Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Manage ; 62(6): 1007-1024, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30171327

RESUMEN

The persistence of freshwater degradation has necessitated the growth of an expansive stream and wetland restoration industry, yet restoration prioritization at broad spatial extents is still limited and ad-hoc restoration prevails. The River Basin Restoration Prioritization tool has been developed to incorporate vetted, distributed data models into a catchment scale restoration prioritization framework. Catchment baseline condition and potential improvement with restoration activity is calculated for all National Hydrography Dataset stream reaches and catchments in North Carolina and compared to other catchments within the river subbasin to assess where restoration efforts may best be focused. Hydrologic, water quality, and aquatic habitat quality conditions are assessed with peak flood flow, nitrogen and phosphorus loading, and aquatic species distribution models. The modular nature of the tool leaves ample opportunity for future incorporation of novel and improved datasets to better represent the holistic health of a watershed, and the nature of the datasets used herein allow this framework to be applied at much broader scales than North Carolina.


Asunto(s)
Macrodatos , Conservación de los Recursos Hídricos , Ríos/química , Ecosistema , Monitoreo del Ambiente , Hidrología , Nitrógeno/análisis , North Carolina , Fósforo/análisis , Calidad del Agua , Humedales
2.
J Am Water Resour Assoc ; 47(5): 991-1010, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22457579

RESUMEN

We applied the SPARROW model to estimate phosphorus transport from catchments to stream reaches and subsequent delivery to major receiving water bodies in the Southeastern United States (U.S.). We show that six source variables and five land-to-water transport variables are significant (p<0.05) in explaining 67% of the variability in long-term log-transformed mean annual phosphorus yields. Three land-to-water variables are a subset of landscape characteristics that have been used as transport factors in phosphorus indices developed by state agencies and are identified through experimental research as influencing land-to-water phosphorus transport at field and plot scales. Two land-to-water variables - soil organic matter and soil pH - are associated with phosphorus sorption, a significant finding given that most state-developed phosphorus indices do not explicitly contain variables for sorption processes. Our findings for Southeastern U.S. streams emphasize the importance of accounting for phosphorus present in the soil profile to predict attainable instream water quality. Regional estimates of phosphorus associated with soil-parent rock were highly significant in explaining instream phosphorus yield variability. Model predictions associate 31% of phosphorus delivered to receiving water bodies to geology and the highest total phosphorus yields in the Southeast were catchments with already high background levels that have been impacted by human activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA