Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nature ; 629(8013): 851-860, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38560995

RESUMEN

Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.


Asunto(s)
Aves , Evolución Molecular , Genoma , Filogenia , Animales , Aves/genética , Aves/clasificación , Aves/anatomía & histología , Encéfalo/anatomía & histología , Extinción Biológica , Genoma/genética , Genómica , Densidad de Población , Masculino , Femenino
2.
Nature ; 587(7833): 252-257, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177665

RESUMEN

Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.


Asunto(s)
Aves/clasificación , Aves/genética , Genoma/genética , Genómica/métodos , Genómica/normas , Filogenia , Animales , Pollos/genética , Conservación de los Recursos Naturales , Conjuntos de Datos como Asunto , Pinzones/genética , Humanos , Selección Genética/genética , Sintenía/genética
3.
Proc Natl Acad Sci U S A ; 120(7): e2201945119, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745783

RESUMEN

Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size (Ne) to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances. Our results suggest that patterns of population decline over the Pleistocene have been concentrated in particular regions of trait space associated with extreme reproductive strategies and low dispersal ability, consistent with an overall erosion of functional diversity. Further, species most sensitive to climate warming occupied a relatively narrow region of functional space, indicating that the largest potential population increases and decreases under climate change will occur among species with relatively similar trait sets. Overall, our results identify fluctuations in functional space of extant species over evolutionary timescales and represent the demographic-based vulnerability of different regions of functional space among these taxa. The integration of paleodemographic dynamics with functional trait data enhances our ability to quantify losses of biosphere integrity before anthropogenic disturbances and attribute contemporary biodiversity loss to different drivers over time.


Asunto(s)
Biodiversidad , Biota , Humanos , Animales , Factores de Tiempo , Aves/genética , Cambio Climático , Ecosistema
4.
Mol Phylogenet Evol ; 175: 107559, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35803448

RESUMEN

As phylogenomics focuses on comprehensive taxon sampling at the species and population/subspecies levels, incorporating genomic data from historical specimens has become increasingly common. While historical samples can fill critical gaps in our understanding of the evolutionary history of diverse groups, they also introduce additional sources of phylogenomic uncertainty, making it difficult to discern novel evolutionary relationships from artifacts caused by sample quality issues. These problems highlight the need for improved strategies to disentangle artifactual patterns from true biological signal as historical specimens become more prevalent in phylogenomic datasets. Here, we tested the limits of historical specimen-driven phylogenomics to resolve subspecies-level relationships within a highly polytypic family, the New World quails (Odontophoridae), using thousands of ultraconserved elements (UCEs). We found that relationships at and above the species-level were well-resolved and highly supported across all analyses, with the exception of discordant relationships within the two most polytypic genera which included many historical specimens. We examined the causes of discordance and found that inferring phylogenies from subsets of taxa resolved the disagreements, suggesting that analyzing subclades can help remove artifactual causes of discordance in datasets that include historical samples. At the subspecies-level, we found well-resolved geographic structure within the two most polytypic genera, including the most polytypic species in this family, Northern Bobwhites (Colinus virginianus), demonstrating that variable sites within UCEs are capable of resolving phylogenetic structure below the species level. Our results highlight the importance of complete taxonomic sampling for resolving relationships among polytypic species, often through the inclusion of historical specimens, and we propose an integrative strategy for understanding and addressing the uncertainty that historical samples sometimes introduce to phylogenetic analyses.


Asunto(s)
Genoma , Genómica , Animales , Evolución Biológica , Genómica/métodos , Filogenia , Codorniz
5.
Mol Phylogenet Evol ; 166: 107333, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34688879

RESUMEN

Chalcophaps is a morphologically conserved genus of ground-walking doves distributed from India to mainland China, south to Australia, and across the western Pacific to Vanuatu. Here, we reconstruct the evolutionary history of this genus using DNA sequence data from two nuclear genes and one mitochondrial gene, sampled from throughout the geographic range of Chalcophaps. We find support for three major evolutionary lineages in our phylogenetic reconstruction, each corresponding to the three currently recognized Chalcophaps species. Despite this general concordance, we identify discordant mitochondrial and nuclear ancestries in the subspecies C. longirostris timorensis, raising further questions about the evolutionary history of this Timor endemic population. Within each of the three species, we find evidence for isolation by distance or hierarchical population structure, indicating an important role for geography in the diversification of this genus. Despite being distributed broadly across a highly fragmented geographic region known as a hotspot for avian diversification, the Chalcophaps doves show modest levels of phenotypic and genetic diversity, a pattern potentially explained by strong population connectivity owing to high overwater dispersal capability.


Asunto(s)
Columbidae , ADN Mitocondrial , Animales , Columbidae/genética , ADN Mitocondrial/química , ADN Mitocondrial/genética , Variación Genética , Filogenia , Filogeografía
7.
Proc Natl Acad Sci U S A ; 116(16): 7916-7925, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30936315

RESUMEN

Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyperdiverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass ∼47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation.


Asunto(s)
Passeriformes , Animales , Australia , Biodiversidad , Evolución Biológica , Fósiles , Nueva Zelanda , Passeriformes/clasificación , Passeriformes/genética , Passeriformes/fisiología , Filogenia
8.
Mol Phylogenet Evol ; 158: 107091, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33545275

RESUMEN

Building taxon-rich phylogenies is foundational for macroevolutionary studies. One approach to improve taxon sampling beyond individual studies is to build supermatricies of publicly available data, incorporating taxa sampled across different studies and utilizing different loci. Most existing supermatrix studies have focused on loci commonly sequenced with Sanger technology ("legacy" markers, such as mitochondrial data and small numbers of nuclear loci). However, incorporating phylogenomic studies into supermatrices allows problem nodes to be targeted and resolved with considerable amounts of data, while improving taxon sampling with legacy data. Here we estimate phylogeny from a galliform supermatrix which includes well-known model and agricultural species such as the chicken and turkey. We assembled a supermatrix comprising 4500 ultra-conserved elements (UCEs) collected as part of recent phylogenomic studies in this group and legacy mitochondrial and nuclear (intron and exon) sequences. Our resulting phylogeny included 88% of extant species and recovered well-accepted relationships with strong support. However, branch lengths, which are particularly important in down-stream macroevolutionary studies, appeared vastly skewed. Taxa represented only by rapidly evolving mitochondrial data had high proportions of missing data and exhibited long terminal branches. Conversely, taxa sampled for slowly evolving UCEs with low proportions of missing data exhibited substantially shorter terminal branches. We explored several branch length re-estimation methods with particular attention to terminal branches and conclude that re-estimation using well-sampled mitochondrial sequences may be a pragmatic approach to obtain trees suitable for macroevolutionary analysis.


Asunto(s)
Galliformes/clasificación , Animales , Núcleo Celular/genética , Bases de Datos Genéticas , Galliformes/genética , Galliformes/fisiología , Intrones , Mitocondrias/genética , Filogenia
9.
Mol Phylogenet Evol ; 155: 107013, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33217578

RESUMEN

Target capture sequencing effectively generates molecular marker arrays useful for molecular systematics. These extensive data sets are advantageous where previous studies using a few loci have failed to resolve relationships confidently. Moreover, target capture is well-suited to fragmented source DNA, allowing data collection from species that lack fresh tissues. Herein we use target capture to generate data for a phylogeny of the avian family Pipridae (manakins), a group that has been the subject of many behavioral and ecological studies. Most manakin species feature lek mating systems, where males exhibit complex behavioral displays including mechanical and vocal sounds, coordinated movements of multiple males, and high speed movements. We analyzed thousands of ultraconserved element (UCE) loci along with a smaller number of coding exons and their flanking regions from all but one species of Pipridae. We examined three different methods of phylogenetic estimation (concatenation and two multispecies coalescent methods). Phylogenetic inferences using UCE data yielded strongly supported estimates of phylogeny regardless of analytical method. Exon probes had limited capability to capture sequence data and resulted in phylogeny estimates with reduced support and modest topological differences relative to the UCE trees, although these conflicts had limited support. Two genera were paraphyletic among all analyses and data sets, with Antilophia nested within Chiroxiphia and Tyranneutes nested within Neopelma. The Chiroxiphia-Antilophia clade was an exception to the generally high support we observed; the topology of this clade differed among analyses, even those based on UCE data. To further explore relationships within this group, we employed two filtering strategies to remove low-information loci. Those analyses resulted in distinct topologies, suggesting that the relationships we identified within Chiroxiphia-Antilophia should be interpreted with caution. Despite the existence of a few continuing uncertainties, our analyses resulted in a robust phylogenetic hypothesis of the family Pipridae that provides a comparative framework for future ecomorphological and behavioral studies.


Asunto(s)
Sitios Genéticos , Passeriformes/clasificación , Passeriformes/genética , Filogenia , Animales , Secuencia de Bases , Exones/genética , Funciones de Verosimilitud , Especificidad de la Especie
10.
Syst Biol ; 67(3): 428-438, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29088474

RESUMEN

Evolutionary dynamics of abiotic ecological niches across phylogenetic history can shed light on large-scale biogeographic patterns, macroevolutionary rate shifts, and the relative ability of lineages to respond to global change. An unresolved question is how best to represent and reconstruct evolution of these complex traits at coarse spatial scales through time. Studies have approached this question by integrating phylogenetic comparative methods with niche estimates inferred from correlative and other models. However, methods for estimating niches often produce incomplete characterizations, as they are inferred from present-day distributions that may be limited in full expression of the fundamental ecological niche by biotic interactions, dispersal limitations, and the existing set of environmental conditions. Here, we test whether incomplete niche characterizations inherent in most estimates of species' niches bias phylogenetic reconstructions of niche evolution, using simulations of virtual species with known niches. Results establish that incompletely characterized niches inflate estimates of evolutionary change and lead to error in ancestral state reconstructions. Our analyses also provide a potential mechanism to explain the frequent observation that maximum thermal tolerances are more conserved than minimum thermal tolerances: populations and species experience more spatial variation in minimum temperature than in maximum temperature across their distributions and, consequently, may experience stronger diversifying selection for cold tolerance.


Asunto(s)
Evolución Biológica , Simulación por Computador , Ecosistema , Modelos Biológicos , Ambiente
11.
Mol Phylogenet Evol ; 128: 162-171, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30017823

RESUMEN

Phylogenetic relationships among swifts of the morphologically conservative genus Chaetura were studied using mitochondrial and nuclear DNA sequences. Taxon sampling included all species and 21 of 30 taxa (species and subspecies) within Chaetura. Our results indicate that Chaetura is monophyletic and support the division of the genus into the two subgenera previously identified using plumage characters. However, our genetic data, when considered in combination with phenotypic data, appear to be at odds with the current classification of some species of Chaetura. We recommend that C. viridipennis, currently generally treated as specifically distinct from C. chapmani, be returned to its former status as C. chapmani viridipennis, and that C. andrei, now generally regarded as synonymous with C. vauxi aphanes, again be recognized as a valid species. Widespread Neotropical species C. spinicaudus is paraphyletic with respect to more range-restricted species C. fumosa, C. egregia, and C. martinica. Geographically structured genetic variation within some other species of Chaetura, especially notable in C. cinereiventris, suggests that future study may lead to recognition of additional species in this genus. Biogeographic analysis indicated that Chaetura originated in South America and identified several dispersal events to Middle and North America following the formation of the Isthmus of Panama.


Asunto(s)
Aves/clasificación , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Mitocondrias/genética , América del Norte , Panamá , Filogenia , Estaciones del Año , América del Sur , Especificidad de la Especie
12.
Syst Biol ; 66(5): 857-879, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369655

RESUMEN

Phylogenomics, the use of large-scale data matrices in phylogenetic analyses, has been viewed as the ultimate solution to the problem of resolving difficult nodes in the tree of life. However, it has become clear that analyses of these large genomic data sets can also result in conflicting estimates of phylogeny. Here, we use the early divergences in Neoaves, the largest clade of extant birds, as a "model system" to understand the basis for incongruence among phylogenomic trees. We were motivated by the observation that trees from two recent avian phylogenomic studies exhibit conflicts. Those studies used different strategies: 1) collecting many characters [$\sim$ 42 mega base pairs (Mbp) of sequence data] from 48 birds, sometimes including only one taxon for each major clade; and 2) collecting fewer characters ($\sim$ 0.4 Mbp) from 198 birds, selected to subdivide long branches. However, the studies also used different data types: the taxon-poor data matrix comprised 68% non-coding sequences whereas coding exons dominated the taxon-rich data matrix. This difference raises the question of whether the primary reason for incongruence is the number of sites, the number of taxa, or the data type. To test among these alternative hypotheses we assembled a novel, large-scale data matrix comprising 90% non-coding sequences from 235 bird species. Although increased taxon sampling appeared to have a positive impact on phylogenetic analyses the most important variable was data type. Indeed, by analyzing different subsets of the taxa in our data matrix we found that increased taxon sampling actually resulted in increased congruence with the tree from the previous taxon-poor study (which had a majority of non-coding data) instead of the taxon-rich study (which largely used coding data). We suggest that the observed differences in the estimates of topology for these studies reflect data-type effects due to violations of the models used in phylogenetic analyses, some of which may be difficult to detect. If incongruence among trees estimated using phylogenomic methods largely reflects problems with model fit developing more "biologically-realistic" models is likely to be critical for efforts to reconstruct the tree of life. [Birds; coding exons; GTR model; model fit; Neoaves; non-coding DNA; phylogenomics; taxon sampling.].


Asunto(s)
Aves/clasificación , Clasificación/métodos , Conjuntos de Datos como Asunto , Filogenia , Animales , Genoma/genética , Genómica , Modelos Biológicos
13.
Mol Biol Evol ; 33(4): 1110-25, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26715628

RESUMEN

Production of massive DNA sequence data sets is transforming phylogenetic inference, but best practices for analyzing such data sets are not well established. One uncertainty is robustness to missing data, particularly in coalescent frameworks. To understand the effects of increasing matrix size and loci at the cost of increasing missing data, we produced a 90 taxon, 2.2 megabase, 4,800 locus sequence matrix of landfowl using target capture of ultraconserved elements. We then compared phylogenies estimated with concatenated maximum likelihood, quartet-based methods executed on concatenated matrices and gene tree reconciliation methods, across five thresholds of missing data. Results of maximum likelihood and quartet analyses were similar, well resolved, and demonstrated increasing support with increasing matrix size and sparseness. Conversely, gene tree reconciliation produced unexpected relationships when we included all informative loci, with certain taxa placed toward the root compared with other approaches. Inspection of these taxa identified a prevalence of short average contigs, which potentially biased gene tree inference and caused erroneous results in gene tree reconciliation. This suggests that the more problematic missing data in gene tree-based analyses are partial sequences rather than entire missing sequences from locus alignments. Limiting gene tree reconciliation to the most informative loci solved this problem, producing well-supported topologies congruent with concatenation and quartet methods. Collectively, our analyses provide a well-resolved phylogeny of landfowl, including strong support for previously problematic relationships such as those among junglefowl (Gallus), and clarify the position of two enigmatic galliform genera (Lerwa, Melanoperdix) not sampled in previous molecular phylogenetic studies.


Asunto(s)
Evolución Molecular , Galliformes/genética , Filogenia , Análisis de Secuencia de ADN/métodos , Animales , Sesgo , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Genéticos
14.
Proc Biol Sci ; 284(1854)2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28469029

RESUMEN

Dispersal ability is a key factor in determining insular distributions and island community composition, yet non-vagile terrestrial organisms widely occur on oceanic islands. The landfowl (pheasants, partridges, grouse, turkeys, quails and relatives) are generally poor dispersers, but the Old World quail (Coturnix) are a notable exception. These birds evolved small body sizes and high-aspect-ratio wing shapes, and hence are capable of trans-continental migrations and trans-oceanic colonization. Two monotypic partridge genera, Margaroperdix of Madagascar and Anurophasis of alpine New Guinea, may represent additional examples of trans-marine dispersal in landfowl, but their body size and wing shape are typical of poorly dispersive continental species. Here, we estimate historical relationships of quail and their relatives using phylogenomics, and infer body size and wing shape evolution in relation to trans-marine dispersal events. Our results show that Margaroperdix and Anurophasis are nested within the Coturnix quail, and are each 'island giants' that independently evolved from dispersive, Coturnix-like ancestral populations that colonized and were subsequently isolated on Madagascar and New Guinea. This evolutionary cycle of gain and loss of dispersal ability, coupled with extinction of dispersive taxa, can result in the false appearance that non-vagile taxa somehow underwent rare oceanic dispersal.


Asunto(s)
Distribución Animal , Evolución Biológica , Galliformes/clasificación , Filogenia , Animales , Coturnix , Islas , Madagascar , Nueva Guinea
15.
Mol Phylogenet Evol ; 109: 217-225, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28088402

RESUMEN

The phylogeny of the Phasianidae (pheasants, partridges, and allies) has been studied extensively. However, these studies have largely ignored three enigmatic genera because of scarce DNA source material and limited overlapping phylogenetic data: blood pheasants (Ithaginis), snow partridges (Lerwa), and long-billed partridges (Rhizothera). Thus, phylogenetic positions of these three genera remain uncertain in what is otherwise a well-resolved phylogeny. Previous studies using different data types place Lerwa and Ithaginis in similar positions, but the absence of overlapping data means the relationship between them could not be inferred. Rhizothera was originally described in the genus Perdix (true partridges), although a partial cytochrome b (CYB) sequence suggests it is sister to Pucrasia (koklass pheasant). To identify robust relationships among Ithaginis, Lerwa, Rhizothera, and their phasianid relatives, we used 3692 ultra-conserved element (UCE) loci and complete mitogenomes from 19 species including previously hypothesized relatives of the three focal genera and representatives from all major phasianid clades. We used DNA extracted from historical specimen toepads for species that lacked fresh tissue in museum collections. Maximum likelihood and multispecies coalescent UCE analyses strongly supported Lerwa sister to a large clade which included Ithaginis at its base, and also including turkey, grouse, typical pheasants, tragopans, Pucrasia, and Perdix. Rhizothera was also in this clade, sister to a diverse group comprising Perdix, typical pheasants, Pucrasia, turkey and grouse. Mitogenomic genealogies differed from UCEs topologies, supporting a sister relationship between Ithaginis and Lerwa rather than a grade. The position of Rhizothera using mitogenomes depended on analytical choices. Unpartitioned and codon-based analyses placed Rhizothera sister to a tragopan clade, whereas a partitioned DNA model of the mitogenome was congruent with UCE results. In all mitogenome analyses, Pucrasia was sister to a clade including Perdix and the typical pheasants with high support, in contrast to UCEs and published nuclear intron data. Due to the strong support and consistent topology provided by all UCE analyses, we have identified phylogenetic relationships of these three enigmatic, poorly-studied, phasianid taxa.


Asunto(s)
Bases de Datos Genéticas , Galliformes/clasificación , Galliformes/genética , Genoma Mitocondrial , Genómica , Filogenia , Animales , Secuencia de Bases , Núcleo Celular/genética , ADN Mitocondrial/genética , Especificidad de la Especie
16.
Mol Phylogenet Evol ; 102: 320-30, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27369454

RESUMEN

The Cracidae (curassows, guans, and chachalacas) include some of the most spectacular and endangered Neotropical bird species. They lack a comprehensive phylogenetic hypothesis, hence their geographic origin and the history of their diversification remain unclear. We present a species-level phylogeny of Cracidae inferred from a matrix of 430 ultraconserved elements (UCEs; at least one species sampled per genus) and eight more variable loci (introns and mtDNA; all available species). We use this phylogeny along with probabilistic biogeographic modeling to test whether Gondwanan vicariance, ancient dispersal to South America, ancient dispersal from South America, or massive global cooling isolated cracids in the Neotropics. Contrary to previous estimates that extant cracids diversified in the Cretaceous, our fossil-calibrated divergence time estimates instead support that crown Cracidae originated in the late Miocene. Species-rich genera Crax, Penelope, and Ortalis began diversifying as recently as 3Mya. Biogeographic reconstructions indicate that modern cracids originated in Mesoamerica and were isolated from a widespread Laurasian ancestor, consistent with the massive global cooling hypothesis. Current South American diversity is the result of multiple colonization events following uplift of the Panamanian Isthmus, coupled with rapid diversification and evolution of secondary sympatry. Of the four major cracid lineages (curassows, chachalacas, typical guans, horned guan), the only lineage that has failed to colonize and diversify South America is the unique horned guan (Oreophasis derbianus), which is sister to curassows and chachalacas rather than typical guans.


Asunto(s)
Galliformes/clasificación , Mitocondrias/genética , Animales , Evolución Biológica , ADN Mitocondrial/química , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Fósiles/historia , Galliformes/genética , Sitios Genéticos , Historia Antigua , Intrones , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , NADH Deshidrogenasa/química , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN
17.
Mol Phylogenet Evol ; 98: 123-32, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26879712

RESUMEN

The Holarctic phasianid clade of the grouse and ptarmigan has received substantial attention in areas such as evolution of mating systems, display behavior, and population ecology related to their conservation and management as wild game species. There are multiple molecular phylogenetic studies that focus on grouse and ptarmigan. In spite of this, there is little consensus regarding historical relationships, particularly among genera, which has led to unstable and partial taxonomic revisions. We estimated the phylogeny of all currently recognized species using a combination of novel data from seven nuclear loci (largely intron sequences) and published data from one additional autosomal locus, two W-linked loci, and four mitochondrial regions. To explore relationships among genera and assess paraphyly of one genus more rigorously, we then added over 3000 ultra-conserved element (UCE) loci (over 1.7million bp) gathered using Illumina sequencing. The UCE topology agreed with that of the combined nuclear intron and previously published sequence data with 100% bootstrap support for all relationships. These data strongly support previous studies separating Bonasa from Tetrastes and Dendragapus from Falcipennis. However, the placement of Lagopus differed from previous studies, and we found no support for Falcipennis monophyly. Biogeographic analysis suggests that the ancestors of grouse and ptarmigan were distributed in the New World and subsequently underwent at least four dispersal events between the Old and New Worlds. Divergence time estimates from maternally-inherited and autosomal markers show stark differences across this clade, with divergence time estimates from maternally-inherited markers being nearly half that of the autosomal markers at some nodes, and nearly twice that at other nodes.


Asunto(s)
Secuencia Conservada/genética , ADN Mitocondrial/genética , Galliformes/clasificación , Galliformes/genética , Intrones/genética , Filogenia , Animales , Núcleo Celular/genética , Evolución Molecular , Femenino , Masculino , Análisis de Secuencia de ADN
18.
Mol Ecol ; 24(24): 6256-77, 2015 12.
Artículo en Inglés | MEDLINE | ID: mdl-26576683

RESUMEN

In the Andes, humid-forest organisms frequently exhibit pronounced genetic structure and geographic variation in phenotype, often coincident with physical barriers to dispersal. However, phylogenetic relationships of clades have often been difficult to resolve due to short internodes. Consequently, even in taxa with well-defined genetic structure, the temporal and geographic sequences of dispersal and vicariance events that led to this differentiation have remained opaque, hindering efforts to test the association between diversification and earth history and to understand the assembly of species-rich communities on Andean slopes. Here, we use mitochondrial DNA and thousands of short-read sequences generated with genotyping by sequencing (GBS) to examine the geographic history of speciation in a lineage of passerine birds found in the humid forest of the Andes, the 'bay-backed' antpitta complex (Grallaria hypoleuca s. l). Mitochondrial DNA genealogies documented genetic structure among clade but were poorly resolved at nodes relevant for biogeographic inference. By contrast, relationships inferred from GBS loci were highly resolved and suggested a biogeographic history in which the ancestor originated in the northern Andes and dispersed south. Our results are consistent with a scenario of vicariant speciation wherein the range of a widespread ancestor was fragmented as a result of geologic or climatic change, rather than a stepping-stone series of dispersal events across pre-existing barriers. However, our study also highlights challenges of distinguishing dispersal-mediated speciation from static vicariance. Our results further demonstrate the substantial evolutionary timescale over which the diverse biota of the Andes was assembled.


Asunto(s)
Especiación Genética , Genética de Población , Passeriformes/clasificación , Filogenia , Animales , ADN Mitocondrial/genética , Genotipo , Modelos Genéticos , Passeriformes/genética , Análisis de Secuencia de ADN , América del Sur
19.
Mol Phylogenet Evol ; 83: 118-36, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25463752

RESUMEN

Monarch flycatchers are a major component of Australo-Pacific and Wallacean avifaunas. To date, the family has received incomplete attention by molecular systematists who focused on subclades with minimal character and/or taxon sampling. As a result, Monarchidae taxonomy is still out-of-date, and biogeographic reconstructions have been based on poorly-resolved phylogenies, limiting their interpretation. Here, we produced a comprehensive, molecular phylogeny of the Monarchidae inferred from mitochondrial and nuclear loci using both concatenated and multilocus coalescent frameworks. We sampled 92% of the 99 recognized monarchid biological species and included deeper sampling within several phylogenetic species complexes, including Monarcha castaneiventris, Symposiachrus barbatus, and Terpsiphone rufiventer. Melampitta is identified as sister to the monarch flycatchers, which themselves comprise four major lineages. The first lineage comprises Terpsiphone and allies, the second lineage is Grallina, the third is Arses and Myiagra, and the fourth lineage comprises a diverse assemblage of genera including the "core monarchs" and the most geographically isolated groups like Chasiempis (Hawaii) and Pomarea (eastern Polynesia). Gene tree discordance was evident in Myiagra, which has implications for basal lineages in the genus (e.g., M. azureocapilla, M. hebetior, and M. alecto). Numerous genera within the core monarchs are paraphyletic, including Mayrornis and Pomarea, whereas the validity of others such as Metabolus are questionable. We recognize polytypic taxa as multiple species, including Lamprolia victoriae and Myiagra azureocapilla. In general, the topology of species complexes included short internodes that were not well resolved, owing to their rapid diversification across island archipelagos. Terpsiphone rufiventer comprises multiple lineages, including a heretofore-unappreciated West African lineage, but relationships within these rapid radiations will require extensive genomic sampling for further resolution. This study establishes a new benchmark for Monarchidae systematics and it provides an excellent framework for future work on biogeography and character evolution in a diverse Australo-Papuan radiation.


Asunto(s)
Evolución Biológica , Filogenia , Pájaros Cantores/clasificación , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Funciones de Verosimilitud , Modelos Genéticos , Análisis de Secuencia de ADN , Pájaros Cantores/genética
20.
Mol Phylogenet Evol ; 82 Pt A: 87-94, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25307119

RESUMEN

The avian genus Ficedula has been a model system for studying speciation, genomics, biogeography, and the evolution of migratory behavior. However, no multi-locus molecular phylogenetic hypothesis exists for the genus. We expanded taxon and character sampling over previous studies and produced a robust hypothesis of relationships for the genus. Many previous findings, such as the inclusion of Muscicapella and exclusion of Ficedula monileger from the genus, were verified, but many relationships differed compared to previous work. Some of the differences were due to increased sampling, but others were due to problematic sequence data produced from DNA extracted from historical museum specimens. The new phylogenetic hypothesis resulted in a simpler biogeographic scenario with fewer transitions between regions and fewer transitions between seasonally migratory and resident character states. Notably, all species endemic to the Philippines and Wallacea formed a clade, which included Ficedula dumetoria of the Sunda Shelf and Lesser Sundas. In addition, Ficedula hyperythra was not monophyletic; samples from Philippine populations formed a clade distantly related to a clade that comprised all other sampled populations.


Asunto(s)
Evolución Biológica , Filogenia , Pájaros Cantores/clasificación , Migración Animal , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Intrones , Funciones de Verosimilitud , Filipinas , Análisis de Secuencia de ADN , Pájaros Cantores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA