RESUMEN
The growing knowledge of the links between aberrant mitochondrial gene transcription and human diseases necessitates both an effective and dynamic approach to control mitochondrial DNA (mtDNA) transcription. To address this challenge, we developed a nanoparticle-based synthetic mitochondrial transcription regulator (MitoScript). MitoScript provides great colloidal stability, excellent biocompatibility, efficient cell uptake, and selective mitochondria targeting and can be monitored in live cells using near-infrared fluorescence. Notably, MitoScript controlled mtDNA transcription in a human cell line in an effective and selective manner. MitoScript targeting the light strand promoter region of mtDNA resulted in the downregulation of ND6 gene silencing, which eventually affected cell redox status, with considerably increased reactive oxygen species (ROS) generation. In summary, we developed MitoScript for the efficient, nonviral modification of mitochondrial DNA transcription. Our platform technology can potentially contribute to understanding the fundamental mechanisms of mitochondrial disorders and developing effective treatments for mitochondrial diseases.
Asunto(s)
ADN Mitocondrial , Nanopartículas , Humanos , ADN Mitocondrial/genética , Mitocondrias/genética , Transcripción Genética , Transporte BiológicoRESUMEN
Nanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off-target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology-based approaches have emerged as promising strategies for preventing and treating chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy. NP-based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.
RESUMEN
Extracellular vesicles (e.g., exosomes) carrying various biomolecules (e.g., proteins, lipids, and nucleic acids) have rapidly emerged as promising platforms for many biomedical applications. Despite their enormous potential, their heterogeneity in surfaces and sizes, the high complexity of cargo biomolecules, and the inefficient uptake by recipient cells remain critical barriers for their theranostic applications. To address these critical issues, multifunctional nanomaterials, such as magnetic nanomaterials, with their tunable physical, chemical, and biological properties, may play crucial roles in next-generation extracellular vesicles (EV)-based disease diagnosis, drug delivery, tissue engineering, and regenerative medicine. As such, one aims to provide cutting-edge knowledge pertaining to magnetic nanomaterials-facilitated isolation, detection, and delivery of extracellular vesicles and their associated biomolecules. By engaging the fields of extracellular vesicles and magnetic nanomaterials, it is envisioned that their properties can be effectively combined for optimal outcomes in biomedical applications.
Asunto(s)
Exosomas , Vesículas Extracelulares , Nanoestructuras , Vesículas Extracelulares/metabolismo , Fenómenos Magnéticos , Nanomedicina TeranósticaRESUMEN
Nanoparticle-based nucleic acid conjugates (NP-NACs) hold great promise for theragnostic (diagnostic and therapeutic) applications. However, several limitations have hindered the realization of their full potential in the clinical treatment of cancer and other diseases. In diagnosis, NP-NACs, combined with conventional optical sensing systems, have been applied for cancer detection in vitro, but low signal-to-noise ratios limit their broad in vivo applications. Meanwhile, the efficiency of NP-NAC-mediated cancer therapies has been limited through the adaptation of alternative pro-survival pathways in cancer cells. The recent emergence of personalized and precision medicine has outlined the importance of both accurate diagnosis and efficient therapeutics in a single platform. As such, we report the controlled assembly of hybrid graphene oxide/gold nanoparticle-based cancer-specific NACs (Au@GO NP-NACs) for multimodal imaging and combined therapeutics. Our developed Au@GO NP-NACs shows excellent surface-enhanced Raman scattering (SERS)-mediated live-cell cancer detection and multimodal synergistic cancer therapy through the use of photothermal, genetic, and chemotherapeutic strategies. Synergistic and selective killing of cancer cells were then demonstrated by using in vitro microfluidic models and nine different cancer cell lines by further incorporating near-infrared photothermal hyperthermia, a Topoisomerase II anti-cancer drug, and cancer targeting peptides. Moreover, with distinctive advantages of the Au@GO NP-NACs for cancer theragnostics, we further demonstrated precision cancer treatment through the detection of cancer cells in vivo using SERS followed by efficient ablation of the tumor. Therefore, our Au@GO NP-NACs could pave a new road for the advanced theragnostics of cancer as well as many other diseases.
RESUMEN
Surface-enhanced Raman scattering (SERS) has demonstrated great potential to analyze a variety of bio/chemical molecular interactions within cells in a highly sensitive and selective manner. Despite significant advancements, it remains a critical challenge to ensure high sensitivity and selectivity, while achieving uniform signal enhancement and high reproducibility for quantitative detection of targeted biomarkers within a complex stem cell microenvironment. Herein, we demonstrate an innovative sensing platform, using graphene-coated homogeneous plasmonic metal (Au) nanoarrays, which synergize both electromagnetic mechanism (EM)- and chemical mechanism (CM)-based enhancement. Through the homogeneous plasmonic nanostructures, generated by laser interference lithography (LIL), highly reproducible enhancement of Raman signals could be obtained via a strong and uniform EM. Additionally, the graphene-functionalized surface simultaneously amplifies the Raman signals by an optimized CM, which aligns the energy level of the graphene oxide with the target molecule by tuning its oxidation levels, consequently increasing the sensitivity and accuracy of our sensing system. Using the dual-enhanced Raman scattering from both EM from the homogeneous plasmonic Au nanoarray and CM from the graphene surface, our graphene-Au hybrid nanoarray was successfully utilized to detect as well as quantify a specific biomarker (TuJ1) gene expression levels to characterize neuronal differentiation of human neural stem cells (hNSCs). Collectively, we believe our unique graphene-plasmonic hybrid nanoarray can be extended to a wide range of applications in the development of simple, rapid, and accurate sensing platforms for screening various bio/chemical molecules.
Asunto(s)
Oro/química , Grafito/química , Nanoestructuras/química , Células-Madre Neurales/citología , Espectrometría Raman/métodos , Técnicas Biosensibles/métodos , Diferenciación Celular , Línea Celular , Fenómenos Electromagnéticos , Humanos , Modelos Moleculares , Nanoestructuras/ultraestructura , NeurogénesisRESUMEN
Inflammatory responses, leading to fibrosis and potential host rejection, significantly hinder the long-term success and widespread adoption of biomedical implants. The ability to control and investigated macrophage inflammatory responses at the implant-macrophage interface would be critical for reducing chronic inflammation and improving tissue integration. Nonetheless, the systematic investigation of how surface topography affects macrophage polarization is typically complicated by the restricted complexity of accessible nanostructures, difficulties in achieving exact control, and biased preselection of experimental parameters. In response to these problems, we developed a large-scale, high-content combinatorial biophysical cue (CBC) array for enabling high-throughput screening (HTS) of the effects of nanotopography on macrophage polarization and subsequent inflammatory processes. Our CBC array, created utilizing the dynamic laser interference lithography (DLIL) technology, contains over 1 million nanotopographies, ranging from nanolines and nanogrids to intricate hierarchical structures with dimensions ranging from 100 nm to several microns. Using machine learning (ML) based on the Gaussian process regression algorithm, we successfully identified certain topographical signals that either repress (pro-M2) or stimulate (pro-M1) macrophage polarization. The upscaling of these nanotopographies for further examination has shown mechanisms such as cytoskeletal remodeling and ROCK-dependent epigenetic activation to be critical to the mechanotransduction pathways regulating macrophage fate. Thus, we have also developed a platform combining advanced DLIL nanofabrication techniques, HTS, ML-driven prediction of nanobio interactions, and mechanotransduction pathway evaluation. In short, our developed platform technology not only improves our ability to investigate and understand nanotopography-regulated macrophage inflammatory responses but also holds great potential for guiding the design of nanostructured coatings for therapeutic biomaterials and biomedical implants.
Asunto(s)
Aprendizaje Automático , Macrófagos , Macrófagos/metabolismo , Ratones , Animales , Propiedades de Superficie , Células RAW 264.7 , Nanoestructuras/químicaRESUMEN
Various types of inorganic nanomaterials are capable of diagnostic biomarker detection and the therapeutic delivery of a disease or inflammatory modulating agent. Those multi-functional nanomaterials have been utilized to treat neurodegenerative diseases and central nervous system (CNS) injuries in an effective and personalized manner. Even though many nanomaterials can deliver a payload and detect a biomarker of interest, only a few studies have yet to fully utilize this combined strategy to its full potential. Combining a nanomaterial's ability to facilitate targeted delivery, promote cellular proliferation and differentiation, and carry a large amount of material with various sensing approaches makes it possible to diagnose a patient selectively and sensitively while offering preventative measures or early disease-modifying strategies. By tuning the properties of an inorganic nanomaterial, the dimensionality, hydrophilicity, size, charge, shape, surface chemistry, and many other chemical and physical parameters, different types of cells in the central nervous system can be monitored, modulated, or further studies to elucidate underlying disease mechanisms. Scientists and clinicians have better understood the underlying processes of pathologies for many neurologically related diseases and injuries by implementing multi-dimensional 0D, 1D, and 2D theragnostic nanomaterials. The incorporation of nanomaterials has allowed scientists to better understand how to detect and treat these conditions at an early stage. To this end, having the multi-modal ability to both sense and treat ailments of the central nervous system can lead to favorable outcomes for patients suffering from such injuries and diseases.
Asunto(s)
Nanoestructuras , Enfermedades Neurodegenerativas , Humanos , Nanoestructuras/uso terapéutico , Nanoestructuras/química , Sistema Nervioso Central , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/tratamiento farmacológicoRESUMEN
Degeneration of fibrocartilaginous tissues is often associated with complex pro-inflammatory factors. These include reactive oxygen species (ROS), cell-free nucleic acids (cf-NAs), and epigenetic changes in immune cells. To effectively control this complex inflammatory signaling, it developed an all-in-one nanoscaffold-based 3D porous hybrid protein (3D-PHP) self-therapeutic strategy for treating intervertebral disc (IVD) degeneration. The 3D-PHP nanoscaffold is synthesized by introducing a novel nanomaterial-templated protein assembly (NTPA) strategy. 3D-PHP nanoscaffolds that avoid covalent modification of proteins demonstrate inflammatory stimuli-responsive drug release, disc-mimetic stiffness, and excellent biodegradability. Enzyme-like 2D nanosheets incorporated into nanoscaffolds further enabled robust scavenging of ROS and cf-NAs, reducing inflammation and enhancing the survival of disc cells under inflammatory stress in vitro. Implantation of 3D-PHP nanoscaffolds loaded with bromodomain extraterminal inhibitor (BETi) into a rat nucleotomy disc injury model effectively suppressed inflammation in vivo, thus promoting restoration of the extracellular matrix (ECM). The resulting regeneration of disc tissue facilitated long-term pain reduction. Therefore, self-therapeutic and epigenetic modulator-encapsulated hybrid protein nanoscaffold shows great promise as a novel approach to restore dysregulated inflammatory signaling and treat degenerative fibrocartilaginous diseases, including disc injuries, providing hope and relief to patients worldwide.
Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Humanos , Ratas , Animales , Especies Reactivas de Oxígeno/metabolismo , Porinas , Porosidad , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Estrés OxidativoRESUMEN
The role of BACH1 in the process of vascular smooth muscle cell (VSMC) differentiation from human embryonic stem cells (hESCs) remains unknown. Here, we find that the loss of BACH1 in hESCs attenuates the expression of VSMC marker genes, whereas overexpression of BACH1 after mesoderm induction increases the expression of VSMC markers during in vitro hESC-VSMC differentiation. Mechanistically, BACH1 binds directly to coactivator-associated arginine methyltransferase 1 (CARM1) during in vitro hESC-VSMC differentiation, and this interaction is mediated by the BACH1 bZIP domain. BACH1 recruits CARM1 to VSMC marker gene promoters and promotes VSMC marker expression by increasing H3R17me2 modification, thus facilitating in vitro VSMC differentiation from hESCs after the mesoderm induction. The increased expression of VSMC marker genes by BACH1 overexpression is partially abolished by inhibition of CARM1 or the H3R17me2 inhibitor TBBD in hESC-derived cells. These findings highlight the critical role of BACH1 in hESC differentiation into VSMCs by CARM1-mediated methylation of H3R17.
Asunto(s)
Células Madre Embrionarias Humanas , Humanos , Células Madre Embrionarias Humanas/metabolismo , Músculo Liso Vascular/metabolismo , Línea Celular , Diferenciación Celular/genética , Metilación , Miocitos del Músculo Liso/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismoRESUMEN
A systematic investigation of stem cell-derived neural interfaces can facilitate the discovery of the molecular mechanisms behind cell behavior in neurological disorders and accelerate the development of stem cell-based therapies. Nevertheless, high-throughput investigation of the cell-type-specific biophysical cues associated with stem cell-derived neural interfaces continues to be a significant obstacle to overcome. To this end, we developed a combinatorial nanoarray-based method for high-throughput investigation of neural interface micro-/nanostructures (physical cues comprising geometrical, topographical, and mechanical aspects) and the effects of these complex physical cues on stem cell fate decisions. Furthermore, by applying a machine learning (ML)-based analytical approach to a large number of stem cell-derived neural interfaces, we comprehensively mapped stem cell adhesion, differentiation, and proliferation, which allowed for the cell-type-specific design of biomaterials for neural interfacing, including both adult and human-induced pluripotent stem cells (hiPSCs) with varying genetic backgrounds. In short, we successfully demonstrated how an innovative combinatorial nanoarray and ML-based platform technology can aid with the rational design of stem cell-derived neural interfaces, potentially facilitating precision, and personalized tissue engineering applications.
RESUMEN
Cartilage injuries are often devastating and most cannot be cured because of the intrinsically low regenerative capacity of cartilage tissues. Although stem-cell therapy has shown enormous potential for cartilage repair, the therapeutic outcome has been restricted by low survival rates and poor chondrocyte differentiation in vivo. Here, we report an injectable hybrid inorganic (IHI) nanoscaffold that facilitates fast assembly, enhances survival and regulates chondrogenic differentiation of stem cells. IHI nanoscaffolds that strongly bind to extracellular matrix (ECM) proteins assemble stem cells through synergistic 3D cell-cell and cell-matrix interactions, creating a favorable physical microenvironment for stem-cell survival and differentiation in vitro and in vivo. Additionally, chondrogenic factors can be loaded into nanoscaffolds with a high capacity, which allows deep, homogenous drug delivery into assembled 3D stem-cell-derived tissues for effective control over the soluble microenvironment of stem cells. The developed IHI nanoscaffolds that assemble with stem cells are injectable. They also scavenge reactive oxygen species and timely biodegrade for proper integration into injured cartilage tissues. Implantation of stem-cell-assembled IHI nanoscaffolds into injured cartilage results in accelerated tissue regeneration and functional recovery. By establishing our IHI nanoscaffold-templated 3D stem-cell assembly method, we provide a promising approach to better overcoming the inhibitory microenvironment associated with cartilage injuries and to advance current stem-cell-based tissue engineering.
RESUMEN
[This corrects the article DOI: 10.3389/fcell.2020.00839.].
RESUMEN
Cardiac hypertrophy is a critical intermediate step in the pathogenesis of heart failure. A myriad of signaling networks converge on cardiomyocytes to elicit hypertrophic growth in response to various injurious stimuli. In the present study, we investigated the cardiomyocyte-specific role of myocardin-related transcription factor A (MRTF-A) in angiotensin-II (Ang-II)-induced cardiac hypertrophy and the underlying mechanism. We report that conditional MRTF-A deletion in cardiomyocytes attenuated Ang-II-induced cardiac hypertrophy in mice. Similarly, MRTF-A knockdown or inhibition suppressed Ang-II-induced prohypertrophic response in cultured cardiomyocytes. Of note, Ang II treatment upregulated expression of phosphodiesterase 5 (PDE5), a known mediator of cardiac hypertrophy and heart failure, in cardiomyocytes, which was blocked by MRTF-A depletion or inhibition. Mechanistically, MRTF-A activated expression of specificity protein 1 (Sp1), which in turn bound to the PDE5 promoter and upregulated PDE5 transcription to promote hypertrophy of cardiomyocytes in response to Ang II stimulation. Therefore, our data unveil a novel MRTF-A-Sp1-PDE5 axis that mediates Ang-II-induced hypertrophic response in cardiomyocytes. Targeting this newly identified MRTF-A-Sp1-PDE5 axis may yield novel interventional solutions against heart failure.
RESUMEN
The self-assembly of FtsZ, the bacterial homolog of tubulin, plays an essential role in cell division. Light scattering technique is applied to real-time monitor the in vitro assembly of FtsZ in Arthrobacter strain A3, a newly isolated psychrotrophic bacterium. The critical concentration needed for the assembly is estimated as 6.7µM. The polymerization of FtsZ in Arthrobacter strain A3 requires both GTP and divalent metal ions, while salt is an unfavorable condition for the assembly. The FtsZ polymerizes under a wide range of pHs, with the fastest rate around pH 6.0. The FtsZ from Arthrobacter strain A3 resembles Mycobacterium tuberculosis FtsZ in terms of the dependence on divalent metal ions and the slow polymerization rate, while it is different from M. tuberculosis FtsZ considering the sensitivity to salt and pH. The comparison of FtsZ from different organisms will greatly advance our understanding of the biological role of the key cell division protein.