIP)-qPCR experiments illustrated enrichment of the endogenous ADGB promoter region upon MYBL2 and PITX2 overexpression. Consistently, ectopic MYBL2 expression induced endogenous ADGB mRNA levels. Collectively, our data indicate that ADGB is strongly regulated at the transcriptional level and might have functions beyond ciliogenesis.


Asunto(s)
Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Factores de Transcripción , Regiones Promotoras Genéticas/genética , Humanos , Sitios de Unión , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Animales , Proteína del Homeodomínio PITX2 , Globinas/genética , Globinas/metabolismo , Expresión Génica Ectópica , Ratones , Unión Proteica
18.
Mol Biol Evol ; 29(7): 1735-45, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22319164

RESUMEN

In the Metazoa, globin proteins display an underlying unity in tertiary structure that belies an extraordinary diversity in primary structures, biochemical properties, and physiological functions. Phylogenetic reconstructions can reveal which of these functions represent novel, lineage-specific innovations, and which represent ancestral functions that are shared with homologous globin proteins in other eukaryotes and even prokaryotes. To date, our understanding of globin diversity in deuterostomes has been hindered by a dearth of genomic sequence data from the Ambulacraria (echinoderms + hemichordates), the sister group of chordates, and the phylum Xenacoelomorpha, which includes xenoturbellids, acoelomorphs, and nemertodermatids. Here, we report the results of a phylogenetic and comparative genomic analysis of the globin gene repertoire of deuterostomes. We first characterized the globin genes of the acorn worm, Saccoglossus kowalevskii, a representative of the phylum Hemichordata. We then integrated genomic sequence data from the acorn worm into a comprehensive analysis of conserved synteny and phylogenetic relationships among globin genes from representatives of the eight lineages that comprise the superphylum Deuterostomia. The primary aims were 1) to unravel the evolutionary history of the globin gene superfamily in deuterostomes and 2) to use the estimated phylogeny to gain insights into the functional evolution of deuterostome globins. Results of our analyses indicate that the deuterostome common ancestor possessed a repertoire of at least four distinct globin paralogs and that different subsets of these ancestral genes have been retained in each of the descendant organismal lineages. In each major deuterostome group, a different subset of ancestral precursor genes underwent lineage-specific expansions of functional diversity through repeated rounds of gene duplication and divergence. By integrating results of the phylogenetic analysis with available functional data, we discovered that circulating oxygen-transport hemoglobins evolved independently in several deuterostome lineages and that intracellular nerve globins evolved independently in chordates and acoelomorph worms.


Asunto(s)
Evolución Molecular , Globinas/genética , Invertebrados/genética , Animales , Filogenia
19.
Mol Biol Evol ; 29(4): 1105-14, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22115833

RESUMEN

Comparative genomic studies have led to the recent identification of several novel globin types in the Metazoa. They have revealed a surprising evolutionary diversity of functions beyond the familiar O(2) supply roles of hemoglobin and myoglobin. Here we report the discovery of a hitherto unrecognized family of proteins with a unique modular architecture, possessing an N-terminal calpain-like domain, an internal, circular permuted globin domain, and an IQ calmodulin-binding motif. Putative orthologs are present in the genomes of many metazoan taxa, including vertebrates. The calpain-like region is homologous to the catalytic domain II of the large subunit of human calpain-7. The globin domain satisfies the criteria of a myoglobin-like fold but is rearranged and split into two parts. The recombinantly expressed human globin domain exhibits an absorption spectrum characteristic of hexacoordination of the heme iron atom. Molecular evolutionary analyses indicate that this chimeric globin family is phylogenetically ancient and originated in the common ancestor to animals and choanoflagellates. In humans and mice, the gene is predominantly expressed in testis tissue, and we propose the name "androglobin" (Adgb). Expression is associated with postmeiotic stages of spermatogenesis and is insensitive to experimental hypoxia. Evidence exists for increased gene expression in fertile compared with infertile males.


Asunto(s)
Proteínas de Unión a Calmodulina/biosíntesis , Globinas/biosíntesis , Globinas/genética , Testículo/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas de Unión a Calmodulina/química , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Calpaína/química , Calpaína/genética , Calpaína/metabolismo , Evolución Molecular , Globinas/química , Globinas/metabolismo , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alineación de Secuencia , Testículo/metabolismo
20.
IUBMB Life ; 65(5): 423-34, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23508993

RESUMEN

Globins constitute a superfamily of heme-binding proteins that is widely present in many species. There are 33 putative globins in the genome of Caenorhabditis elegans, where glb-13 is a homolog of neuroglobin (Ngb) based on sequence analysis and specific expression in neurons. Here we examined whether glb-13 as well as Ngb is also associated with resistance to reactive oxygen species (ROS) induced by paraquat. Our results showed that the mRNA level of glb-13 was significantly upregulated after paraquat exposure. Expression of a green fluorescent protein (GFP) reporter gene directed by the glb-13 promoter was increased by paraquat exposure. The mutant C. elegans strain glb-13(tm2825) was sensitive to paraquat-induced oxidative stress. Overexpression of human Ngb (hNgb) in C. elegans neuronal cells can rescue the paraquat sensitive phenotype of the mutant strain. glb-13 mutation or hNgb overexpression did not affect the expression of antioxidant enzymes such as superoxide dismutase (SOD). To examine the ROS-scavenging capabilities of hNgb and glb-13, we further examined the level of ROS in glb-13 mutant and hNgb transgenic (hNgb-Tg) worms. There was no statistical difference in ROS levels in the untreated controls; however in paraquat-treated worms, the ROS level was statistically repressed in the hNgb-Tg relative to enhanced green fluorescent protein (EGFP)-Tg worms or wildtype animals. Additionally, the ROS level of glb-13 mutant was statistically higher than the wildtype animals. Furthermore, hNgb overexpression diminished the ROS level of glb-13 mutant. In conclusion, hNgb can rescue the ROS sensitive phenotype of the glb-13 mutant strain. The protein GLB-13 seems to have an hNgb-like function, suggesting the importance of the globin protein family in maintaining the homeostasis of ROS signals. Our data provided evidence for the first time that glb-13 is associated with the resistance against oxidative stress-induced toxicity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Globinas/metabolismo , Estrés Oxidativo/genética , Animales , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/genética , Enzimas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Globinas/genética , Herbicidas/farmacología , Mutación , Paraquat/farmacología , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA