Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroimage ; 297: 120700, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38942103

RESUMEN

People perform better collectively than individually, a phenomenon known as the collective benefit. To pursue the benefit, they may learn from previous behaviors, come to know whose initial opinion should be valued, and develop the inclination to take it as the collective one. Such learning may affect interpersonal brain communication. To test these hypotheses, this study recruited participant dyads to conduct a perceptual task on which they made individual decisions first and then the collective one. The enhanced interpersonal brain synchronization (IBS) between participants was explored when individual decisions were in disagreement vs. agreement. Computational modeling revealed that participant dyads developed the dyad inclination of taking the higher-able participants', not the lower-able ones' decisions as their collective ones. Brain analyses unveiled the enhanced IBS at frontopolar areas, premotor areas, supramarginal gyri, and right temporal-parietal junctions. The premotor IBS correlated negatively with dyad inclination and collective benefit in the absence of correction. The Granger causality analyses further supported the negative relation of dyad inclination with inter-brain communication. This study highlights that dyads learn to weigh individuals' decisions, resulting in dyad inclinations, and explores associated inter-brain communication, offering insights into the dynamics of collective decision-making.


Asunto(s)
Encéfalo , Toma de Decisiones , Relaciones Interpersonales , Humanos , Masculino , Femenino , Adulto Joven , Toma de Decisiones/fisiología , Adulto , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Comunicación , Mapeo Encefálico
2.
Bioorg Chem ; 145: 107219, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38377821

RESUMEN

SET domain bifurcated methyltransferase 1 (SETDB1) serves as a histone lysine methyltransferase, catalyzing the di- and tri-methylation of histone H3K9. Mounting evidence indicates that the abnormal expression or activity of SETDB1, either through amplification or mutation, plays a crucial role in tumorigenesis and progression. This is particularly evident in the context of tumor immune evasion and resistance to immune checkpoint blockade therapy. Furthermore, there is a robust association between SETDB1 dysregulation and an unfavorable prognosis across various types of tumors. The oncogenic role of SETDB1 primarily arises from its methyltransferase function, which contributes to the establishment of a condensed and transcriptionally inactive heterochromatin state. This results in the inactivation of genes that typically hinder cancer development and silencing of retrotransposons that could potentially trigger an immune response. These findings underscore the substantial potential for SETDB1 as an anti-tumor therapeutic target. Nevertheless, despite significant strides in recent years in tumor biology research, challenges persist in SETDB1-targeted therapy. To better facilitate the development of anti-tumor therapy targeting SETDB1, we have conducted a comprehensive review of SETDB1 in this account. We present the structure and function of SETDB1, its role in various tumors and immune regulation, as well as the advancements made in SETDB1 antagonists. Furthermore, we discuss the challenges encountered and provide perspectives for the development of SETDB1-targeted anti-tumor therapy.


Asunto(s)
Histonas , Neoplasias , Humanos , Histonas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Neoplasias/tratamiento farmacológico , Metilación
3.
Appl Microbiol Biotechnol ; 108(1): 360, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836914

RESUMEN

In the fight against hospital-acquired infections, the challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) necessitates the development of novel treatment methods. This study focused on undermining the virulence of S. aureus, especially by targeting surface proteins crucial for bacterial adherence and evasion of the immune system. A primary aspect of our approach involves inhibiting sortase A (SrtA), a vital enzyme for attaching microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) to the bacterial cell wall, thereby reducing the pathogenicity of S. aureus. Verbascoside, a phenylethanoid glycoside, was found to be an effective SrtA inhibitor in our research. Advanced fluorescence quenching and molecular docking studies revealed a specific interaction between verbascoside and SrtA, pinpointing the critical active sites involved in this interaction. This molecular interaction significantly impedes the SrtA-mediated attachment of MSCRAMMs, resulting in a substantial reduction in bacterial adhesion, invasion, and biofilm formation. The effectiveness of verbascoside has also been demonstrated in vivo, as shown by its considerable protective effects on pneumonia and Galleria mellonella (wax moth) infection models. These findings underscore the potential of verbascoside as a promising component in new antivirulence therapies for S. aureus infections. By targeting crucial virulence factors such as SrtA, agents such as verbascoside constitute a strategic and potent approach for tackling antibiotic resistance worldwide. KEY POINTS: • Verbascoside inhibits SrtA, reducing S. aureus adhesion and biofilm formation. • In vivo studies demonstrated the efficacy of verbascoside against S. aureus infections. • Targeting virulence factors such as SrtA offers new avenues against antibiotic resistance.


Asunto(s)
Aminoaciltransferasas , Antibacterianos , Adhesión Bacteriana , Proteínas Bacterianas , Biopelículas , Cisteína Endopeptidasas , Glucósidos , Staphylococcus aureus Resistente a Meticilina , Simulación del Acoplamiento Molecular , Fenoles , Infecciones Estafilocócicas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/metabolismo , Cisteína Endopeptidasas/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Glucósidos/farmacología , Animales , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Fenoles/farmacología , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Mariposas Nocturnas/microbiología , Virulencia/efectos de los fármacos , Modelos Animales de Enfermedad , Factores de Virulencia/metabolismo , Inhibidores Enzimáticos/farmacología , Polifenoles
4.
Molecules ; 29(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338316

RESUMEN

BACKGROUND: The development of an anti-drug antibody (ADA)-tolerant pharmacokinetic (PK) assay is important when the drug exposure is irrelevant to toxicity in the presence of ADA. We aimed to develop and validate an ADA-tolerant assay for an exatecan-based antibody-drug conjugate (ADC) in monkey plasma. RESULTS: The assay tolerated 5.00 µg/mL of ADA at 12 µg/mL of ADC. Its accuracy and precision results satisfied the acceptance criteria. Furthermore, the assay was free from hook and matrix effects and exhibited good dilutional linearity. Additionally, the ADC in plasma samples was stable under different storage conditions. METHOD: An ADA-tolerant ADC assay was configured with an anti-payload antibody for capture, and a drug-target protein combined with a horseradish peroxidase (HRP)-labeled antibody against a drug-target-protein tag for detection. Samples were firstly acidified to dissociate drug and ADA complexes, and to convert the carboxylate form to the lactone form of exatecan molecules; then, the ADAs in the samples were removed with a naked antibody-coated microplate. The treated samples were further incubated with coated anti-payload antibody and captured ADC molecules were quantified by the detection reagent. The developed assay was optimized and validated against regulatory guidelines. CONCLUSIONS: The assay met both methodological and sample-related ADA tolerance requirements, and was applicable to a nonclinical study in cynomolgus monkeys.


Asunto(s)
Camptotecina/análogos & derivados , Inmunoconjugados , Animales , Haplorrinos , Anticuerpos
5.
Psych J ; 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034394

RESUMEN

People possessing musical knowledge tend to enjoy music more, but the linkage remains to be determined. Based on the shared affective motion experience model for music appreciation, we hypothesized that acquiring musical knowledge about the music itself, for example, an analytical understanding of music elements and the related emotional expressions, would increase music liking. To test the hypothesis, we asked 48 participants to learn analytical or historical information about a piece of music by watching a pre-recorded teaching video. Learners' physiological responses, such as skin conductance and heart rate, were recorded during learning. The increase of music liking was observed after both types of knowledge acquisition, but more so for analytical knowledge. Notably, acquiring analytical knowledge made learners' skin conductance more similar, indicating the alignment of physiological responses. This physiological similarity, correlated with analytical knowledge similarity, could mediate the effect of knowledge acquisition on music liking. In sum, this study reveals the impact of analytical knowledge on music enjoyment and the associated neurophysiological mechanism. It extends the theoretical framework of shared affective motion experience to explain how musical knowledge influences music appreciation.

6.
J Ethnopharmacol ; 334: 118594, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39032662

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Helicobacter pylori (H. pylori) infections are on the rise, presenting a significant global health challenge. Mass Galla chinesis et camelliae Fermentata (Chinese gall leaven, CGL), a traditional Chinese medicinal product made from the fermentation of Rhus chinensis Mill., is frequently employed to address digestive system ailments. Contemporary pharmacological research reveals that CGL exhibits anti-inflammatory, anti-diarrheal, and enzyme-inhibitory activities and holds potential as a treatment for H. pylori infections. However, the precise mechanisms underlying CGL's efficacy against H. pylori remain to be fully elucidated. AIM: The objective of the study is to evaluate CGL's ability to disrupt the H. pylori biofilm and to explore its synergistic potential with antibiotics in targeting the biofilm-efflux pump system, a mechanism implicated in bacterial resistance. METHORDS: The study determined the Minimum Inhibitory Concentration (MIC) of CGL and metronidazole against H. pylori and evaluated their effects on H. pylori biofilms using an in vitro model. Structural changes induced by drug interventions were compared to those in untreated and antibiotic-treated models through scanning electron microscopy and laser confocal microscopy. The accumulation of H33342 dye in planktonic and biofilm H. pylori before and after drug treatment was assessed to evaluate cell viability and biofilm disruption. The study also involved adding experimental drugs to a biofilm H. pylori medium containing D-glucose, measuring glucose concentrations post-intervention using the glucose oxidase method, and calculating changes in glucose uptake. Finally, the relative expression levels of several genes in planktonic and biofilm H. pylori treated with CGL alone or in combination with antibiotics were measured to understand the impact on the biofilm-efflux pump system. RESULTS: Both CGL alone and in combination with metronidazole demonstrated effective disruption of H. pylori biofilms. The combination therapy was particularly effective in reducing the biofilm transfer-enhancing effect of metronidazole and decreasing SpoT expression in the 'SpoT-(p)ppGpp' pathway, especially in biofilms. It showed a greater inhibition of the 'σ54-gluP-sugar uptake' pathway, with significant reductions in rpoN and gluP expression under biofilm conditions compared to CGL or metronidazole alone. The treatment also suppressed H. pylori proliferation and may have altered glucose uptake mechanisms. Moreover, it significantly inhibited the 'hp0939/hp0497/hp0471-RND efflux pump' pathway, with a notable reduction in gene expression compared to the 1/2 MIC metronidazole treatment. CONCLUSION: This study demonstrates that CGL effectively hinders the development of drug resistance in H. pylori by targeting biofilm formation and critical molecular pathways associated with antibiotic resistance. The synergistic effect of combining CGL with metronidazole notably enhances biofilm disruption and inhibits the bacterium's metabolic and reparative mechanisms. Further in vivo studies are needed to confirm these results and to investigate additional mechanisms of CGL's action.


Asunto(s)
Antibacterianos , Biopelículas , Helicobacter pylori , Pruebas de Sensibilidad Microbiana , Biopelículas/efectos de los fármacos , Helicobacter pylori/efectos de los fármacos , Antibacterianos/farmacología , Metronidazol/farmacología , Rhus/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Sinergismo Farmacológico , Extractos Vegetales/farmacología , Medicamentos Herbarios Chinos , Taninos
7.
NPJ Vaccines ; 9(1): 77, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600250

RESUMEN

Immunosenescence increases the risk and severity of diseases in elderly individuals and leads to impaired vaccine-induced immunity. With aging of the global population and the emerging risk of epidemics, developing adjuvants and vaccines for elderly individuals to improve their immune protection is pivotal for healthy aging worldwide. Deepening our understanding of the role of immunosenescence in vaccine efficacy could accelerate research focused on optimizing vaccine delivery for elderly individuals. In this review, we analyzed the characteristics of immunosenescence at the cellular and molecular levels. Strategies to improve vaccination potency in elderly individuals are summarized, including increasing the antigen dose, preparing multivalent antigen vaccines, adding appropriate adjuvants, inhibiting chronic inflammation, and inhibiting immunosenescence. We hope that this review can provide a review of new findings with regards to the impacts of immunosenescence on vaccine-mediated protection and inspire the development of individualized vaccines for elderly individuals.

8.
Bioanalysis ; 16(7): 135-148, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385901

RESUMEN

Background: DB-1003 is a humanized anti-IgE monoclonal antibody with higher affinity than omalizumab. In the affinity capture elution (ACE)-based bridging electrochemiluminescent immunoassay (ECLIA) for antibodies to DB-1003, monkey serum IgE caused false-positive results. Materials & methods: The target-specific antibody or its F(ab')2 fragment was used to mitigate drug target interference in an ACE-based bridging ECLIA for the detection of anti-DB-1003 antibodies. Results: The sensitivity of the developed assay was at least 100 ng/ml. When the anti-drug antibody concentration was 250 ng/ml, the assay tolerated at least 20.0 µg/ml of the monkey IgE. Conclusion: Incorporating the target-specific antibody or its F(ab')2 fragment can overcome the interference from monkey serum IgE in ACE-based bridging ECLIA for anti-DB-1003 antibody detection.


Asunto(s)
Anticuerpos Monoclonales , Sistemas de Liberación de Medicamentos , Animales , Suero , Haplorrinos , Inmunoglobulina E , Fragmentos Fab de Inmunoglobulinas
9.
Nanomicro Lett ; 16(1): 218, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884868

RESUMEN

Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels. A series of conventional and novel strategies including emulsification, microfluidic, lithography, electrospray, centrifugation, gas-shearing, three-dimensional bioprinting, etc. are discussed in depth. The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy. Additionally, we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA