Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
FASEB J ; 31(11): 4682-4696, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28705809

RESUMEN

sst5TMD4, a splice variant of the sst5 gene, is overexpressed and associated with aggressiveness in various endocrine-related tumors, but its presence, functional role, and mechanisms of actions in prostate cancer (PCa)-the most common cancer type in males-is completely unexplored. In this study, formalin-fixed, paraffin-embedded prostate pieces from patients with localized PCa, which included tumoral and nontumoral adjacent regions (n = 45), fresh biopsies from patients with high-risk PCa (n = 52), and healthy fresh prostates from cystoprostatectomies (n = 14) were examined. In addition, PCa cell lines and xenograft models were used to determine the presence and functional role of sst5TMD4. Results demonstrated that sst5TMD4 is overexpressed (mRNA/protein) in PCa samples, and this is especially drastic in metastatic and/or high Gleason score tumor samples. Remarkably, sst5TMD4 expression was associated with an altered frequency of 2 single-nucleotide polymorphisms: rs197055 and rs12599155. In addition, PCa cell lines and xenograft models were used to demonstrate that sst5TMD4 overexpression increases cell proliferation and migration in PCa cells and induces larger tumors in nude mice, whereas its silencing decreased proliferation and migration. Remarkably, sst5TMD4 overexpression activated multiple intracellular pathways (ERK/JNK, MYC/MAX, WNT, retinoblastoma), altered oncogenes and tumor suppressor gene expression, and disrupted the normal response to somatostatin analogs in PCa cells. Altogether, we demonstrate that sst5TMD4 is overexpressed in PCa, especially in those patients with a worse prognosis, and plays an important pathophysiologic role in PCa, which suggesting its potential as a biomarker and/or therapeutic target.-Hormaechea-Agulla, D., Jiménez-Vacas, J. M., Gómez-Gómez, E., L.-López, F., Carrasco-Valiente, J., Valero-Rosa, J., Moreno, M. M., Sánchez-Sánchez, R., Ortega-Salas, R., Gracia-Navarro, F., Culler, M. D., Ibáñez-Costa, A., Gahete, M. D., Requena, M. J., Castaño, J. P., Luque, R. M. The oncogenic role of the spliced somatostatin receptor sst5TMD4 variant in prostate cancer.


Asunto(s)
Empalme Alternativo , Regulación Neoplásica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Proteínas Oncogénicas , Neoplasias de la Próstata , Receptores de Somatostatina , Vía de Señalización Wnt , Anciano , Animales , Línea Celular Tumoral , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Metástasis de la Neoplasia , Trasplante de Neoplasias , Proteínas Oncogénicas/biosíntesis , Proteínas Oncogénicas/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores de Somatostatina/biosíntesis , Receptores de Somatostatina/genética
2.
Mol Cancer ; 16(1): 146, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851363

RESUMEN

BACKGROUND: The Ghrelin-system is a complex, pleiotropic family composed of several peptides, including native-ghrelin and its In1-ghrelin splicing variant, and receptors (GHSR 1a/b), which are dysregulated in various endocrine-related tumors, where they associate to pathophysiological features, but the presence, functional role, and mechanisms of actions of In1-ghrelin splicing variant in prostate-cancer (PCa), is completely unexplored. Herein, we aimed to determine the presence of key ghrelin-system components (native-ghrelin, In1-ghrelin, GHSR1a/1b) and their potential pathophysiological role in prostate cancer (PCa). METHODS: In1-ghrelin and native-ghrelin expression was evaluated by qPCR in prostate tissues from patients with high PCa-risk (n = 52; fresh-tumoral biopsies), and healthy-prostates (n = 12; from cystoprostatectomies) and correlated with clinical parameters using Spearman-test. In addition, In1-ghrelin and native-ghrelin was measured in plasma from an additional cohort of PCa-patients with different risk levels (n = 30) and control-healthy patients (n = 20). In vivo functional (proliferation/migration) and mechanistic (gene expression/signaling-pathways) assays were performed in PCa-cell lines in response to In1-ghrelin and native-ghrelin treatment, overexpression and/or silencing. Finally, tumor progression was monitored in nude-mice injected with PCa-cells overexpressing In1-ghrelin, native-ghrelin and empty vector (control). RESULTS: In1-ghrelin, but not native-ghrelin, was overexpressed in high-risk PCa-samples compared to normal-prostate (NP), and this expression correlated with that of PSA. Conversely, GHSR1a/1b expression was virtually absent. Remarkably, plasmatic In1-ghrelin, but not native-ghrelin, levels were also higher in PCa-patients compared to healthy-controls. Furthermore, In1-ghrelin treatment/overexpression, and to a much lesser extent native-ghrelin, increased aggressiveness features (cell-proliferation, migration and PSA secretion) of NP and PCa cells. Consistently, nude-mice injected with PC-3-cells stably-transfected with In1-ghrelin, but not native-ghrelin, presented larger tumors. These effects were likely mediated by ERK1/2-signaling activation and involved altered expression of key oncogenes/tumor suppressor genes. Finally, In1-ghrelin silencing reduced cell-proliferation and PSA secretion from PCa cells. CONCLUSIONS: Altogether, our results indicate that In1-ghrelin levels (in tissue) and circulating levels (in plasma) are increased in PCa where it can regulate key pathophysiological processes, thus suggesting that In1-ghrelin may represent a novel biomarker and a new therapeutic target in PCa.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Ghrelina/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Anciano , Animales , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/química , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proliferación Celular , Ghrelina/análisis , Ghrelina/química , Ghrelina/genética , Xenoinjertos , Humanos , Masculino , Ratones , Persona de Mediana Edad , Próstata/química , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/química , Neoplasias de la Próstata/epidemiología , Isoformas de Proteínas
3.
Prostate ; 77(15): 1499-1511, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28905400

RESUMEN

BACKGROUND: Prostate cancer (PCa) is a highly prevalent neoplasia that is strongly influenced by the endocrine system. Somatostatin (SST) and its five receptors (sst1-5 encoded by SSTR1-5 genes) comprise a pleiotropic system present in most endocrine-related cancers, some of which are successfully treated with SST analogs. Interestingly, it has been reported that SSTR1 is overexpressed in PCa, but its regulation, functional role, and clinical implications are still poorly known. METHODS: PCa specimens (n = 52) from biopsies and control prostates from cystoprostatectomies (n = 12), as well as in silico databases were used to evaluate SSTR1 and miRNAs expression. In vitro studies in 22Rv1 PCa cells were implemented to explore the regulation of SSTR1/sst1 by different miRNAs, and to evaluate the consequences of SSTR1/sst1 overexpression, silencing and/or activation [with the specific BIM-23926 sst1 agonist (IPSEN)] on cell-proliferation, migration, signaling-pathways, and androgen-signaling. RESULTS: We found that SSTR1 is overexpressed in multiple cohorts of PCa samples, as compared with normal prostate tissues, wherein it correlates with androgen receptor (AR) expression, and appears to be associated with aggressiveness (metastasis). Furthermore, our data revealed that SSTR1/sst1 expression might be regulated by specific miRNAs in PCa, including miR-24, which is downregulated in PCa samples and correlates inversely with SSTR1 expression. In vitro studies indicated that treatment with the BIM-23926 sst1 agonist, as well as SSTR1 overexpression, decreased, whereas SSTR1 silencing increased, cell-proliferation in 22Rv1 cells, likely through the regulation of PI3K/AKT-CCND3 signaling-pathway. Importantly, sst1 action was also able to modulate androgen/AR activity, and reduced PSA secretion from PCa cell lines. CONCLUSIONS: Altogether, our results indicate that SSTR1 is overexpressed in PCa, where it can exert a relevant pathophysiological role by decreasing cell-proliferation and PSA secretion. Therefore, sst1, possibly in combination with miR-24, could be used as a novel tool to explore therapeutic targets in PCa.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores de Somatostatina/biosíntesis , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/terapia , Receptores de Somatostatina/genética
4.
Cell Stem Cell ; 28(8): 1428-1442.e6, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33743191

RESUMEN

Age-related clonal hematopoiesis (CH) is a risk factor for malignancy, cardiovascular disease, and all-cause mortality. Somatic mutations in DNMT3A are drivers of CH, but decades may elapse between the acquisition of a mutation and CH, suggesting that environmental factors contribute to clonal expansion. We tested whether infection provides selective pressure favoring the expansion of Dnmt3a mutant hematopoietic stem cells (HSCs) in mouse chimeras. We created Dnmt3a-mosaic mice by transplanting Dnmt3a-/- and WT HSCs into WT mice and observed the substantial expansion of Dnmt3a-/- HSCs during chronic mycobacterial infection. Injection of recombinant IFNγ alone was sufficient to phenocopy CH by Dnmt3a-/- HSCs upon infection. Transcriptional and epigenetic profiling and functional studies indicate reduced differentiation associated with widespread methylation alterations, and reduced secondary stress-induced apoptosis accounts for Dnmt3a-/- clonal expansion during infection. DNMT3A mutant human HSCs similarly exhibit defective IFNγ-induced differentiation. We thus demonstrate that IFNγ signaling induced during chronic infection can drive DNMT3A-loss-of-function CH.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Hematopoyesis , Animales , Hematopoyesis Clonal , ADN (Citosina-5-)-Metiltransferasas/genética , Células Madre Hematopoyéticas , Ratones , Mutación
5.
Cell Metab ; 33(12): 2380-2397.e9, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879239

RESUMEN

Accelerated glycolysis is the main metabolic change observed in cancer, but the underlying molecular mechanisms and their role in cancer progression remain poorly understood. Here, we show that the deletion of the long noncoding RNA (lncRNA) Neat1 in MMTV-PyVT mice profoundly impairs tumor initiation, growth, and metastasis, specifically switching off the penultimate step of glycolysis. Mechanistically, NEAT1 directly binds and forms a scaffold bridge for the assembly of PGK1/PGAM1/ENO1 complexes and thereby promotes substrate channeling for high and efficient glycolysis. Notably, NEAT1 is upregulated in cancer patients and correlates with high levels of these complexes, and genetic and pharmacological blockade of penultimate glycolysis ablates NEAT1-dependent tumorigenesis. Finally, we demonstrate that Pinin mediates glucose-stimulated nuclear export of NEAT1, through which it exerts isoform-specific and paraspeckle-independent functions. These findings establish a direct role for NEAT1 in regulating tumor metabolism, provide new insights into the Warburg effect, and identify potential targets for therapy.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glucólisis , Humanos , Ratones , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
6.
Curr Stem Cell Rep ; 6(3): 96-107, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32837857

RESUMEN

Purpose of Review: Inflammatory signals have emerged as critical regulators of hematopoietic stem cell (HSC) function. Specifically, HSCs are highly responsive to acute changes in systemic inflammation and this influences not only their division rate but also their lineage fate. Identifying how inflammation regulates HSCs and shapes the blood system is crucial to understanding the mechanisms underpinning these processes, as well as potential links between them. Recent Findings: A widening array of physiologic and pathologic processes involving heightened inflammation are now recognized to critically affect HSC biology and blood lineage production. Conditions documented to affect HSC function include not only acute and chronic infections but also autoinflammatory conditions, irradiation injury, and physiologic states such as aging and obesity. Summary: Recognizing the contexts during which inflammation affects primitive hematopoiesis is essential to improving our understanding of HSC biology and informing new therapeutic interventions against maladaptive hematopoiesis that occurs during inflammatory diseases, infections, and cancer-related disorders.

7.
Exp Hematol ; 91: 39-45.e2, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32961298

RESUMEN

Mutations in the gene encoding DNA methyltransferase 3A (DNMT3A) comprise the majority of mutations found in clonal hematopoiesis (CH), an age-related condition that was recently found to affect outcomes in patients undergoing hematopoietic stem cell transplant (HSCT). Recent studies have indicated that patients with CH have worse prognoses after HSCT, suggesting stress imposed by HSCT preconditioning agents may impact hematopoietic stem cell (HSC) dynamics in transplant recipients. In this study, we used a competitive transplantation mouse model to investigate how treatment with the common preconditioning agents 5-fluorouracil (5-FU) and busulfan (BU) affect the prevalence of Dnmt3a-/- HSCs and progenitor cells in competition with wild-type cells. We found that, though sufficient to deplete peripheral blood counts, 5-FU preconditioning did not significantly alter the frequency of Dnmt3a-null hematopoietic stem and progenitor cells (HSPCs) in mosaic mice. In contrast, mice treated with BU had a sevenfold decline in total bone marrow cells and an increase in Dnmt3a-null HSPCs that was detectable in peripheral blood. Indeed, even though all mosaic mice had a starting engraftment of ∼10%-40%, 85%-100% of HSPCs were Dnmt3a-null in four of seven mice after BU treatment, indicating these cells expand dramatically during recovery. Overall, these results suggest that individual preconditioning regimens have different effects on the expansion of Dnmt3a-mutant cells in patients with pre-existing CH. Thus, the presence of CH-associated mutants should be evaluated prior to selecting preconditioning regimens for HSCT.


Asunto(s)
Busulfano/farmacología , ADN (Citosina-5-)-Metiltransferasas/deficiencia , Hematopoyesis/genética , Factores de Crecimiento de Célula Hematopoyética/farmacología , Movilización de Célula Madre Hematopoyética , Células Madre Hematopoyéticas/efectos de los fármacos , Animales , Médula Ósea/patología , División Celular/efectos de los fármacos , Linaje de la Célula , Células Clonales , ADN Metiltransferasa 3A , Fluorouracilo/farmacología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Ratones , Quimera por Radiación
8.
J Clin Med ; 8(9)2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31500112

RESUMEN

Engrailed variant-2 (EN2) has been suggested as a potential diagnostic biomarker; however, its presence and functional role in prostate cancer (PCa) cells is still controversial or unknown. Here, we analyzed 1) the expression/secretion profile of EN2 in five independent samples cohorts from PCa patients and controls (prostate tissues and/or urine) to determine its utility as a PCa biomarker; and 2) the functional role of EN2 in normal (RWPE1) and tumor (LNCaP/22Rv1/PC3) prostate cells to explore its potential value as therapeutic target. EN2 was overexpressed in our two cohorts of PCa tissues compared to control and in tumor cell lines compared with normal-like prostate cells. This profile was corroborated in silico in three independent data sets [The Cancer Genome Atlas(TCGA)/Memorial Sloan Kettering Cancer Center (MSKCC)/Grasso]. Consistently, urine EN2 levels were elevated and enabled discrimination between PCa and control patients. EN2 treatment increased cell proliferation in LNCaP/22Rv1/PC3 cells, migration in RWPE1/PC3 cells, and PSA secretion in LNCaP cells. These effects were associated, at least in the androgen-sensitive LNCaP cells, with increased AKT and androgen-receptor phosphorylation levels and with modulation of key cancer-associated genes. Consistently, EN2 treatment also regulated androgen-receptor activity (full-length and splicing variants) in androgen-sensitive 22Rv1 cells. Altogether, this study demonstrates the potential utility of EN2 as a non-invasive diagnostic biomarker for PCa and provides novel and valuable information to further investigate its putative utility to develop new therapeutic tools in PCa.

9.
Mol Cells ; 41(3): 168-178, 2018 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-29562734

RESUMEN

Intracellular communication via ubiquitin (Ub) signaling impacts all aspects of cell biology and regulates pathways critical to human development and viability; therefore aberrations or defects in Ub signaling can contribute to the pathogenesis of human diseases. Ubiquitination consists of the addition of Ub to a substrate protein via coordinated action of E1-activating, E2-conjugating and E3-ligating enzymes. Approximately 40 E2s have been identified in humans, and most are thought to be involved in Ub transfer; although little information is available regarding the majority of them, emerging evidence has highlighted their importance to human health and disease. In this review, we focus on recent insights into the pathogenetic roles of E2s (particularly the ubiquitin-conjugating enzyme E2O [UBE2O]) in debilitating diseases and cancer, and discuss the tantalizing prospect that E2s may someday serve as potential therapeutic targets for human diseases.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/genética , Humanos
10.
Cancer Lett ; 383(1): 125-134, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27693462

RESUMEN

Ghrelin-O-acyltransferase (GOAT) is the key enzyme regulating ghrelin activity, and has been proposed as a potential therapeutic target for obesity/diabetes and as a biomarker in some endocrine-related cancers. However, GOAT presence and putative role in prostate-cancer (PCa) is largely unknown. Here, we demonstrate, for the first time, that GOAT is overexpressed (mRNA/protein-level) in prostatic tissues (n = 52) and plasma/urine-samples (n = 85) of PCa-patients, compared with matched controls [healthy prostate tissues (n = 12) and plasma/urine-samples from BMI-matched controls (n = 28), respectively]. Interestingly, GOAT levels in PCa-patients correlated with aggressiveness and metabolic conditions (i.e. diabetes). Actually, GOAT expression was regulated by metabolic inputs (i.e. In1-ghrelin, insulin/IGF-I) in cultured normal prostate cells and PCa-cell lines. Importantly, ROC-curve analysis unveiled a valuable diagnostic potential for GOAT to discriminate PCa at the tissue/plasma/urine-level with high sensitivity/specificity, particularly in non-diabetic individuals. Moreover, we discovered that GOAT is secreted by PCa-cells, and that its levels are higher in urine samples from a stimulated post-massage vs. pre-massage prostate-test. In conclusion, plasmatic GOAT levels exhibit high specificity/sensitivity to predict PCa-presence compared with other PCa-biomarkers, especially in non-diabetic individuals, suggesting that GOAT holds potential as a novel non-invasive PCa-biomarker.


Asunto(s)
Aciltransferasas/sangre , Biomarcadores de Tumor/sangre , Metabolismo Energético , Neoplasias de la Próstata/enzimología , Aciltransferasas/genética , Aciltransferasas/orina , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/orina , Estudios de Casos y Controles , Línea Celular Tumoral , Diabetes Mellitus/sangre , Diabetes Mellitus/enzimología , Dislipidemias/sangre , Dislipidemias/enzimología , Humanos , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/enzimología , Persona de Mediana Edad , Obesidad/sangre , Obesidad/enzimología , Valor Predictivo de las Pruebas , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/orina , ARN Mensajero/genética , Curva ROC , Reproducibilidad de los Resultados , Regulación hacia Arriba
11.
Cancer Lett ; 359(2): 299-306, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25637790

RESUMEN

The GH/IGF1 response of somatotropinomas to somatostatin analogues (SSA) is associated with their pattern of somatostatin receptor (sst1-sst5) expression. Recently, we demonstrated that expression of a truncated sst5-variant (sst5TMD4) can influence the secretory response of somatotropinomas to SSA-therapy; however, its potential relationship with aggressive features (e.g. invasion/proliferation) is still unknown. Here, we show that sst5TMD4 is present in 50% of non-functioning pituitary-adenomas (NFPA) (n = 30) and 89% of somatotropinomas (n = 36), its expression levels being highest in somatotropinomas > > NFPAs > > > normal pituitaries (negligible expression; n = 8). In somatotropinomas, sst5TMD4 mRNA and protein levels correlated positively, and its expression was directly associated with tumor invasiveness (cavernous/sphenoid sinus), and inversely correlated with age and GH/IGF1 reduction after 3-6 months with octreotide-LAR therapy. GNAS+ somatotropinomas expressed lower sst5TMD4 levels. ROC analysis revealed sst5TMD4 expression as the only marker, within all sst-subtypes, capable to predict tumor invasiveness in somatotropinomas. sst5TMD4 overexpression increased cell viability in cultured somatotropinoma (n = 5). Hence, presence of sst5TMD4 associates with increased aggressive features and worse prognosis in somatotropinomas, thereby providing a potentially useful tool to refine somatotropinoma diagnosis, predict outcome of clinical response to SSA-therapy and develop new therapeutic targets.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Adenoma Hipofisario Secretor de Hormona del Crecimiento/metabolismo , Octreótido/farmacología , Receptores de Somatostatina/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Proliferación Celular , Supervivencia Celular , Codón sin Sentido , Resistencia a Antineoplásicos , Femenino , Adenoma Hipofisario Secretor de Hormona del Crecimiento/tratamiento farmacológico , Adenoma Hipofisario Secretor de Hormona del Crecimiento/patología , Hormona de Crecimiento Humana/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Somatostatina/metabolismo , Células Tumorales Cultivadas , Adulto Joven
12.
J Endocrinol ; 220(1): R1-24, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24194510

RESUMEN

Ghrelin is a 28-amino acid acylated hormone, highly expressed in the stomach, which binds to its cognate receptor (GHSR1a) to regulate a plethora of relevant biological processes, including food intake, energy balance, hormonal secretions, learning, inflammation, etc. However, ghrelin is, in fact, the most notorious component of a complex, intricate regulatory system comprised of a growing number of alternative peptides (e.g. obestatin, unacylated ghrelin, and In1-ghrelin, etc.), known (GHSRs) and, necessarily unknown receptors, as well as modifying enzymes (e.g. ghrelin-O-acyl-transferase), which interact among them as well as with other regulatory systems in order to tightly modulate key (patho)-physiological processes. This multiplicity of functions and versatility of the ghrelin system arise from a dual, genetic and functional, complexity. Importantly, a growing body of evidence suggests that dysregulation in some of the components of the ghrelin system can lead to or influence the development and/or progression of highly concerning pathologies such as endocrine-related tumors, inflammatory/cardiovascular diseases, and neurodegeneration, wherein these altered components could be used as diagnostic, prognostic, or therapeutic targets. In this context, the aim of this review is to integrate and comprehensively analyze the multiple components and functions of the ghrelin system described to date in order to define and understand its biological and (patho)-physiological significance.


Asunto(s)
Aciltransferasas/metabolismo , Ghrelina/metabolismo , Receptores de Ghrelina/metabolismo , Transducción de Señal , Aciltransferasas/genética , Sistema Endocrino/metabolismo , Sistema Endocrino/patología , Sistema Endocrino/fisiopatología , Ghrelina/genética , Humanos , Modelos Biológicos , Receptores de Ghrelina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA