Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063227

RESUMEN

Regulation of translation is a crucial step in gene expression. Developmental signals and environmental stimuli dynamically regulate translation via upstream small open reading frames (uORFs) and ribosome pausing. Recent studies have revealed many plant genes that are specifically regulated by uORF translation following changes in growth conditions, but ribosome-pausing events are less well understood. In this study, we performed ribosome profiling (Ribo-seq) of etiolated maize (Zea mays) seedlings exposed to light for different durations, revealing hundreds of genes specifically regulated at the translation level during the early period of light exposure. We identified over 400 ribosome-pausing events in the dark that were rapidly released after illumination. These results suggested that ribosome pausing negatively regulates translation from specific genes, a conclusion that was supported by a non-targeted proteomics analysis. Importantly, we identified a conserved nucleotide motif downstream of the pausing sites. Our results elucidate the role of ribosome pausing in the control of gene expression in plants; the identification of the cis-element at the pausing sites provides insight into the mechanisms behind translation regulation and potential targets for artificial control of plant translation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Sistemas de Lectura Abierta , Proteínas de Plantas , Biosíntesis de Proteínas , Ribosomas , Plantones , Zea mays , Zea mays/genética , Zea mays/metabolismo , Ribosomas/metabolismo , Plantones/genética , Plantones/metabolismo , Plantones/efectos de la radiación , Plantones/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas de Lectura Abierta/genética , Luz , Oscuridad , Proteómica/métodos
2.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39201312

RESUMEN

Oil palm is a versatile oil crop with numerous applications. Significant progress has been made in applying histological techniques in oil palm research in recent years. Whole genome sequencing of oil palm has been carried out to explain the function and structure of the order genome, facilitating the development of molecular markers and the construction of genetic maps, which are crucial for studying important traits and genetic resources in oil palm. Transcriptomics provides a powerful tool for studying various aspects of plant biology, including abiotic and biotic stresses, fatty acid composition and accumulation, and sexual reproduction, while proteomics and metabolomics provide opportunities to study lipid synthesis and stress responses, regulate fatty acid composition based on different gene and metabolite levels, elucidate the physiological mechanisms in response to abiotic stresses, and explain intriguing biological processes in oil palm. This paper summarizes the current status of oil palm research from a multi-omics perspective and hopes to provide a reference for further in-depth research on oil palm.


Asunto(s)
Arecaceae , Metabolómica , Proteómica , Arecaceae/genética , Arecaceae/metabolismo , Metabolómica/métodos , Proteómica/métodos , Genómica/métodos , Genoma de Planta , Aceite de Palma , Estrés Fisiológico/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas
3.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39062936

RESUMEN

Oil palm (Elaeis guineensis Jacq.) is a typical tropical oil crop with a temperature of 26-28 °C, providing approximately 35% of the total world's vegetable oil. Growth and productivity are significantly affected by low-temperature stress, resulting in inhibited growth and substantial yield losses. To comprehend the intricate molecular mechanisms underlying the response and acclimation of oil palm under low-temperature stress, multi-omics approaches, including metabolomics, proteomics, and transcriptomics, have emerged as powerful tools. This comprehensive review aims to provide an in-depth analysis of recent advancements in multi-omics studies on oil palm under low-temperature stress, including the key findings from omics-based research, highlighting changes in metabolite profiles, protein expression, and gene transcription, as well as including the potential of integrating multi-omics data to reveal novel insights into the molecular networks and regulatory pathways involved in the response to low-temperature stress. This review also emphasizes the challenges and prospects of multi-omics approaches in oil palm research, providing a roadmap for future investigations. Overall, a better understanding of the molecular basis of the response of oil palm to low-temperature stress will facilitate the development of effective breeding and biotechnological strategies to improve the crop's resilience and productivity in changing climate scenarios.


Asunto(s)
Arecaceae , Metabolómica , Proteómica , Transcriptoma , Metabolómica/métodos , Proteómica/métodos , Arecaceae/metabolismo , Arecaceae/genética , Frío , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica/métodos , Estrés Fisiológico , Respuesta al Choque por Frío , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Multiómica
4.
J Transl Med ; 21(1): 889, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062495

RESUMEN

Osteoporosis is currently the most prevalent bone disorder worldwide and is characterized by low bone mineral density and an overall increased risk of fractures. To treat osteoporosis, a range of drugs targeting bone homeostasis have emerged in clinical practice, including anti-osteoclast agents such as bisphosphonates and denosumab, bone formation stimulating agents such as teriparatide, and selective oestrogen receptor modulators. However, traditional clinical medicine still faces challenges related to side effects and high costs of these types of treatments. Nanomaterials (particularly gold nanoparticles [AuNPs]), which have unique optical properties and excellent biocompatibility, have gained attention in the field of osteoporosis research. AuNPs have been found to promote osteoblast differentiation, inhibit osteoclast formation, and block the differentiation of adipose-derived stem cells, which thus is believed to be a novel and promising candidate for osteoporosis treatment. This review summarizes the advances and drawbacks of AuNPs in their synthesis and the mechanisms in bone formation and resorption in vitro and in vivo, with a focus on their size, shape, and chemical composition as relevant parameters for the treatment of osteoporosis. Additionally, several important and promising directions for future studies are also discussed, which is of great significance for prevention and treatment of osteoporosis.


Asunto(s)
Conservadores de la Densidad Ósea , Nanopartículas del Metal , Osteoporosis , Humanos , Oro/uso terapéutico , Conservadores de la Densidad Ósea/farmacología , Conservadores de la Densidad Ósea/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Osteoporosis/tratamiento farmacológico , Teriparatido/uso terapéutico
5.
Altern Ther Health Med ; 29(7): 119-125, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37442187

RESUMEN

Background: Osteosarcoma (OS) is the most common bone malignancy, with a high mortality rate in adolescents. Despite advancements in therapeutic interventions, OS prognosis remains poor due to drug resistance. P21, a cyclin-dependent kinase inhibitor, plays a critical role in cell cycle regulation and has been implicated in OS pathogenesis. Cisplatin (DDP) is a conventional chemotherapeutic agent for OS, but its efficacy is often limited due to drug resistance. Azurin, a bacterial redox protein, has been reported to exhibit antitumor activity. However, its interaction with P21 in OS remains unexplored. In this study, we sought to investigate the impact of azurin on the cytotoxic effect of DDP against OS cells in relation to P21 expression. Methods: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to determine the level of p21 and apoptosis-related factors in U2OS cells. A Cell Counting Kit-8 (CCK-8) was used to examine the effects of azurin-p21 on the U2OS cell proliferation rate. Flow cytometry (FCM)was used to analyze the impact of azurin-P21 on the apoptosis/cell cycle. Enzyme-linked immunosorbent assay (ELISA) was used to analyze the effects of azurin-P21 on the secretion of oxygen free radicals, glutathione and glutathione peroxidase. Results: Azurin exhibited significant cytotoxic activity against U2OS cells expressing wild-type (WT) P21, with minimal impact on SAOS-2 and MG63 cells lacking endogenous P21. Azurin treatment resulted in increased expression of procaspase-3 and Bax, decreased expression of B-cell lymphoma-2 (Bcl-2) and a consequential increase in apoptosis. The depletion of P21 attenuated these effects, suggesting the crucial role of P21 in azurin-mediated cytotoxicity. Furthermore, azurin synergistically enhanced the cytotoxic effect of DDP against U2OS cells, which was mitigated by P21 depletion. Conclusions: Our findings demonstrated that azurin selectively induces apoptosis and cell cycle arrest in U2OS cells, which is mediated via P21. This study highlights the potential of azurin as a sensitizer for DDP in the treatment of OS. Future studies on DDP-resistant OS cells may further elucidate the clinical relevance of our findings.

6.
Med Sci Monit ; 26: e928400, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33370249

RESUMEN

BACKGROUND Soft-tissue sarcomas are a group of heterogeneous and rare mesenchymal tumors with aggressive behavior. We aimed to identify the molecular signatures of N6-methyladenosine (m6A) methylation regulators associated with patient prognosis using The Cancer Genome Atlas (TCGA) database. MATERIAL AND METHODS To evaluate the role of m6A in soft-tissue sarcomas, genomic and clinical data were downloaded from TCGA. The copy number variations (CNVs) and mutations of m6A regulators were analyzed. RESULTS Alterations of m6A regulators were common, and ALKBH5 showed the highest frequency of copy number gain, while ZC3H13 had the highest frequency of loss. CNVs and mutations were closely correlated with histology (P<0.001) and tumor size (P=0.040), and CNVs were correlated with mRNA expression. Furthermore, patients with gains of METTL16, RMB15, RMB15B, YTHDC, and YTHDF3 displayed poorer overall survival (OS), and patients with gains of RBM15 and YTHDC2 and loss of IGF2BP1 had poorer disease-free survival (DFS). Further analysis indicated that CNVs and mutations of KIAA1429, YTHDF3, and IGF2BP1 were independent risk factors predicting OS and DFS. Gain of "writers" with loss of "erasers" led to worse OS than gain of "writers". Genes involved in JAK2 oncogenic signature were enriched in cases of higher expressions of METTL16, YTHDC2, and YTHDF3. Similarly, the core serum response signature was enriched in patients with higher expressions of IGF2BP1, METTL16, RBM15, and YTHDC2. CONCLUSIONS Our study provides a useful molecular tool to predict the outcome of soft-tissue sarcomas and deepens our understanding of the molecular mechanisms of the development of the disease.


Asunto(s)
Adenosina/análogos & derivados , Metilación de ADN/genética , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Genoma Humano , Sarcoma/genética , Adenosina/metabolismo , Variaciones en el Número de Copia de ADN/genética , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Mutación/genética , Pronóstico , Modelos de Riesgos Proporcionales , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Cell Physiol Biochem ; 52(3): 368-381, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30845377

RESUMEN

BACKGROUND/AIMS: The present study aimed to explore the function of NEAT1 on non-small cell lung cancer (NSCLC), as well as its underlying mechanisms. METHODS: Quantitative realtime PCR (qRT-PCR) was used to measure NEAT1 expression in NSCLC tissues and cells. MTT assay and transwell assay were performed to detect cell proliferation, migration and invasion. Potential target genes were identified via luciferase reporter assay. Protein analysis was performed through western blotting. RESULTS: The expressions of NEAT1 were significantly higher in both of NSCLC tissues and cells than in normal controls. High expression of NEAT1 was significantly associated with TNM stage (P=0.000) and metastasis (P=0.000). NEAT1 knockdown inhibited the proliferation, migration and invasion of NSCLC cells. Hypoxia induction mediated by HIF-2α promoted EMT and NEAT1 expressions. Moreover, miR-101-3p was a target of NEAT1. We also found that SOX9 was a target of miR-101-3p. Oncogenic function of NEAT1 on NSCLC progression was mediated by miR-101-3p/SOX9/Wnt/ß-catenin signaling pathway. CONCLUSION: NEAT1 up-regulation induced by HIF-2α over-expression could promote the progression of NSCLC under hypoxic condition. Moreover, NEAT1 also takes part in NSCLC progression via miR-101-3p/SOX9/Wnt/ß-catenin axis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Factor de Transcripción SOX9/metabolismo , Antagomirs/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Estudios de Casos y Controles , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Persona de Mediana Edad , Estadificación de Neoplasias , Interferencia de ARN , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , Factor de Transcripción SOX9/antagonistas & inhibidores , Factor de Transcripción SOX9/genética , Vía de Señalización Wnt , beta Catenina/metabolismo
8.
Cell Physiol Biochem ; 52(2): 225-231, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30816670

RESUMEN

BACKGROUND/AIMS: The present study aimed to investigate the serum levels of adiponectin (APN) and adiponectin receptor 1 (AdipoR1) in patients with type 2 diabetes mellitus (T2DM) combined with macrovascular complications (MVC), as well as their correlation with clinical parameters. METHODS: A total of 60 T2DM patients were divided into 2 groups according to the presence of MVC: T2DM + MVC group (n=30) and T2DM group (n=30). Additionally, 30 healthy people were selected as control group (NC group). Clinical data and biological parameters were detected and recorded. T test was performed to compare the differences between two groups, and the results were corrected using Bonferroni method. Meanwhile, the correlation analysis and multiple stepwise regression analysis were used to analyze the association of APN and AdipoR1 with clinical factors. RESULTS: The levels of APN and AdipoR1 were significantly decreased in T2DM group and T2DM + MVC group compared with NC group, with the lowest value in T2DM + MVC group (all P<0.01). Serum APN levels were positively correlated with FINS and TG (r = 0.412, 0.316, respectively; both P<0.05), and negatively correlated with SBP, DBP and LDL-C (r = -0.292, -0.383, -0.334, respectively; all P<0.05). Serum levels of AdipoR1 were positively correlated with APN (r = 0.726, P<0.01), and negatively correlated with BMI, SBP, DBP, FBG, TC and LDL-C (r = -0.440, -0.446, -0.374, -0.444, -0.344, -0.709, respectively; all P<0.01). CONCLUSION: Serum levels of APN and AdipoR1 are significantly lower in T2DM group and T2DM + MVC group, showing lowest value in T2DM + MVC group. APN and AdipoR1 levels may influence glucose and lipid metabolism in T2DM patients.


Asunto(s)
Adiponectina/sangre , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Angiopatías Diabéticas/sangre , Metabolismo de los Lípidos , Receptores de Adiponectina/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad
9.
Cell Physiol Biochem ; 39(3): 1152-64, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27576607

RESUMEN

BACKGROUND: Acute spinal cord injury (SCI) leads to permanent disabilities. This study evaluated the neuroprotective effect of puerarin, a natural extract, in a rat model of SCI. METHODS: Acute SCI models were established in rats using a modified Allen's method. Locomotor function was evaluated using the BBB test. The histological changes in the spinal cord were observed by H&E staining. Neuron survival and glial cells activation were evaluated by immunostaining. ELISA and realtime PCR were used to measure secretion and gene expression of cytokines. TUNEL staining was used to examine cell apoptosis and western blot analysis was used to detect protein expression. RESULTS: Puerarin significantly increased BBB score in SCI rats, attenuated histological injury of spinal cord, decreased neuron loss, inhibited glial cells activation, alleviated inflammation, and inhibited cell apoptosis in the injured spinal cords. In addition, the downregulated PI3K and phospho-Akt protein expression were restored by puerarin. CONCLUSION: Puerarin accelerated locomotor function recovery and tissue repair of SCI rats, which is associated with its neuroprotection, glial cell activation suppression, anti-inflammatory and anti-apoptosis effects. These effects may be associated with the activation of PI3K/Akt signaling pathway.


Asunto(s)
Isoflavonas/farmacología , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Médula Espinal/efectos de los fármacos , Enfermedad Aguda , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Masculino , Actividad Motora/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/agonistas , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
10.
Jpn J Clin Oncol ; 46(3): 222-7, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26819280

RESUMEN

OBJECTIVES: ATPase family AAA domain-containing 2 plays an important role in tumor progression including cell cycle, proliferation, apoptosis and chemoresistance. However, the expression of ATPase family AAA domain-containing 2 in colorectal cancer and its significance are still unclear. The aim of this study was to examine the expression of ATPase family AAA domain-containing 2 in colorectal cancer. METHODS: Immunohistochemistry was used to determine the expression of ATPase family AAA domain-containing 2 in 155 colorectal cancer and 30 matched adjacent noncancerous tissues. The correlation of ATPase family AAA domain-containing 2 expression with clinicopathological variables was assessed using chi-square test. Patient survival was analyzed using the Kaplan-Meier and log-rank tests. Cox regression was performed for the multivariate analysis of prognostic factors. RESULTS: High expression of ATPase family AAA domain-containing 2 was detected in 58.1% of the colorectal cancers and was significantly associated with advanced tumor-node-metastasis stage (P = 0.044), poor differentiation (P = 0.028), deep infiltration (P < 0.001), lymphovascular invasion (P = 0.006), lymph node metastasis (P = 0.024) and recurrence (P = 0.022). Patients with high ATPase family AAA domain-containing 2 expression had significantly poorer overall survival and disease-free survival (both P < 0.001) when compared with patients with low expression of ATPase family AAA domain-containing 2. The multivariate analysis showed that ATPase family AAA domain-containing 2 was an independent factor for both overall survival (P = 0.003; hazard ratio (HR): 2.356; 95% confidence interval (CI): 1.335-4.158) and disease-free survival (P = 0.001; HR: 2.643; 95% CI: 1.489-4.693). CONCLUSIONS: These results showed that ATPase family AAA domain-containing 2 overexpression was associated with progression and prognosis of colorectal cancer.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Proteínas de Unión al ADN/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adulto , Anciano , Anciano de 80 o más Años , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Metástasis Linfática , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Valor Predictivo de las Pruebas , Pronóstico , Modelos de Riesgos Proporcionales , Regulación hacia Arriba
11.
Plant J ; 79(5): 797-809, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24923534

RESUMEN

RNA editing modifies cytidines (C) to uridines (U) at specific sites in the transcripts of mitochondria and plastids, altering the amino acid specified by the DNA sequence. Here we report the identification of a critical editing factor of mitochondrial nad7 transcript via molecular characterization of a small kernel 1 (smk1) mutant in Zea mays (maize). Mutations in Smk1 arrest both the embryo and endosperm development. Cloning of Smk1 indicates that it encodes an E-subclass pentatricopeptide repeat (PPR) protein that is targeted to mitochondria. Loss of SMK1 function abolishes the C â†’ U editing at the nad7-836 site, leading to the retention of a proline codon that is edited to encode leucine in the wild type. The smk1 mutant showed dramatically reduced complex-I assembly and NADH dehydrogenase activity, and abnormal biogenesis of the mitochondria. Analysis of the ortholog in Oryza sativa (rice) reveals that rice SMK1 has a conserved function in C â†’ U editing of the mitochondrial nad7-836 site. T-DNA knock-out mutants showed abnormal embryo and endosperm development, resulting in embryo or seedling lethality. The leucine at NAD7-279 is highly conserved from bacteria to flowering plants, and analysis of genome sequences from many plants revealed a molecular coevolution between the requirement for C â†’ U editing at this site and the existence of an SMK1 homolog. These results demonstrate that Smk1 encodes a PPR-E protein that is required for nad7-836 editing, and this editing is critical to NAD7 function in complex-I assembly in mitochondria, and hence to embryo and endosperm development in maize and rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/genética , Edición de ARN , Zea mays/genética , Secuencia de Aminoácidos , Evolución Biológica , Respiración de la Célula , ADN de Plantas/química , ADN de Plantas/genética , Endospermo/genética , Endospermo/crecimiento & desarrollo , Endospermo/ultraestructura , Mitocondrias/genética , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional , Oryza/crecimiento & desarrollo , Oryza/ultraestructura , Fenotipo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , ARN de Planta/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/ultraestructura , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/ultraestructura , Alineación de Secuencia , Análisis de Secuencia de ADN , Zea mays/crecimiento & desarrollo , Zea mays/ultraestructura
12.
Plant Physiol ; 166(4): 2028-39, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25341533

RESUMEN

The maize (Zea mays) gibberellin (GA)-deficient mutant dwarf1 (d1) displays dwarfism and andromonoecy (i.e. forming anthers in the female flower). Previous characterization indicated that the d1 mutation blocked three steps in GA biosynthesis; however, the locus has not been isolated and characterized. Here, we report that D1 encodes a GA 3-oxidase catalyzing the final step of bioactive GA synthesis. Recombinant D1 is capable of converting GA20 to GA1, GA20 to GA3, GA5 to GA3, and GA9 to GA4 in vitro. These reactions are widely believed to take place in the cytosol. However, both in vivo GFP fusion analysis and western-blot analysis of organelle fractions using a D1-specific antibody revealed that the D1 protein is dual localized in the nucleus and cytosol. Furthermore, the upstream gibberellin 20-oxidase1 (ZmGA20ox1) protein was found dual localized in the nucleus and cytosol as well. These results indicate that bioactive GA can be synthesized in the cytosol and the nucleus, two compartments where GA receptor Gibberellin-insensitive dwarf protein1 exists. Furthermore, the D1 protein was found to be specifically expressed in the stamen primordia in the female floret, suggesting that the suppression of stamen development is mediated by locally synthesized GAs.


Asunto(s)
Giberelinas/metabolismo , Oxigenasas de Función Mixta/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Zea mays/enzimología , Secuencia de Bases , Núcleo Celular/enzimología , Citosol/enzimología , Flores/enzimología , Flores/genética , Oxigenasas de Función Mixta/metabolismo , Datos de Secuencia Molecular , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Análisis de Secuencia de ADN , Zea mays/genética
13.
Sci Adv ; 10(27): eado4847, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968354

RESUMEN

Existing mid-infrared thermographic cameras rely on a stack of refractive lenses, resulting in bulky and heavy imaging systems that restrict their broader utility. Here, we demonstrate a lightweight metalens-based thermographic camera (MTC) enabled by a single 0.5-mm-thick, 3.7-g-weight, flat, and mass-producible metalens. The large aperture size (5 cm) of our metalens, when combined with an uncooled focal plane array, enables thermal imaging at distances of tens of meters. By computationally removing the veiling glare, our MTC realizes the temperature mapping with an inaccuracy of less than ±0.7% within the range of 35° to 700°C and shows exceptional environmental adaptability. Furthermore, by using intelligent algorithms and spectral filtering, our uncooled MTC enables visualization and quantification of the SF6 gas leakage at a long distance of 5 m, with a remarkable minimum detectable leak rate of 0.2 sccm. Our work opens the door to the lightweight and multifunctional intelligent thermal imaging systems.

14.
Genes (Basel) ; 15(9)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39336721

RESUMEN

Polyploidy, a prevalent event in plant evolution, drives phenotypic diversification and speciation. While transcriptional changes and regulation in polyploids have been extensively studied, the translational level impact remains largely unexplored. To address this gap, we conducted a comparative transcriptomic and translatomic analysis of cotton leaves from allopolyploid species G. hirsutum (AD1) and G. barbadense (AD2) relative to their model A-genome and D-genome diploid progenitors. Our data revealed that while allopolyploidization significantly affects the transcriptional landscape, its impact on translation was relatively modest, evidenced by a narrower expression range and fewer expression changes in ribosome-protected fragments than in mRNA levels. Allopolyploid-specific changes commonly identified in both AD1 and AD2 were observed in 7393 genes at either transcriptional or translational levels. Interestingly, the majority of translational changes exhibited concordant down-regulation in both ribosome-protected fragments and mRNA, particularly associated with terpenoid synthesis and metabolism (352 genes). Regarding translational efficiency (TE), at least one-fifth of cotton genes exhibit translational level regulation, with a general trend of more down-regulation (13.9-15.1%) than up-regulation (7.3-11.2%) of TE. The magnitude of translational regulation was slightly reduced in allopolyploids compared with diploids, and allopolyploidy tends to have a more profound impact on genes and functional associations with ultra-low TE. Moreover, we demonstrated a reduced extent of homeolog expression biases during translation compared with transcription. Our study provides insights into the regulatory consequences of allopolyploidy post-transcription, contributing to a comprehensive understanding of regulatory mechanisms of duplicated gene expression evolution.


Asunto(s)
Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Gossypium , Poliploidía , Biosíntesis de Proteínas , Gossypium/genética , Gossypium/crecimiento & desarrollo , Biosíntesis de Proteínas/genética , Genoma de Planta/genética , Transcriptoma/genética , Genes Duplicados/genética , Proteínas de Plantas/genética , Duplicación de Gen
15.
Front Plant Sci ; 15: 1468858, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39435019

RESUMEN

Coconut meat and coconut water have garnered significant attention for their richness in healthful flavonoids. However, the dynamics of flavonoid metabolites in coconut water during different developmental stages remain poorly understood. This study employed the metabolomics approach using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate the changes in flavonoid metabolite profiles in coconut water from two varieties, 'Wenye No.5'(W5) and Hainan local coconut (CK), across six developmental stages. The results showed that a total of 123 flavonoid metabolites including chalcones, dihydroflavonoids, dihydroflavonols, flavonoids, flavonols, flavonoid carboglycosides, and flavanols were identified in the coconut water as compared to the control. The total flavonoid content in both types of coconut water exhibited a decreasing trend with developmental progression, but the total flavonoid content in CK was significantly higher than that in W5. The number of flavonoid metabolites that differed significantly between the W5 and CK groups at different developmental stages were 74, 74, 60, 92, 40 and 54, respectively. KEGG pathway analysis revealed 38 differential metabolites involved in key pathways for flavonoid biosynthesis and secondary metabolite biosynthesis. This study provides new insights into the dynamics of flavonoid metabolites in coconut water and highlights the potential for selecting and breeding high-quality coconuts with enhanced flavonoid content. The findings have implications for the development of coconut-based products with improved nutritional and functional properties.

16.
PeerJ ; 12: e18049, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346073

RESUMEN

Lignans play a crucial role in maintaining plant growth, development, metabolism and stress resistance. Computed tomography (CT) imaging technology can be used to explore the internal structure and morphology of plants, and understanding the correlation between the two is highly significant. In this study, the content of lignan metabolites in coconut water was determined using liquid chromatography. The internal structure data of coconut fruit was obtained by CT scanning, and the relationship between lignan metabolites and CT image data at different developmental stages was evaluated using partial least square (PLS) regression. The results showed that the total lignan content in coconut water initially decreased, then increased, and gradually decreased after the maturity stage. The Wenye No. 5 variety exhibited higher levels of Epiturinol, Turbinol, Isobarinin-9'-o-glucoside, 5'-methoxy-rohanoside, Rohan rosin-4,4'-di-o-glucoside, turbinol-4-O-glucoside, cycloisoperinolin-4-O-glucoside compared to local coconuts. Coconut meat had the greatest effect on Rohan rosin-4,4'-di-o-glucoside, coconut water on Daphne, and coconut shell and coconut fiber on Larinin-4'-o-glucoside. The data from different parts of coconut fruit's images showed a significant correlation with the content of lignan metabolites. This study has preliminarily explored the correlation between non-destructive testing of coconut fruit and its development process of coconut fruit, providing a new approach and method for further research on non-destructive testing of coconut fruit development.


Asunto(s)
Cocos , Frutas , Lignanos , Tomografía Computarizada por Rayos X , Lignanos/metabolismo , Lignanos/análisis , Lignanos/química , Cocos/metabolismo , Cocos/química , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Frutas/química , Tomografía Computarizada por Rayos X/métodos
17.
Heliyon ; 10(8): e29671, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38660243

RESUMEN

Background: The Proximal Femoral Nail Antirotation (PFNA) device is the most commonly used implant to fix unstable femoral trochanteric fractures (UFTFs), but it has a relatively high incidence of complications. Due to this factor, the modified intramedullary nail (MIN) was created to treat patients with UFTFs. The aim was to exhibit the MIN and make a comparison with PFNA and InterTAN using biomechanical methods. Methods: An adult UFTF model was developed using Mimics software. The PFNA, InterTAN nail, and MIN models were drawn referring to the corresponding parameters and installed in the fracture models. Vertical, anteroposterior (AP) bending, and torsion loads of the femoral head were set in advance and loaded onto the fracture models. The value of maximal displacement and von Mises stress was evaluated via finite element analysis (FEA). Results: The MIN model had smaller values for maximal displacement than that of the PFNA model, and the increase in displacement was less pronounced for the MIN compared to PFNA under increasing vertical loads. For the indicator of von Mises stress, the MIN model showed lower stress compared with the PFNA model in vertical loads ranging from 300 N to 2100 N. Except for the maximal stress at implants under AP bending loads, the MIN demonstrated the most superior biomechanical properties under AP bending and torsional loads. Conclusion: The MIN offered obvious advantages in terms of mechanical stability and stress distribution among the three studied implants, providing a promising implant option for patients with UFTFs.

18.
Plant Cell Rep ; 31(5): 895-904, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22187088

RESUMEN

Pathogenesis-related (PR) proteins play an important role in the disease resistance response. To better understand the function of rice PR proteins, we examined the expressions of ten PR proteins in rice leaves at different developmental stages with or without the interaction between rice and Xanthomonas oryzae pv. oryzae (Xoo). The results showed that most of the PR proteins were expressed in rice leaves in normal growth conditions, suggesting that they play a role in rice growth. Six out of ten PR proteins (PR1, PR2, PR3, PR4b, PR8, and PR-pha) showed enhanced expression in Xa21-mediated resistance responses at late stages after inoculation with Xoo. The remaining four PR proteins (PR5, PR6, PR15, and PR16) did not show changes in expression in the resistance response. The expressions of PR proteins in the resistance reaction were further compared with those in the susceptible reaction and a mock treatment. Interestingly, several of the PR proteins were expressed at the highest levels in the susceptible reaction and at the lowest levels in the mock treatment. Among the other four PR proteins, PR5 and PR16 showed changes in the abundance only in the susceptible response, while PR6 and PR15 showed no detectable difference in expression. These data provide fundamental knowledge about the expression of PR proteins in the interaction between rice and Xoo.


Asunto(s)
Resistencia a la Enfermedad , Oryza/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/patogenicidad , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Oryza/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/genética
19.
Chemosphere ; 308(Pt 2): 136279, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36064018

RESUMEN

Emerging S-scheme heterojunction photocatalysts endowed with efficient charge separation and strong redox capacity have stimulated wide interests in dealing with environmental issues nowadays. In this work, we firstly fabricated the oxygen vacancy modified ZrTiO4-x nanocrystals, which was further combined with AgI to build the defective S-scheme AgI/ZrTiO4-x heterojunctions for visible-light photocatalytic norfloxacin degradation. The synthesized ZrTiO4-x nanocrystals and AgI/ZrTiO4-x heterojunctions displayed remarkably boosted norfloxacin degradation performance under visible-light irradiation. The reaction rate constant of the optimized AgI/ZrTiO4-x-5% heterojunction is as high as 0.01419 min-1, which is approximately 43.35 times that of AgI and 7.93 times that of ZrTiO4-x nanocrystals, and far superior to those of commercial TiO2 and commercial ZrO2. The high-performance photocatalytic norfloxacin degradation could be mainly attributed to the formation of S-scheme charge transfer pathways and oxygen vacancy defects. More significantly, AgI/ZrTiO4-x could also realize the effective photo-decomposition of other emerging pollutants. Finally, the visible-light photocatalytic performance and photocatalysis mechanism were investigated.


Asunto(s)
Contaminantes Ambientales , Norfloxacino , Catálisis , Luz , Oxígeno/química
20.
J Colloid Interface Sci ; 615: 309-317, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35144231

RESUMEN

The urea oxidation reaction (UOR) has been well-acknowledged as one of the promising alternatives for hydrogen production through electrochemical water splitting system because of the more favorable thermodynamic potential. But the shortage of cost-effective electrocatalysts with high catalytic activity and durability restricts its practical development. Herein, the partially amorphous fluorine-decorated nickel iron layered double hydroxides (NiFe-F) is constructed via a low-temperature fluoridation method. Our study found that HF acid etching of NiFe LDH precursor resulted in the partially amorphous feature and abundant oxygen vacancies, providing rich reaction sites. Simultaneously, the formation of ionic metal-F bond makes it easier to form high-valence metal oxygen hydroxide active sites. Specifically, the as-prepared NiFe-F-4 electrode demonstrates a superb mass activity of 1290 mA mg-1 at 1.6 V vs. RHE. Further experiments found that amorphous structure and F decorating decreased the activation energy of UOR from 30.71 kJ mol-1 (crystalline NiFe-F-4) to 20.17 kJ mol-1 (amorphous NiFe-F-4), leading to a rapid dynamic with a small Tafel slope of 31 mV dec-1. Moreover, NiFe-F-4 casts remarkable long-term durability for 40 h without performance decay. This work holds great promise to develop advanced electrocatalysts for pollution treatment of urea-rich wastewater and energy-saving H2 production.


Asunto(s)
Hierro , Níquel , Hidróxidos/química , Hierro/química , Níquel/química , Oxidación-Reducción , Urea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA