Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Cell Biol ; 139(7): 1821-33, 1997 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-9412475

RESUMEN

Yeast verprolin, encoded by VRP1, is implicated in cell growth, cytoskeletal organization, endocytosis and mitochondrial protein distribution and function. We show that verprolin is also required for bipolar bud-site selection. Previously we reported that additional actin suppresses the temperature-dependent growth defect caused by a mutation in VRP1. Here we show that additional actin suppresses all known defects caused by vrp1-1 and conclude that the defects relate to an abnormal cytoskeleton. Using the two-hybrid system, we show that verprolin binds actin. An actin-binding domain maps to the LKKAET hexapeptide located in the first 70 amino acids. A similar hexapeptide in other acting-binding proteins was previously shown to be necessary for actin-binding activity. The entire 70- amino acid motif is conserved in novel higher eukaryotic proteins that we predict to be actin-binding, and also in the actin-binding proteins, WASP and N-WASP. Verprolin-GFP in live cells has a cell cycle-dependent distribution similar to the actin cortical cytoskeleton. In fixed cells hemagglutinin-tagged Vrp1p often co-localizes with actin in cortical patches. However, disassembly of the actin cytoskeleton using Latrunculin-A does not alter verprolin's location, indicating that verprolin establishes and maintains its location independent of the actin cytoskeleton. Verprolin is a new member of the actin-binding protein family that serves as a polarity development protein, perhaps by anchoring actin. We speculate that the effects of verprolin upon the actin cytoskeleton might influence mitochondrial protein sorting/function via mRNA distribution.


Asunto(s)
Actinas/metabolismo , Citoesqueleto/fisiología , Proteínas Fúngicas/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Alelos , Secuencia de Aminoácidos , Sitios de Unión , Polaridad Celular , Citoesqueleto/ultraestructura , Endocitosis , Proteínas Fúngicas/genética , Proteínas de Microfilamentos/genética , Mitocondrias , Datos de Secuencia Molecular , Morfogénesis , Hibridación de Ácido Nucleico , Fenotipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Homología de Secuencia de Aminoácido
2.
J Cell Biol ; 109(4 Pt 1): 1411-9, 1989 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-2677019

RESUMEN

The TRM1 gene of Saccharomyces cerevisiae encodes a tRNA modification enzyme, N2,N2-dimethylguanosine-specific tRNA methyltransferase, which modifies both mitochondrial and cytoplasmic tRNAs. The enzyme is targeted to mitochondria for the modification of mitochondrial tRNAs. Cellular fractionation and indirect immunofluorescence studies reported here demonstrate that this enzyme is also localized to the nucleus. Further, immunofluorescence experiments using strains that overproduce the enzyme show a staining at the periphery of the nucleus suggesting that the enzyme is found in a subnuclear destination near or at the nuclear membrane. There is no obvious cytoplasmic staining in these overproducing strains. Fusion protein technology was used to begin to localize sequences involved in the nuclear targeting of this enzyme. Indirect immunofluorescence studies indicate that sequences between the first 70 and 213 NH2-terminal amino acids of the methyltransferase are sufficient to target Escherichia coli beta-galactosidase to nuclei.


Asunto(s)
Núcleo Celular/enzimología , Mitocondrias/enzimología , Saccharomyces cerevisiae/enzimología , ARNt Metiltransferasas/análisis , Secuencia de Aminoácidos , Western Blotting , Expresión Génica , Genes , Genes Fúngicos , Datos de Secuencia Molecular , Plásmidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Homología de Secuencia de Ácido Nucleico , ARNt Metiltransferasas/genética
3.
J Cell Biol ; 111(2): 309-21, 1990 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-2116418

RESUMEN

The yeast RNA1 gene is required for RNA processing and nuclear transport of RNA. The rna1-1 mutation of this locus causes defects in pre-tRNA splicing, processing of the primary pre-rRNA transcript, production of mRNA and export of RNA from the nucleus to the cytosol. To understand how this gene product can pleiotropically affect these processes, we sought to determine the intracellular location of the RNA1 protein. As determined by indirect immunofluorescence localization and organelle fractionation, the RNA1 antigen is found exclusively or primarily in the cytoplasm. Only a tiny fraction of the endogenous protein could be localized to and functional in the nucleus. Furthermore, the RNA1 antigen does not localize differently under stress conditions. These findings suggest that the RNA1 protein is not directly involved in RNA processing but may modify nuclear proteins or otherwise transmit a signal from the cytosol to the nucleus or play a role in maintaining the integrity of the nucleus.


Asunto(s)
Núcleo Celular/ultraestructura , Proteínas Fúngicas/genética , Proteínas Activadoras de GTPasa , Genes Fúngicos , ARN de Hongos/genética , Saccharomyces cerevisiae/genética , Citosol/ultraestructura , Técnica del Anticuerpo Fluorescente , Proteínas Fúngicas/análisis , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Proteínas Recombinantes de Fusión/análisis , Mapeo Restrictivo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae , beta-Galactosidasa/análisis , beta-Galactosidasa/genética
4.
J Cell Biol ; 130(5): 1017-26, 1995 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-7657689

RESUMEN

The Saccharomyces cerevisiae gene, RNA1, encodes a protein with extensive homology to the mammalian Ran/TC4 GTPase activating protein. Using indirect immunofluorescence microscopy, we have demonstrated that rna1-1 mutant cells are defective in nuclear import of several proteins. The same result is obtained when nuclear import is examined in living cells using a nuclear protein fused to the naturally green fluorescent protein. These findings suggest a role for the Rna1p in trafficking of proteins across the nuclear membrane. To investigate this role more directly, an in vitro import assay that monitors the import of a fluorescently labeled substrate into the nuclei of semi-intact yeast cells was used. Import to the nucleus requires the addition of exogenous cytosol. Results indicate that, in contrast to wild-type cytosols, extracts made from rna1-1 mutant cells are unable to support import of the fluorescently labeled substrate into competent nuclei. Immunoblotting demonstrates that these mutant-derived extracts are depleted of Rna1p. However, when purified Rna1p is added back to these extracts the import activity is restored in a dose-dependent manner. These results demonstrate that Rna1p plays a direct role in the import of proteins into the nucleus.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Transporte Biológico/fisiología , Citosol/metabolismo , Colorantes Fluorescentes , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacología , Proteínas Activadoras de GTPasa , Genes Fúngicos , Mutación/fisiología , Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Especificidad por Sustrato , Temperatura , Proteína de Unión al GTP ran
5.
Curr Biol ; 9(21): R803-6, 1999 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-10556084

RESUMEN

Cells can respond to extracellular signals by redistributing transcription regulators between the nucleus and cytosol. Recent findings in budding yeast indicate that the nuclear transport receptor Msn5p mediates the nuclear export of several transcription regulators after their phosphorylation in the nucleus.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transporte Biológico , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Fosforilación , Proteínas Represoras/metabolismo , Transactivadores/metabolismo
6.
Mol Cell Biol ; 8(12): 5140-9, 1988 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-3072476

RESUMEN

To identify genes involved in pre-tRNA processing, we searched for yeast DNA sequences that specifically enhanced the expression of the SUP4(G37) gene. The SUP4(G37) gene possesses a point mutation at position 37 of suppressor tRNA(Tyr). This lesion results in a reduced rate of pre-tRNA splicing and a decreased level of nonsense suppression. A SUP4(G37) strain was transformed with a yeast genomic library, and the transformants were screened for increased suppressor activity. One transformant contained a plasmid that encoded an unessential gene, STP1, that in multiple copies enhanced the suppression of SUP4(G37) and caused increased production of mature SUP4(G37) product. Disruption of the genomic copy of STP1 resulted in a reduced efficiency of SUP4-mediated suppression and the accumulation of pre-tRNAs. Not all intron-containing pre-tRNAs were affected by the stp1-disruption. At least five of the nine families of pre-tRNAs were affected. Two other species, pre-tRNA(Ile) and pre-tRNA(3Leu), were not. We propose that STP1 encodes a tRNA species-specific product that functions as a helper for pre-tRNA splicing. The STP1 product may interact with pre-tRNAs to generate a structure that is efficiently recognized by splicing machinery.


Asunto(s)
Genes Fúngicos , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética , Mapeo Cromosómico , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Genotipo , Plásmidos , Mapeo Restrictivo
7.
Mol Cell Biol ; 5(5): 907-15, 1985 May.
Artículo en Inglés | MEDLINE | ID: mdl-3889591

RESUMEN

The RNA1 gene product is believed to be involved in RNA metabolism due to the phenotype of a single conditionally lethal, temperature-sensitive allele, rna1-1. We cloned the RNA1 gene and determined that it produces a 1,400-nucleotide polyadenylated transcript. On a multicopy plasmid, the mutant rna1-1 allele partially complements the rna1-1 temperature-sensitive growth defect. This suggests that the temperature-sensitive nature of the rna1-1 allele results from the synthesis of a product with lowered activity or stability at elevated temperatures or from a decrease in synthesis of the rna1-1 product at the restrictive temperature. A chromosomal disruption of RNA1 behaves as a recessive lethal mutation. Haploids bearing the disruption were isolated by sporulating a diploid heterozygous for the disrupted allele and the rna1-1 allele and possessing an episomal copy of the RNA1 gene. Analysis of the rescued haploids bearing the chromosomal disruption indicated that the recessive lethal phenotype of the RNA1 disruption is not merely due to a block in spore germination. Unexpectedly, diploids heterozygous for the disruption and the rna1-1 alleles become aneuploid for chromosome XIII at a frequency of 2 to 5%. It appears that the disrupted RNA1 allele on a multicopy plasmid also promotes aneuploidy for chromosome XIII. Promotion of aneuploidy seems to be a phenotype of this particular allele of RNA1.


Asunto(s)
Genes Fúngicos , Saccharomyces cerevisiae/genética , Alelos , Aneuploidia , Clonación Molecular , ADN de Hongos/genética , Genes , Genes Letales , Genes Recesivos , Ingeniería Genética , Mutación , Fenotipo , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Temperatura , Transcripción Genética
8.
Mol Cell Biol ; 9(7): 2989-99, 1989 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-2674676

RESUMEN

The yeast gene RNA1 has been defined by the thermosensitive rna1-1 lesion. This lesion interferes with the processing and production of all major classes of RNA. Each class of RNA is affected at a distinct and presumably unrelated step. Furthermore, RNA does not appear to exit the nucleus. To investigate how the RNA1 gene product can pleiotropically affect disparate processes, we undertook a structural analysis of wild-type and mutant RNA1 genes. The wild-type gene was found to contain a 407-amino-acid open reading frame that encodes a hydrophilic protein. No clue regarding the function of the RNA1 protein was obtained by searching banks for similarity to other known gene products. Surprisingly, the rna1-1 lesion was found to code for two amino acid differences from wild type. We found that neither single-amino-acid change alone resulted in temperature sensitivity. The carboxy-terminal region of the RNA1 open reading frame contains a highly acidic domain extending from amino acids 334 to 400. We generated genomic deletions that removed C-terminal regions of this protein. Deletion of amino acids 397 to 407 did not appear to affect cell growth. Removal of amino acids 359 to 397, a region containing 24 acidic residues, caused temperature-sensitive growth. This allele, rna1-delta 359-397, defines a second conditional lesion of the RNA1 locus. We found that strains possessing the rna1-delta 359-397 allele did not show thermosensitive defects in pre-rRNA or pre-tRNA processing. Removal of amino acids 330 to 407 resulted in loss of viability.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Activadoras de GTPasa , Genes Fúngicos , Mutación , ARN de Hongos/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Southern Blotting , Clonación Molecular , Escherichia coli/genética , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Fenotipo , Plásmidos , Procesamiento Postranscripcional del ARN , ARN de Hongos/metabolismo , Mapeo Restrictivo , Proteínas de Saccharomyces cerevisiae , Temperatura
9.
Mol Cell Biol ; 9(4): 1611-20, 1989 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-2657400

RESUMEN

Fusions between the TRM1 gene of Saccharomyces cerevisiae and COXIV or DHFR were made to examine the mitochondrial targeting signals of N2,N2-dimethylguanosine-specific tRNA methyltransferase [tRNA (m2(2)G)dimethyltransferase]. This enzyme is responsible for the modification of both mitochondrial and cytoplasmic tRNAs. We have previously shown that two forms of the enzyme are translated from two in-frame ATGs in this gene, that they differ by a 16-amino-acid amino-terminal extension, and that both the long and short forms are imported into mitochondria. Results of studies to test the ability of various TRM1 sequences to serve as surrogate mitochondrial targeting signals for passenger protein import in vitro and in vivo showed that the most efficient signal derived from tRNA (m2(2)G)dimethyltransferase included a combination of sequences from both the amino-terminal extension and the amino terminus of the shorter form of the enzyme. The amino-terminal extension itself did not serve as an independent mitochondrial targeting signal, whereas the amino terminus of the shorter form of tRNA (m2(2)G)dimethyltransferase did function in this regard, albeit inefficiently. We analyzed the first 48 amino acids of tRNA (m2(2)G)dimethyltransferase for elements of primary and secondary structure shared with other known mitochondrial targeting signals. The results lead us to propose that the most efficient signal spans the area around the second ATG of TRM1 and is consistent with the idea that there is a mitochondrial targeting signal present at the amino terminus of the shorter form of the enzyme and that the amino-terminal extension augments this signal by extending it to form a larger, more efficient mitochondrial targeting signal.


Asunto(s)
Saccharomyces cerevisiae/enzimología , ARNt Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Transporte Biológico Activo , Clonación Molecular , Codón/genética , ADN de Hongos/genética , Mitocondrias/enzimología , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Transducción de Señal , ARNt Metiltransferasas/genética
10.
Mol Cell Biol ; 11(5): 2382-90, 1991 May.
Artículo en Inglés | MEDLINE | ID: mdl-1850093

RESUMEN

MOD5 is one of several genes that code for enzymes found in mitochondria and another cellular compartment. Like other such genes, it contains two in-frame ATGs that could be used to produce two proteins, differing from each other by an amino-terminal extension. Certain other genes produce heterogeneous mRNAs with some 5' ends falling upstream of the longest open reading frame and some 5' ends falling between the first and second ATGs. In these cases, selection of transcription start sites appears to play a significant role in translation start site selection. MOD5, in contrast, produces mRNAs with 5' ends that all fall upstream of both ATGs. To determine how MOD5 encodes isozymes that are located in different cellular compartments and to determine whether they differ in structure, we constructed MOD5 and MOD5-COXIV fusions with mutations of the first, second, or both ATGs. The effect of these alterations on protein production, tRNA modification, and cellular location was assessed. Both the first and second ATGs are used to produce MOD5 protein in vivo, but only the long form of the protein is imported into mitochondria. Thus, the first 11 amino acids present on the amino-terminal extended protein are necessary for mitochondrial import. Surprisingly, this extension does not promote complete import of the long form of the protein, but rather a functional pool of the extended protein remains in the cytoplasm. The amino-terminal extension is also unusual because it is probably not proteolytically removed upon import and therefore does not constitute part of a mitochondrial presequence.


Asunto(s)
Transferasas Alquil y Aril , Escherichia coli/genética , Genes Fúngicos , Isoenzimas/genética , Mitocondrias/enzimología , Iniciación de la Cadena Peptídica Traduccional , Proteínas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Anticuerpos , Secuencia de Bases , Codón/genética , Complejo IV de Transporte de Electrones/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Péptidos/síntesis química , Plásmidos , ARN Mensajero/genética , Proteínas Recombinantes de Fusión/metabolismo , Mapeo Restrictivo , Saccharomyces cerevisiae/enzimología , Transcripción Genética
11.
Mol Cell Biol ; 12(12): 5652-8, 1992 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-1448094

RESUMEN

The TRM1 gene of Saccharomyces cerevisiae codes for a tRNA modification enzyme, N2,N2-dimethylguanosine-specific tRNA methyltransferase (m2(2)Gtase), shared by mitochondria and nuclei. Immunofluorescent staining at the nuclear periphery demonstrates that m2(2)Gtase localizes at or near the nuclear membrane. In determining sequences necessary for targeting the enzyme to nuclei and mitochondria, we found that information required to deliver the enzyme to the nucleus is not sufficient for its correct subnuclear localization. We also determined that mislocalizing the enzyme from the nucleus to the cytoplasm does not destroy its biological function. This change in location was caused by altering a sequence similar to other known nuclear targeting signals (KKSKKKRC), suggesting that shared enzymes are likely to use the same import pathway as proteins that localize only to the nucleus. As with other well-characterized mitochondrial proteins, the mitochondrial import of the shared methyltransferase depends on amino-terminal amino acids, and removal of the first 48 amino acids prevents its import into mitochondria. While this truncated protein is still imported into nuclei, the immunofluorescent staining is uniform throughout rather than at the nuclear periphery, a staining pattern identical to that described for a fusion protein consisting of the first 213 amino acids of m2(2)Gtase in frame with beta-galactosidase. As both of these proteins together contain the entire m2(2)Gtase coding region, the information necessary for association with the nuclear periphery must be more complex than the short linear sequence necessary for nuclear localization.


Asunto(s)
Núcleo Celular/enzimología , Mitocondrias/enzimología , Saccharomyces cerevisiae/genética , ARNt Metiltransferasas/genética , Secuencia de Aminoácidos , Secuencia de Bases , ADN de Hongos , Técnica del Anticuerpo Fluorescente , Genes Fúngicos , Datos de Secuencia Molecular , Saccharomyces cerevisiae/enzimología , ARNt Metiltransferasas/metabolismo
12.
Mol Cell Biol ; 7(1): 185-91, 1987 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-3031457

RESUMEN

A mutation in the yeast nuclear gene MOD5 drastically reduces the biosynthesis of the modified base isopentenyladenosine in tRNAs located in different cellular compartments: the mitochondria and the nucleus or cytoplasm. Several lines of evidence strongly suggest that MOD5 is the structural gene encoding the tRNA-modifying enzyme delta 2-isopentenyl pyrophosphate:tRNA isopentenyl transferase. DNA sequence analysis of MOD5 reveals an open reading frame of 428 amino acids. A set of mRNAs heterogeneous at both the 5' and 3' termini are transcribed from this gene. Although all of these transcripts initiate upstream of the first AUG codon of the open reading frame, a subset has an extremely short (greater than or equal to 1 base) 5' leader. Furthermore, in positions important for efficient initiation of translation and generally occupied by purines, this first AUG codon is flanked by a U (position -3) and a C (position +4). It is possible that two proteins, one with an amino-terminal extension of basic charge, could be generated from the MOD5 gene via differential translational starts.


Asunto(s)
Transferasas Alquil y Aril , Genes Fúngicos , Genes , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Transcripción Genética , Transferasas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Núcleo Celular/metabolismo , Enzimas de Restricción del ADN , Mutación , ARN Mensajero/genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae
13.
Mol Cell Biol ; 7(3): 1208-16, 1987 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-3031485

RESUMEN

Saccharomyces cerevisiae strains carrying los1-1 mutations are defective in tRNA processing; at 37 degrees C, such strains accumulate tRNA precursors which have mature 5' and 3' ends but contain intervening sequences. Strains bearing los1-1 and an intron-containing ochre-suppressing tRNA gene, SUP4(0), also fail to suppress the ochre mutations ade2-1(0) and can1-100(0) at 34 degrees C. To understand the role of the LOS1 product in tRNA splicing, we initiated a molecular study of the LOS1 gene. Two plasmids, YEpLOS1 and YCpLOS1, that complement the los1-1 phenotype were isolated from the YEp24 and YCp50 libraries, respectively. YEpLOS1 and YCpLOS1 had overlapping restriction maps, indicating that the DNA in the overlapping segment could complement los1-1 when present in multiple or single copy. Integration of plasmid DNA at the LOS1 locus confirmed that these clones contained authentic LOS1 sequences. Southern analyses showed that LOS1 is a single copy gene. The locations of the LOS1 gene within YEpLOS1 and YCpLOS1 were determined by deletion and gamma-delta mapping. Two genomic disruptions of the LOS1 gene were constructed, i.e., an insertion of a 1.2-kilobase fragment carrying the yeast URA3 gene, los1::URA3, and a 2.4-kilobase deletion from the LOS1 gene, los1-delta V. Disruption or deletion of most of the LOS1 gene was not lethal; cells carrying the disrupted los1 alleles were viable and had phenotypes similar to those of cells carrying the los1-1 allele. Thus, it appears that the los1 gene product expedites tRNA splicing at elevated temperatures but is not essential for this process.


Asunto(s)
Genes Fúngicos , Empalme del ARN , Saccharomyces cerevisiae/genética , Deleción Cromosómica , Mapeo Cromosómico , Clonación Molecular , Elementos Transponibles de ADN , Prueba de Complementación Genética , Mutación , Plásmidos , ARN de Hongos/genética , ARN de Transferencia/genética , Supresión Genética , Temperatura
14.
Mol Cell Biol ; 12(6): 2633-43, 1992 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-1588961

RESUMEN

STP1 is an unessential yeast gene involved in the removal of intervening sequences from some, but not all, families of intervening sequence-containing pre-tRNAs. Previously, we proposed that STP1 might encode a product that generates pre-tRNA conformations efficiently recognized by tRNA-splicing endonuclease. To test the predictions of this model, we have undertaken a molecular analysis of the STP1 gene and its products. The STP1 locus is located on chromosome IV close to at least two other genes involved in RNA splicing: PRP3 and SPP41. The STP1 open reading frame (ORF) could encode a peptide of 64,827 Da; however, inspection of putative transcriptional and translational regulatory signals and mapping of the 5' ends of mRNA provide evidence that translation of the STP1 ORF usually initiates at a second AUG to generate a protein of 58,081 Da. The STP1 ORF contains three putative zinc fingers. The first of these closely resembles both the DNA transcription factor consensus and the Xenopus laevis p43 RNA-binding protein consensus. The third motif more closely resembles the fingers found in spliceosomal proteins. Employing antisera to the endogenous STP1 protein and to STP1-LacZ fusion proteins, we show that the STP1 protein is localized to nuclei. The presence of zinc finger motifs and the nuclear location of the STP1 protein support the model that this gene product is involved directly in pre-tRNA splicing.


Asunto(s)
Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas Nucleares/genética , Proteínas Nucleares/aislamiento & purificación , Empalme del ARN , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Factores de Transcripción , Dedos de Zinc , Secuencia de Aminoácidos , Secuencia de Bases , Compartimento Celular , Clonación Molecular , Secuencia de Consenso , ADN de Hongos/genética , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Biosíntesis de Proteínas , Mapeo Restrictivo , Alineación de Secuencia
15.
Mol Cell Biol ; 15(12): 6884-94, 1995 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8524255

RESUMEN

The Saccharomyces cerevisiae MOD5 gene encodes proteins that function in three subcellular locations: mitochondria, the cytoplasm, and nuclei (M. Boguta, L.A. Hunter, W.-C. Shen, E. C. Gillman, N. C. Martin, and A. K. Hopper, Mol. Cell. Biol. 14:2298-2306, 1994; E. C. Gillman, L. B. Slusher, N. C. Martin, and A. K. Hopper, Mol. Cell. Biol. 11:2382-2390, 1991). A mutant allele of MOD5 encoding a protein (Mod5p-I,KR6) located predominantly in mitochondria was constructed. Mutants defective in delivering Mod5p-I,KR6 to mitochondria were sought by selecting cells with increased cytosolic activity of this protein. Twenty-five mutants defining four complementation groups, mdp1, mdp2, mdp3, and mdp4, were found. They are unable to respire at 34 degrees C or to grow on glucose medium at 38 degrees C. Cell fractionation studies showed that mdp1, mdp2, and mdp3 mutants have an altered mitochondrial-cytoplasmic distribution of Mod5p. mdp2 can be suppressed by ACT1, the actin-encoding gene. The actin cytoskeleton organization is also aberrant in mdp2 cells. MDP2 is the same as VRP1 (S. F. H. Donnelly, M. J. Picklington, D. Pallotta, and E. Orr, Mol. Microbiol. 10:585-596, 1993). MDP3 is identical to PAN1, which encodes a protein that interacts with mRNA 3' ends and affects initiation of protein synthesis (A. B. Sachs and J. A. Deardoff, Cell 70:961-973, 1992). These results implicate the actin cytoskeleton and mRNA 3' ends and/or protein synthesis as being as important for protein distribution in S. cerevisiae as they are for distribution of cytosolic proteins in higher eukaryotes. This provides the potential to apply genetic and molecular approaches to study gene products and mechanisms involved in this type of protein distribution. The selection strategy also offers a new approach for identifying gene products involved in the distribution of proteins to their subscellular destinations.


Asunto(s)
Actinas/metabolismo , Transferasas Alquil y Aril , Citoesqueleto/metabolismo , Genes Fúngicos , Mitocondrias/metabolismo , Proteínas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Citoplasma/metabolismo , Enzimas/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Genes Supresores , Prueba de Complementación Genética , Genotipo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oligodesoxirribonucleótidos , Biosíntesis de Proteínas , Proteínas/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética
16.
Mol Cell Biol ; 14(4): 2298-306, 1994 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-8139535

RESUMEN

MOD5, a gene responsible for the modification of A37 to isopentenyl A37 of both cytosolic and mitochondrial tRNAs, encodes two isozymes. Initiation of translation at the first AUG of the MOD5 open reading frame generates delta 2-isopentenyl pyrophosphate:tRNA isopentanyl transferase I (IPPT-I), which is located predominantly, but not exclusively, in the mitochondria. Initiation of translation at a second AUG generates IPPT-II, which modifies cytoplasmic tRNA. IPPT-II is unable to target to mitochondria. The N-terminal sequence present in IPPT-I and absent in IPPT-II is therefore necessary for mitochondrial targeting. In these studies, we fused MOD5 sequences encoding N-terminal regions to genes encoding passenger proteins, pseudomature COXIV and dihydrofolate reductase, and studied the ability of these chimeric proteins to be imported into mitochondria both in vivo and in vitro. We found that the sequences necessary for mitochondrial import, amino acids 1 to 11, are not sufficient for efficient mitochondrial targeting and that at least some of the amino acids shared by IPPT-I and IPPT-II comprise part of the mitochondrial targeting information. We used indirect immunofluorescence and cell fractionation to locate the MOD5 isozymes in yeast. IPPT-I was found in two subcellular compartments: mitochondria and the cytosol. We also found that IPPT-II had two subcellular locations: nuclei and the cytosol. The nuclear location of this protein is surprising because the A37-->isopentenyl A37 modification had been predicted to occur in the cytoplasm. MOD5 is one of the first genes reported to encode isozymes found in three subcellular compartments.


Asunto(s)
Transferasas Alquil y Aril , Núcleo Celular/enzimología , Genes Fúngicos , Mitocondrias/enzimología , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Transferasas/biosíntesis , Secuencia de Aminoácidos , Secuencia de Bases , Citosol/enzimología , Isoenzimas/análisis , Isoenzimas/biosíntesis , Isoenzimas/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oligodesoxirribonucleótidos , Sistemas de Lectura Abierta , Plásmidos , Proteínas/análisis , Proteínas/genética , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/biosíntesis , Saccharomyces cerevisiae/genética , Transcripción Genética , Transferasas/análisis
17.
Mol Cell Biol ; 7(1): 177-84, 1987 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-3031456

RESUMEN

The mod5-1 mutation is a nuclear mutation in Saccharomyces cerevisiae that reduces the biosynthesis of N6-(delta 2-isopentenyl)adenosine in both cytoplasmic and mitochondrial tRNAs to less than 1.5% of wild-type levels. The tRNA modification enzyme, delta 2-isopentenyl pyrophosphate:tRNA isopentenyl transferase, cannot be detected in vitro with extracts from mod5-1 cells. A characterization of the MOD5 gene would help to determine how the same enzyme activity in different cellular compartments can be abolished by a single nuclear mutation. To that end we have cloned the MOD5 gene and shown that it restores delta 2-isopentenyl pyrophosphate:tRNA isopentenyl transferase activity and N6-(delta 2-isopentenyl)adenosine to tRNA in both the mitochondria and the nucleus/cytoplasm compartments of mod5-1 yeast cells. That MOD5 sequences are expressed in Escherichia coli and can complement an N6-(delta 2-isopentenyl)-2-methylthioadenosine-deficient E. coli mutant leads us to conclude that MOD5 is the structural gene for delta 2-isopentenyl pyrophosphate:tRNA isopentenyl transferase.


Asunto(s)
Transferasas Alquil y Aril , Genes Fúngicos , Genes , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética , Transferasas/genética , Citoplasma/metabolismo , Enzimas de Restricción del ADN , Prueba de Complementación Genética , Mitocondrias/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae
18.
Mol Cell Biol ; 20(7): 2505-16, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10713174

RESUMEN

Induction of GCN4 translation in amino acid-starved cells involves the inhibition of initiator tRNA(Met) binding to eukaryotic translation initiation factor 2 (eIF2) in response to eIF2 phosphorylation by protein kinase GCN2. It was shown previously that GCN4 translation could be induced independently of GCN2 by overexpressing a mutant tRNA(AAC)(Val) (tRNA(Val*)) or the RNA component of RNase MRP encoded by NME1. Here we show that overexpression of the tRNA pseudouridine 55 synthase encoded by PUS4 also leads to translational derepression of GCN4 (Gcd(-) phenotype) independently of eIF2 phosphorylation. Surprisingly, the Gcd(-) phenotype of high-copy-number PUS4 (hcPUS4) did not require PUS4 enzymatic activity, and several lines of evidence indicate that PUS4 overexpression did not diminish functional initiator tRNA(Met) levels. The presence of hcPUS4 or hcNME1 led to the accumulation of certain tRNA precursors, and their Gcd(-) phenotypes were reversed by overexpressing the RNA component of RNase P (RPR1), responsible for 5'-end processing of all tRNAs. Consistently, overexpression of a mutant pre-tRNA(Tyr) that cannot be processed by RNase P had a Gcd(-) phenotype. Interestingly, the Gcd(-) phenotype of hcPUS4 also was reversed by overexpressing LOS1, required for efficient nuclear export of tRNA, and los1Delta cells have a Gcd(-) phenotype. Overproduced PUS4 appears to impede 5'-end processing or export of certain tRNAs in the nucleus in a manner remedied by increased expression of RNase P or LOS1, respectively. The mutant tRNA(Val*) showed nuclear accumulation in otherwise wild-type cells, suggesting a defect in export to the cytoplasm. We propose that yeast contains a nuclear surveillance system that perceives defects in processing or export of tRNA and evokes a reduction in translation initiation at the step of initiator tRNA(Met) binding to the ribosome.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Unión al ADN , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas Fúngicas/genética , Proteínas Quinasas/genética , ARN de Transferencia de Metionina/genética , Proteínas de Saccharomyces cerevisiae , Oxidorreductasas de Alcohol , Aminohidrolasas , Secuencia de Bases , Transporte Biológico/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Hibridación Fluorescente in Situ , Transferasas Intramoleculares/genética , Datos de Secuencia Molecular , Mutación , Fosforilación , Biosíntesis de Proteínas , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Pirofosfatasas , Factores de Transcripción/genética , Levaduras/metabolismo
19.
Mol Cell Biol ; 12(6): 2673-80, 1992 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-1588964

RESUMEN

The yeast RNA1 gene encodes a cytosolic protein that affects pre-tRNA splicing, pre-rRNA processing, the production of mRNA, and the export of RNA from the nucleus to the cytosol. In an attempt to understand how the RNA1 protein affects such a diverse set of processes, we sought second-site suppressors of a mutation, rna1-1, of the RNA1 locus. Mutations in a single complementation group were obtained. These lesions proved to be in the same gene, SRN1, identified previously in a search for second-site suppressors of mutations that affect the removal of intervening sequences from pre-mRNAs. The SRN1 gene was mapped, cloned, and sequenced. DNA sequence analysis and the phenotype of disruption mutations showed that, surprisingly, SRN1 is identical to HEX2/REG1, a gene that negatively regulates glucose-repressible genes. Interestingly, SRN1 is not a negative regulator of RNA1 at the transcriptional, translational, or protein stability level. However, SRN1 does regulate the level of two newly discovered antigens, p43 and p70, one of which is not glucose repressible. These studies for the first time link RNA processing and carbon catabolite repression.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Genes Reguladores , Procesamiento Postranscripcional del ARN , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Análisis Mutacional de ADN , ADN de Hongos/genética , Genes Supresores , Glucosa/fisiología , Datos de Secuencia Molecular , ARN de Hongos/metabolismo , ARN Mensajero/genética , Proteínas Represoras/genética , Mapeo Restrictivo
20.
Mol Cell Biol ; 21(15): 5031-40, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11438659

RESUMEN

Although yeast RNA polymerase III (Pol III) and the auxiliary factors TFIIIC and TFIIIB are well characterized, the mechanisms of class III gene regulation are poorly understood. Previous studies identified MAF1, a gene that affects tRNA suppressor efficiency and interacts genetically with Pol III. We show here that tRNA levels are elevated in maf1 mutant cells. In keeping with the higher levels of tRNA observed in vivo, the in vitro rate of Pol III RNA synthesis is significantly increased in maf1 cell extracts. Mutations in the RPC160 gene encoding the largest subunit of Pol III which reduce tRNA levels were identified as suppressors of the maf1 growth defect. Interestingly, Maf1p is located in the nucleus and coimmunopurifies with epitope-tagged RNA Pol III. These results indicate that Maf1p acts as a negative effector of Pol III synthesis. This potential regulator of Pol III transcription is likely conserved since orthologs of Maf1p are present in other eukaryotes, including humans.


Asunto(s)
Proteínas Fúngicas/fisiología , ARN Polimerasa III/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Animales , Northern Blotting , Núcleo Celular/metabolismo , Epítopos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Immunoblotting , Microscopía Fluorescente , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Fenotipo , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , ARN/metabolismo , ARN Polimerasa III/química , ARN Ribosómico/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Temperatura , Factor de Transcripción TFIIIB , Factores de Transcripción/química , Factores de Transcripción TFIII/química , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA