Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JAMA Oncol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115975

RESUMEN

Importance: Postmastectomy radiation therapy (PMRT) improves local-regional disease control and patient survival. Hypofractionation (HF) regimens have comparable efficacy and complication rates with improved quality of life compared with conventional fractionation (CF) schedules. However, the use of HF after mastectomy in patients undergoing breast reconstruction has not been prospectively examined. Objective: To compare HF and CF PMRT outcomes after implant-based reconstruction. Design, Setting, and Participants: This randomized clinical trial assessed patients 18 years or older undergoing mastectomy and immediate expander or implant reconstruction for breast cancer (Tis, TX, or T1-3) and unilateral PMRT from March 8, 2018, to November 3, 2021 (median [range] follow-up, 40.4 [15.4-63.0] months), at 16 US cancer centers or hospitals. Analyses were conducted between September and December 2023. Interventions: Patients were randomized 1:1 to HF or CF PMRT. Chest wall doses were 4256 cGy for 16 fractions for HF and 5000 cGy for 25 fractions for CF. Chest wall toxic effects were defined as a grade 3 or higher adverse event. Main Outcomes and Measures: The primary outcome was the change in physical well-being (PWB) domain of the Functional Assessment of Cancer Therapy-Breast (FACT-B) quality-of-life assessment tool at 6 months after starting PMRT, controlling for age. Secondary outcomes included toxic effects and cancer recurrence. Results: Of 400 women (201 in the CF arm and 199 in the HF arm; median [range] age, 47 [23-79] years), 330 patients had PWB scores at baseline and at 6 months. There was no difference in the change in PWB between the study arms (estimate, 0.13; 95% CI, -0.86 to 1.11; P = .80), but there was a significant interaction between age group and study arm (P = .03 for interaction). Patients younger than 45 years had higher 6-month absolute PWB scores if treated with HF rather than CF regimens (23.6 [95% CI, 22.7-24.6] vs 22.0 [95% CI, 20.7-23.3]; P = .047) and reported being less bothered by adverse effects (mean [SD], 3.0 [0.9] in the HF arm and 2.6 [1.2] in the CF arm; P = .02) or nausea (mean [SD], 3.8 [0.4] in the HF arm and 3.6 [0.8] in the CF arm; P = .04). In the as-treated cohort, there were 23 distant (11 in the HF arm and 12 in the CF arm) and 2 local-regional (1 in the HF arm and 1 in the CF arm) recurrences. Chest wall toxic effects occurred in 39 patients (20 in the HF arm and 19 in the CF arm) at a median (IQR) of 7.2 (1.8-12.9) months. Fractionation was not associated with chest wall toxic effects on multivariate analysis (HF arm: hazard ratio, 1.02; 95% CI, 0.52-2.00; P = .95). Fewer patients undergoing HF vs CF regimens had a treatment break (5 [2.7%] vs 15 [7.7%]; P = .03) or required unpaid time off from work (17 [8.5%] vs 34 [16.9%]; P = .02). Conclusions and Relevance: In this randomized clinical trial, the HF regimen did not significantly improve change in PWB compared with the CF regimen. These data add to the increasing experience with HF PMRT in patients with implant-based reconstruction. Trial Registration: ClinicalTrials.gov Identifier: NCT03422003.

2.
JTCVS Open ; 16: 919-928, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38204675

RESUMEN

Background: Radiotherapy (RT) is integral to breast cancer treatment, especially in the current era that emphasizes breast conservation. The aim of our study was to determine the incidence of subsequent primary lung cancer after RT exposure for breast cancer over a time span of 3 decades to quantify this risk over time as modern oncologic treatment continues to evolve. Methods: The SEER (Surveillance, Epidemiology, and End Results) database was queried from 1988 to 2014 for patients diagnosed with nonmetastatic breast cancer. Patients who subsequently developed primary lung cancer were identified. Multivariable regression modeling was performed to identify independent factors associated with the development of lung cancer stratified by follow up intervals of 5 to 9 years, 10 to 15 years, and >15 years after breast cancer diagnosis. Results: Of the 612,746 patients who met our inclusion criteria, 319,014 (52%) were irradiated. primary lung cancer developed in 5556 patients (1.74%) in the RT group versus 4935 patients (1.68%) in the non-RT group. In a multivariable model stratified by follow-up duration, the overall HR of developing subsequent ipsilateral lung cancer in the RT group was 1.14 (P = .036) after 5 to 9 years of follow-up, 1.28 (P = .002) after 10 to 15 years of follow-up, and 1.30 (P = .014) after >15 years of follow-up. The HR of contralateral lung cancer was not increased at any time interval. Conclusions: The increased risk of developing a primary lung cancer secondary to RT exposure for breast cancer is much lower than previously published. Modern RT techniques may have contributed to the improved risk profile, and this updated study is important for counseling and surveillance of breast cancer patients.

3.
JACC CardioOncol ; 5(6): 775-787, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38205000

RESUMEN

Background: Radiotherapy may cause grade ≥3 cardiac events, necessitating a better understanding of risk factors. The potential predictive role of imaging biomarkers with radiotherapy doses for cardiac event occurrence has not been studied. Objectives: The aim of this study was to establish the associations between cardiac substructure dose and coronary artery calcium (CAC) scores and cardiac event occurrence. Methods: A retrospective cohort analysis included patients with locally advanced non-small cell lung cancer treated with radiotherapy (2006-2018). Cardiac substructures, including the left anterior descending coronary artery, left main coronary artery, left circumflex coronary artery, right coronary artery, and TotalLeft (left anterior descending, left main, and left circumflex coronary arteries), were contoured. Doses were measured in 2-Gy equivalent units, and visual CAC scoring was compared with automated scoring. Grade ≥3 adverse cardiac events were recorded. Time-dependent receiver-operating characteristic modeling, the log-rank statistic, and competing-risk models were used to measure prediction performance, threshold modeling, and the cumulative incidence of cardiac events, respectively. Results: Of the 233 eligible patients, 61.4% were men, with a median age of 68.1 years (range: 34.9-90.7 years). The median follow-up period was 73.7 months (range: 1.6-153.9 months). Following radiotherapy, 22.3% experienced cardiac events, within a median time of 21.5 months (range: 1.7-118.9 months). Visual CAC scoring showed significant correlation with automated scoring (r = 0.72; P < 0.001). In a competing-risk multivariable model, TotalLeft volume receiving 15 Gy (per 1 cc; HR: 1.38; 95% CI: 1.11-1.72; P = 0.004) and CAC score >5 (HR: 2.51; 95% CI: 1.08-5.86; P = 0.033) were independently associated with cardiac events. A model incorporating age, TotalLeft CAC (score >5), and volume receiving 15 Gy demonstrated a higher incidence of cardiac events for a high-risk group (28.9%) compared with a low-risk group (6.9%) (P < 0.001). Conclusions: Adverse cardiac events associated with radiation occur in more than 20% of patients undergoing thoracic radiotherapy within a median time of <2 years. The present findings provide further evidence to support significant associations between TotalLeft radiotherapy dose and cardiac events and define CAC as a predictive risk factor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA