RESUMEN
The Carbohydrate-Active Enzyme classification groups enzymes that breakdown, assemble, or decorate glycans into protein families based on sequence similarity. The glycoside hydrolases (GH) are arranged into over 170 enzyme families, with some being very large and exhibiting distinct activities/specificities towards diverse substrates. Family GH31 is a large family that contains more than 20,000 sequences with a wide taxonomic diversity. Less than 1% of GH31 members are biochemically characterized and exhibit many different activities that include glycosidases, lyases, and transglycosidases. This diversity of activities limits our ability to predict the activities and roles of GH31 family members in their host organism and our ability to exploit these enzymes for practical purposes. Here, we established a subfamily classification using sequence similarity networks that was further validated by a structural analysis. While sequence similarity networks provide a sequence-based separation, we obtained good segregation between activities among the subfamilies. Our subclassification consists of 20 subfamilies with sixteen subfamilies containing at least one characterized member and eleven subfamilies that are monofunctional based on the available data. We also report the biochemical characterization of a member of the large subfamily 2 (GH31_2) that lacked any characterized members: RaGH31 from Rhodoferax aquaticus is an α-glucosidase with activity on a range of disaccharides including sucrose, trehalose, maltose, and nigerose. Our subclassification provides improved predictive power for the vast majority of uncharacterized proteins in family GH31 and highlights the remaining sequence space that remains to be functionally explored.
Asunto(s)
Glicósido Hidrolasas , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Filogenia , Polisacáridos/metabolismo , Proteínas , Especificidad por Sustrato , Betaproteobacteria/enzimología , Familia de MultigenesRESUMEN
BACKGROUND: Single-cell sequencing techniques are revolutionizing every field of biology by providing the ability to measure the abundance of biological molecules at a single-cell resolution. Although single-cell sequencing approaches have been developed for several molecular modalities, single-cell transcriptome sequencing is the most prevalent and widely applied technique. SPLiT-seq (split-pool ligation-based transcriptome sequencing) is one of these single-cell transcriptome techniques that applies a unique combinatorial-barcoding approach by splitting and pooling cells into multi-well plates containing barcodes. This unique approach required the development of dedicated computational tools to preprocess the data and extract the count matrices. Here we compare eight bioinformatic pipelines (alevin-fry splitp, LR-splitpipe, SCSit, splitpipe, splitpipeline, SPLiTseq-demultiplex, STARsolo and zUMI) that have been developed to process SPLiT-seq data. We provide an overview of the tools, their computational performance, functionality and impact on downstream processing of the single-cell data, which vary greatly depending on the tool used. RESULTS: We show that STARsolo, splitpipe and alevin-fry splitp can all handle large amount of data within reasonable time. In contrast, the other five pipelines are slow when handling large datasets. When using smaller dataset, cell barcode results are similar with the exception of SPLiTseq-demultiplex and splitpipeline. LR-splitpipe that is originally designed for processing long-read sequencing data is the slowest of all pipelines. Alevin-fry produced different down-stream results that are difficult to interpret. STARsolo functions nearly identical to splitpipe and produce results that are highly similar to each other. However, STARsolo lacks the function to collapse random hexamer reads for which some additional coding is required. CONCLUSION: Our comprehensive comparative analysis aids users in selecting the most suitable analysis tool for efficient SPLiT-seq data processing, while also detailing the specific prerequisites for each of these pipelines. From the available pipelines, we recommend splitpipe or STARSolo for SPLiT-seq data analysis.
Asunto(s)
Biología Computacional , Transcriptoma , Análisis de DatosRESUMEN
The deluge of genomic data raises various challenges for computational protein annotation. The definition of superfamilies, based on conserved folds, or of families, showing more recent homology signatures, allow a first categorization of the sequence space. However, for precise functional annotation or the identification of the unexplored parts within a family, a division into subfamilies is essential. As curators of an expert database, the Carbohydrate Active Enzymes database (CAZy), we began, more than 15 years ago, to manually define subfamilies based on phylogeny reconstruction. However, facing the increasing amount of sequence and functional data, we required more scalable and reproducible methods. The recently popularized sequence similarity networks (SSNs), allows to cope with very large families and computation of many subfamily schemes. Still, the choice of the optimal SSN subfamily scheme only relies on expert knowledge so far, without any data-driven guidance from within the network. In this study, we therefore decided to investigate several network properties to determine a criterion which can be used by curators to evaluate the quality of subfamily assignments. The performance of the closeness centrality criterion, a network property to indicate the connectedness within the network, shows high similarity to the decisions of expert curators from eight distinct protein families. Closeness centrality also suggests that in some cases multiple levels of subfamilies could be possible, depending on the granularity of the research question, while it indicates when no subfamily emerged in some family evolution. We finally used closeness centrality to create subfamilies in four families of the CAZy database, providing a finer functional annotation and highlighting subfamilies without biochemically characterized members for potential future discoveries.
Asunto(s)
Glicósido Hidrolasas , Proteínas , Proteínas/genética , Proteínas/química , Secuencia de Aminoácidos , Glicósido Hidrolasas/química , Anotación de Secuencia Molecular , Filogenia , Bases de Datos de ProteínasRESUMEN
A subset of clinical isolates of Clostridioides difficile contains one or more plasmids and these plasmids can harbor virulence and antimicrobial resistance determinants. Despite their potential importance, C. difficile plasmids remain poorly characterized. Here, we provide the complete genome sequence of a human clinical isolate that carries three high-copy number plasmids from three different plasmid families that are therefore compatible. For two of these, we identify a region capable of sustaining plasmid replication in C. difficile that is also compatible with the plasmid pCD630 that is found in many laboratory strains. Together, our data advance our understanding of C. difficile plasmid biology.
Asunto(s)
Clostridioides difficile , Humanos , Plásmidos/genética , Clostridioides difficile/genética , Clostridioides/genética , Virulencia , Factores de Virulencia/genética , AntibacterianosRESUMEN
A novel propionate producing bacterium, strain JV5T, was isolated from the rumen fibrous content of a Holstein Friesian dairy cow. Cells of strain JV5T were Gram-stain-positive, non-motile and aerotolerant. Growth occurred between 35 and 45 °C, with an optimum at 39 °C. The pH range for growth was 6.5-8, with an optimum at pH 7. The 16S rRNA gene sequence of strain JV5T was 98.4 and 96.5â% identical to those of Propionibacterium australiense DSM 15818T and Propionibacterium acidifaciens DSM 21887T, respectively. Genome wide average nucleotide identity and digital DNA-DNA hybridization values were 88.3 and 35.5â%, respectively, against P. australiense DSM 15818T. The G+C content of strain JV5T was 68.9â mol%. Strain JV5T did not produce urease and was able to metabolize glutamate, but not aspartate and glycine. Strain JV5T was able to ferment a range of substrates including certain simple and complex carbohydrates, sugar alcohols and amino acids. Chemotaxonomic analysis of strain JV5T revealed the presence of meso-diamino pimelic acid isomers similar those found in P. australiense, but different from P. acidifaciens. The observed major (>10â%) cellular fatty acids in strain JV5T (C18â:â1 ω9c, anteiso-C15â:â1, C16â:â0, C17â:â0 and C16â:â0 alcohol) were also different from those observed in P. australiense and P. acidifaciens. Based on these findings, a novel species is proposed within the genus Propionibacterium, Propionibacterium ruminifibrarum sp. nov. (type strain JV5T=DSM 106771T=TISTR 2629T).
Asunto(s)
Bovinos/microbiología , Filogenia , Propionibacterium/clasificación , Rumen/microbiología , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Femenino , Países Bajos , Hibridación de Ácido Nucleico , Propionibacterium/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
A Gram-stain-positive, motile, rod-shaped, obligately anaerobic bacterium, designated FRIFIT, was isolated from human ileostoma effluent and characterized. On the basis of 16S rRNA gene sequence similarity, strain FRIFIT was most closely related to the species Romboutsia ilealis CRIBT (97.7â%), Romboutsia lituseburensis DSM 797T (97.6â%) and Romboutsia sedimentorum LAM201T (96.6â%). The level of DNA-DNA relatedness between strain FRIFIT and R. ilealis CRIBT was 13.9±3.3â% based on DNA-DNA hybridization. Whole genome sequence-based average nucleotide identity between strain FRIFIT and closely related Romboutsia strains ranged from 78.4-79.1â%. The genomic DNA G+C content of strain FRIFIT was 27.8 mol%. The major cellular fatty acids of strain FRIFIT were saturated and unsaturated straight-chain C12-C19 fatty acids as well as cyclopropane fatty acids, with C16â:â0 being the predominant fatty acid. The polar lipid profile comprised five phospholipids and six glycolipids. These results, together with differences in phenotypic features, support the proposal that strain FRIFIT represents a novel species within the genus Romboutsia, for which the name Romboutsiahominis sp. nov. is proposed. The type strain is FRIFIT (=DSM 28814T=KCTC 15553T).
Asunto(s)
Clostridiales/clasificación , Íleon/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Clostridiales/genética , Clostridiales/aislamiento & purificación , Ciclopropanos/química , ADN Bacteriano/genética , Ácidos Grasos/química , Glucolípidos/química , Humanos , Ileostomía , Países Bajos , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
Host glycans are paramount in regulating the symbiotic relationship between humans and their gut bacteria. The constant flux of host-secreted mucin at the mucosal layer creates a steady niche for bacterial colonization. Mucin degradation by keystone species subsequently shapes the microbial community. This study investigated the transcriptional response during mucin-driven trophic interaction between the specialised mucin-degrader Akkermansia muciniphila and a butyrogenic gut commensal Anaerostipes caccae. A. muciniphila monocultures and co-cultures with non-mucolytic A. caccae from the Lachnospiraceae family were grown anaerobically in minimal media supplemented with mucin. We analysed for growth, metabolites (HPLC analysis), microbial composition (quantitative reverse transcription PCR), and transcriptional response (RNA-seq). Mucin degradation by A. muciniphila supported the growth of A. caccae and concomitant butyrate production predominantly via the acetyl-CoA pathway. Differential expression analysis (DESeq 2) showed the presence of A. caccae induced changes in the A. muciniphila transcriptional response with increased expression of mucin degradation genes and reduced expression of ribosomal genes. Two putative operons that encode for uncharacterised proteins and an efflux system, and several two-component systems were also differentially regulated. This indicated A. muciniphila changed its transcriptional regulation in response to A. caccae. This study provides insight to understand the mucin-driven microbial ecology using metatranscriptomics. Our findings show that the expression of mucolytic enzymes by A. muciniphila increases upon the presence of a community member. This could indicate its role as a keystone species that supports the microbial community in the mucosal environment by increasing the availability of mucin sugars.
Asunto(s)
Mucosa Intestinal/metabolismo , Verrucomicrobia/metabolismo , Butiratos/metabolismo , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Microbiota/genética , Mucinas/metabolismo , Transcriptoma/genéticaRESUMEN
Clostridium difficile is a Gram-positive and sporulating enteropathogen that is a major cause of healthcare-associated infections. Even though a large number of genomes of this species have been sequenced, only a few plasmids have been described in the literature. Here, we use a combination of in silico analyses and laboratory experiments to show that plasmids are common in C. difficile. We focus on a group of plasmids that share similarity with the plasmid pCD630, from the reference strain 630. The family of pCD630-like plasmids is defined by the presence of a conserved putative helicase that is likely part of the plasmid replicon. This replicon is compatible with at least some other C. difficile replicons, as strains can carry pCD630-like plasmids in addition to other plasmids. We find two distinct sub-groups of pCD630-like plasmids that differ in size and accessory modules. This study is the first to describe a family of plasmids in C. difficile.
Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridioides difficile/enzimología , Infecciones por Clostridium/microbiología , ADN Helicasas/metabolismo , Plásmidos/genética , Proteínas Bacterianas/genética , Clostridioides difficile/genética , Clostridioides difficile/aislamiento & purificación , ADN Helicasas/genética , Humanos , Plásmidos/metabolismo , ReplicónRESUMEN
Isomalto/malto-polysaccharides (IMMPs) are a novel type of soluble dietary fibres with a prebiotic potential promoting growth of beneficial microbes in the gut. However, the mode of action of IMMPs remains unknown. Previous studies on IMMPs showed an increase in total bacteria, especially lactobacilli, and higher production of short chain fatty acids (SCFA) when IMMPs were fed to rats or used during in vitro fermentation. Here we used metatranscriptomics to investigate how IMMPs with different amounts of α - (1 â 6) glycosidic linkages affected microbial function during incubation with human fecal inoculum. We showed that active microbial community dynamics during fermentation varied depending on the type of IMMP used and that the observed changes were reflected in the community gene expression profiles. Based on metatranscriptome analysis, members of Bacteroides, Lactobacillus and Bifidobacterium were the predominant degraders of IMMPs, and the increased gene expression in these bacteria correlated with high amounts of α - (1 â 6) glycosidic linkages. We also noted an increase in relative abundance of these bacteria and an activation of pathways involved in SCFA synthesis. Our findings could provide a baseline for more targeted approaches in designing prebiotics for specific bacteria and to achieve more controlled modulation of microbial activity towards desired health outcomes.
Asunto(s)
Heces , Microbioma Gastrointestinal , Prebióticos , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Heces/microbiología , Fermentación , Polisacáridos/metabolismo , Colon/microbiología , Colon/metabolismo , Ácidos Grasos Volátiles/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Fibras de la Dieta/metabolismo , Lactobacillus/metabolismo , Lactobacillus/genética , Bacterias/genética , Bacterias/metabolismoRESUMEN
BACKGROUND: Hepatocellular carcinoma (HCC) is a highly aggressive liver cancer with significant morbidity and mortality rates. AXIN1 is one of the top-mutated genes in HCC, but the mechanism by which AXIN1 mutations contribute to HCC development remains unclear. METHODS: In this study, we utilized CRISPR/Cas9 genome editing to repair AXIN1-truncated mutations in five HCC cell lines. RESULTS: For each cell line we successfully obtained 2-4 correctly repaired clones, which all show reduced ß-catenin signaling accompanied with reduced cell viability and colony formation. Although exposure of repaired clones to Wnt3A-conditioned medium restored ß-catenin signaling, it did not or only partially recover their growth characteristics, indicating the involvement of additional mechanisms. Through RNA-sequencing analysis, we explored the gene expression patterns associated with repaired AXIN1 clones. Except for some highly-responsive ß-catenin target genes, no consistent alteration in gene/pathway expression was observed. This observation also applies to the Notch and YAP/TAZ-Hippo signaling pathways, which have been associated with AXIN1-mutant HCCs previously. The AXIN1-repaired clones also cannot confirm a recent observation that AXIN1 is directly linked to YAP/TAZ protein stability and signaling. CONCLUSIONS: Our study provides insights into the effects of repairing AXIN1 mutations on ß-catenin signaling, cell viability, and colony formation in HCC cell lines. However, further investigations are necessary to understand the complex mechanisms underlying HCC development associated with AXIN1 mutations.
Asunto(s)
Proteína Axina , Sistemas CRISPR-Cas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Mutación , beta Catenina , Proteína Axina/genética , Proteína Axina/metabolismo , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Regulación Neoplásica de la Expresión Génica , Edición Génica , Transducción de Señal/genéticaRESUMEN
OBJECTIVES: To assess the value of screening for Clostridioides difficile colonization (CDC) at hospital admission in an endemic setting. METHODS: A multi-centre study was conducted at four hospitals located across the Netherlands. Newly admitted patients were screened for CDC. The risk of development of Clostridioides difficile infection (CDI) during admission and 1-year follow-up was assessed in patients with and without colonization. C. difficile isolates from patients with colonization were compared with isolates from incident CDI cases using core genome multi-locus sequence typing to determine whether onwards transmission had occurred. RESULTS: CDC was present in 108 of 2211 admissions (4.9%), whereas colonization with a toxigenic strain (toxigenic Clostridoides difficile colonization [tCDC]) was present in 68 of 2211 admissions (3.1%). Among these 108 patients with colonization, diverse PCR ribotypes were found and no 'hypervirulent' PCR ribotype 027 (RT027) was detected (95% CI, 0-0.028). None of the patients with colonization developed CDI during admission (0/49; 95% CI, 0-0.073) or 1-year follow-up (0/38; 95% CI, 0-0.93). Core genome multi-locus sequence typing identified six clusters with genetically related isolates from patients with tCDC and CDI; however, in these clusters, only one possible transmission event from a patient with tCDC to a patient with CDI was identified based on epidemiological data. CONCLUSION: In this endemic setting with a low prevalence of 'hypervirulent' strains, screening for CDC at admission did not detect any patients with CDC who progressed to symptomatic CDI and detected only one possible transmission event from a patient with colonization to a patient with CDI. Thus, screening for CDC at admission is not useful in this setting.
Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Humanos , Clostridioides difficile/genética , Clostridioides/genética , Tipificación de Secuencias Multilocus , Hospitalización , Infecciones por Clostridium/diagnóstico , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/microbiología , Hospitales , RibotipificaciónRESUMEN
Single cell RNAseq has been a big leap in many areas of biology. Rather than investigating gene expression on a whole organism level, this technology enables scientists to get a detailed look at rare single cells or within their cell population of interest. The field is growing, and many new methods appear each year. We compared methods utilized in our core facility: Smart-seq3, PlexWell, FLASH-seq, VASA-seq, SORT-seq, 10X, Evercode, and HIVE. We characterized the equipment requirements for each method. We evaluated the performances of these methods based on detected features, transcriptome diversity, mitochondrial RNA abundance and multiplets, among others and benchmarked them against bulk RNA sequencing. Here, we show that bulk transcriptome detects more unique transcripts than any single cell method. While most methods are comparable in many regards, FLASH-seq and VASA-seq yielded the best metrics, e.g., in number of features. If no equipment for automation is available or many cells are desired, then HIVE or 10X yield good results. In general, more recently developed methods perform better. This also leads to the conclusion that older methods should be phased out, and that the development of single cell RNAseq methods is still progressing considerably.
Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodosRESUMEN
In acid drainage environments, biosulfidogenesis by sulfate-reducing bacteria (SRB) attenuates the extreme conditions by enabling the precipitation of metals as their sulfides, and the neutralization of acidity through proton consumption. So far, only a handful of moderately acidophilic SRB species have been described, most of which are merely acidotolerant. Here, a novel species within a novel genus of moderately acidophilic SRB is described, Acididesulfobacillus acetoxydans gen. nov. sp. nov. strain INE, able to grow at pH 3.8. Bioreactor studies with strain INE at optimum (5.0) and low (3.9) pH for growth showed that strain INE alkalinized its environment, and that this was more pronounced at lower pH. These studies also showed the capacity of strain INE to completely oxidize organic acids to CO2, which is uncommon among acidophilic SRB. Since organic acids are mainly in their protonated form at low pH, which increases their toxicity, their complete oxidation may be an acid stress resistance mechanism. Comparative proteogenomic and membrane lipid analysis further indicated that the presence of saturated ether-bound lipids in the membrane, and their relative increase at lower pH, was a protection mechanism against acid stress. Interestingly, other canonical acid stress resistance mechanisms, such as a Donnan potential and increased active charge transport, did not appear to be active.
RESUMEN
Denitrifying Betaproteobacteria play a key role in the anaerobic degradation of monoaromatic hydrocarbons. We performed a multi-omics study to better understand the metabolism of the representative organism Georgfuchsia toluolica strain G5G6 known as a strict anaerobe coupling toluene oxidation with dissimilatory nitrate and Fe(III) reduction. Despite the genomic potential for degradation of different carbon sources, we did not find sugar or organic acid transporters, in line with the inability of strain G5G6 to use these substrates. Using a proteomics analysis, we detected proteins of fumarate-dependent toluene activation, membrane-bound nitrate reductase, and key components of the metal-reducing (Mtr) pathway under both nitrate- and Fe(III)-reducing conditions. High abundance of the multiheme cytochrome MtrC implied that a porin-cytochrome complex was used for respiratory Fe(III) reduction. Remarkably, strain G5G6 contains a full set of genes for aerobic toluene degradation, and we detected enzymes of aerobic toluene degradation under both nitrate- and Fe(III)-reducing conditions. We further detected an ATP-dependent benzoyl-CoA reductase, reactive oxygen species detoxification proteins, and cytochrome c oxidase indicating a facultative anaerobic lifestyle of strain G5G6. Correspondingly, we found diffusion through the septa a substantial source of oxygen in the cultures enabling concurrent aerobic and anaerobic toluene degradation by strain G5G6.
Asunto(s)
Betaproteobacteria , Proteogenómica , Anaerobiosis , Betaproteobacteria/genética , Biodegradación Ambiental , Compuestos Férricos/metabolismo , Tolueno/metabolismoRESUMEN
Six CO2 fixation pathways are known to operate in photoautotrophic and chemoautotrophic microorganisms. Here, we describe chemolithoautotrophic growth of the sulphate-reducing bacterium Desulfovibrio desulfuricans (strain G11) with hydrogen and sulphate as energy substrates. Genomic, transcriptomic, proteomic and metabolomic analyses reveal that D. desulfuricans assimilates CO2 via the reductive glycine pathway, a seventh CO2 fixation pathway. In this pathway, CO2 is first reduced to formate, which is reduced and condensed with a second CO2 to generate glycine. Glycine is further reduced in D. desulfuricans by glycine reductase to acetyl-P, and then to acetyl-CoA, which is condensed with another CO2 to form pyruvate. Ammonia is involved in the operation of the pathway, which is reflected in the dependence of the autotrophic growth rate on the ammonia concentration. Our study demonstrates microbial autotrophic growth fully supported by this highly ATP-efficient CO2 fixation pathway.
Asunto(s)
Desulfovibrio desulfuricans/crecimiento & desarrollo , Desulfovibrio desulfuricans/metabolismo , Glicina/metabolismo , Adenosina Trifosfato/metabolismo , Amoníaco/metabolismo , Procesos Autotróficos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dióxido de Carbono/metabolismo , Desulfovibrio desulfuricans/genética , Perfilación de la Expresión Génica , Genoma Bacteriano , MetabolómicaRESUMEN
Metronidazole was until recently used as a first-line treatment for potentially life-threatening Clostridioides difficile (CD) infection. Although cases of metronidazole resistance have been documented, no clear mechanism for metronidazole resistance or a role for plasmids in antimicrobial resistance has been described for CD. Here, we report genome sequences of seven susceptible and sixteen resistant CD isolates from human and animal sources, including isolates from a patient with recurrent CD infection by a PCR ribotype (RT) 020 strain, which developed resistance to metronidazole over the course of treatment (minimal inhibitory concentration [MIC] = 8 mg L-1). Metronidazole resistance correlates with the presence of a 7-kb plasmid, pCD-METRO. pCD-METRO is present in toxigenic and non-toxigenic resistant (n = 23), but not susceptible (n = 563), isolates from multiple countries. Introduction of a pCD-METRO-derived vector into a susceptible strain increases the MIC 25-fold. Our finding of plasmid-mediated resistance can impact diagnostics and treatment of CD infections.
Asunto(s)
Clostridioides difficile/fisiología , Farmacorresistencia Bacteriana/efectos de los fármacos , Metronidazol/farmacología , Plásmidos/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/genética , Clostridioides difficile/crecimiento & desarrollo , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/microbiología , ADN Bacteriano/genética , Farmacorresistencia Bacteriana/genética , Heces/microbiología , Dosificación de Gen , Transferencia de Gen Horizontal/genética , Humanos , Metronidazol/uso terapéutico , Polimorfismo de Nucleótido Simple/genética , Replicón/genéticaRESUMEN
Good scientific practice is important in all areas of science. In recent years this has gained more and more attention, especially considering the 'scientific reproducibility crisis'. While most researchers are aware of the issues with good scientific practice, not all of these issues are necessarily clear, and the details can be very complicated. For many years it has been accepted to perform and publish sequencing based microbiome studies without including proper controls. Although in recent years more scientists realize the necessity of implementing controls, this poses a problem due to the complexity of the field. Another concern is the inability to properly interpret the information gained from controls in microbiome studies. Here, we will discuss these issues and provide a comprehensive overview of problematic points regarding controls in microbiome research, and of the current standards in this area.
Asunto(s)
Microbiota , Investigación/normas , Humanos , Reproducibilidad de los ResultadosRESUMEN
The Gram-positive enteropathogen Clostridioides difficile (Clostridium difficile) is the major cause of healthcare-associated diarrhoea and is also an important cause of community-acquired infectious diarrhoea. Considering the burden of the disease, many studies have employed whole-genome sequencing of bacterial isolates to identify factors that contribute to virulence and pathogenesis. Though extrachromosomal elements (ECEs) such as plasmids are important for these processes in other bacteria, the few characterized plasmids of C. difficile have no relevant functions assigned and no systematic identification of plasmids has been carried out to date. Here, we perform an in silico analysis of publicly available sequence data to show that ~13â% of all C. difficile strains contain ECEs, with 1-6 elements per strain. Our approach identifies known plasmids (e.g. pCD6, pCD630 and cloning plasmids) and six novel putative plasmid families. Our study shows that plasmids are abundant and may encode functions that are relevant for C. difficile physiology. The newly identified plasmids may also form the basis for the construction of novel cloning plasmids for C. difficile that are compatible with existing tools.
Asunto(s)
Clostridioides difficile/genética , Plásmidos/genética , Clostridioides difficile/patogenicidad , Clostridioides difficile/fisiología , Análisis por Conglomerados , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Bases de Datos Genéticas , Farmacorresistencia Bacteriana/genética , Sistemas de Lectura Abierta/genética , Plásmidos/metabolismo , Factores de Virulencia/genéticaRESUMEN
Humans are not autonomous entities. We are all living in a complex environment, interacting not only with our peers, but as true holobionts; we are also very much in interaction with our coexisting microbial ecosystems living on and especially within us, in the intestine. Intestinal microorganisms, often collectively referred to as intestinal microbiota, contribute significantly to our daily energy uptake by breaking down complex carbohydrates into simple sugars, which are fermented to short-chain fatty acids and subsequently absorbed by human cells. They also have an impact on our immune system, by suppressing or enhancing the growth of malevolent and beneficial microbes. Our lifestyle can have a large influence on this ecosystem. What and how much we consume can tip the ecological balance in the intestine. A "western diet" containing mainly processed food will have a different effect on our health than a balanced diet fortified with pre- and probiotics. In recent years, new technologies have emerged, which made a more detailed understanding of microbial communities and ecosystems feasible. This includes progress in the sequencing of PCR-amplified phylogenetic marker genes as well as the collective microbial metagenome and metatranscriptome, allowing us to determine with an increasing level of detail, which microbial species are in the microbiota, understand what these microorganisms do and how they respond to changes in lifestyle and diet. These new technologies also include the use of synthetic and in vitro systems, which allow us to study the impact of substrates and addition of specific microbes to microbial communities at a high level of detail, and enable us to gather quantitative data for modelling purposes. Here, we will review the current state of microbiome research, summarizing the computational methodologies in this area and highlighting possible outcomes for personalized nutrition and medicine.